Please wait a minute...

Frontiers of Mathematics in China

Front. Math. China    2017, Vol. 12 Issue (4) : 993-1022     DOI: 10.1007/s11464-016-0546-7
RESEARCH ARTICLE |
Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
Hui ZHANG, Chunyan QI, Baode LI()
College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China
Download: PDF(295 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ|>1. The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let ϕ: Rn×[0,∞) →[0,∞) be an anisotropic p-growth function with p ∈ (0, 1]. The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type HAφ,(?n) and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to HAφ,(?n) and the boundedness of the anisotropic Calderón-Zygmund operator from HAφ,(?n) to Lφ,(?n). It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of HAφ,(?n) and the interpolation theorem.

Keywords Expansive dilation      Muckenhoupt weight      weak Hardy space      Musielak-Orlicz function      atomic decomposition      Calderón-Zygmund operator     
Corresponding Authors: Baode LI   
Issue Date: 06 July 2017
 Cite this article:   
Hui ZHANG,Chunyan QI,Baode LI. Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications[J]. Front. Math. China, 2017, 12(4): 993-1022.
 URL:  
http://journal.hep.com.cn/fmc/EN/10.1007/s11464-016-0546-7
http://journal.hep.com.cn/fmc/EN/Y2017/V12/I4/993
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hui ZHANG
Chunyan QI
Baode LI
1 BonamiA, FeutoJ, GrellierS. Endpoint for the div-curl lemma in Hardy spaces.Publ Mat, 2010, 54: 341–358
doi: 10.5565/PUBLMAT_54210_03
2 BonamiA, GrellierS, KyL D. Paraproducts and products of functions in BMOand H1 through wavelets.J Math Pure Appl, 2012, 97: 230–241
doi: 10.1016/j.matpur.2011.06.002
3 BonamiA, IwaniecT, JonesP, ZinsmeisterM. On the product of functions in BMOand H1.Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439
doi: 10.5802/aif.2299
4 BownikM. Anisotropic Hardy Spaces and Wavelets.Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc,2003
5 BownikM. On a problem of Daubechies.Constr Approx, 2003, 19: 179–190
doi: 10.1007/s00365-001-0025-5
6 BownikM, HoK P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces.Trans Amer Math Soc, 2006, 358: 1469–1510
doi: 10.1090/S0002-9947-05-03660-3
7 BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators.Indiana Univ Math J, 2008, 57: 3065–3100
doi: 10.1512/iumj.2008.57.3414
8 BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math Nachr, 2010, 283: 392–442
doi: 10.1002/mana.200910078
9 CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.Berlin-New York: Springer-Verlag, 1971
doi: 10.1007/BFb0058946
10 DieningL. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull Sci Math, 2005, 129: 657–700
doi: 10.1016/j.bulsci.2003.10.003
11 DingY, LanS H. Anisotropic weak Hardy spaces and interpolation theorems.Sci China Math, 2008, 51: 1690–1704
doi: 10.1007/s11425-008-0009-z
12 DingY, LanS H. Anisotropic Hardy estimates for multilinear operators.Adv Math, 2009, 38: 168–184
13 FeffermanC, RiviereN M, SagherY. Interpolation between Hp spaces: the real method.Trans Amer Math Soc, 1974, 191: 75–81
14 FeffermanR, SoriaF. The spaces weak H1.Studia Math, 1987, 85: 1–16
15 Garćıa-CuervaJ, MartellJ M. Wavelet characterization of weighted spaces.J Geom Anal,2001, 11: 241–264
doi: 10.1007/BF02921965
16 JohnsonR, NeugebauerC J. Homeomorphisms preserving Ap.Rev Mat Iberoam, 1987, 3: 249–273
doi: 10.4171/RMI/50
17 KyL D. Bilinear decompositions and commutators of singular integral operators.Trans Amer Math Soc, 2013, 365: 2931–2958
doi: 10.1090/S0002-9947-2012-05727-8
18 KyL D. Bilinear decompositions for the product space H1L× BMOL.Math Nachr, 2014, 287: 1288–1297
doi: 10.1002/mana.201200101
19 KyL D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Operator Theory, 2014, 78: 115–150
doi: 10.1007/s00020-013-2111-z
20 LiB D, YangD C, YuanW. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.The ScientificWorld Journal, 2014, Article ID 306214, 19pp, Doi: 10.1155/2014/306214
doi: 10.1155/2014/306214
21 LiangY Y, HuangJ Z, YangD C. New real-variable characterizations of Musielak-Orlicz Hardy spaces.J Math Anal Appl, 2012, 395: 413–428
doi: 10.1016/j.jmaa.2012.05.049
22 LiuH P. The Weak Hp Spaces on Homogeneous Groups.Berlin-New York: Springer-Verlag, 1991
23 MusielakJ. Orlicz Spaces and Modular Spaces.Berlin-New York: Springer-Verlag, 1983
doi: 10.1007/BFb0072210
24 QiC Y, ZhangH, LiB D. New real-variable characterizations of anisortropic weak Hardy spaces of Musielak-Orlicz.Rocky Mountain J Math (to appear)
25 QuekT S, YangD C. Calderón-Zygmund-type operators on weighted weak Hardy spaces over ℝn.Acta Math Sin (Engl Ser), 2000, 16: 141–160
doi: 10.1007/s101149900022
26 SteinE M, TaiblesonM, WeissG. Weak type estimates for maximal operators on certain Hp classes.Rend Circ Mat Palermo, 1981, 1: 81–97
27 StrömbergJ O, TorchinskyA. Weighted Hardy Spaces.Berlin-New York: Springer-Verlag, 1989
doi: 10.1007/BFb0091154
Related articles from Frontiers Journals
[1] Xinfeng WU. Atomic decomposition characterizations of weighted multiparameter Hardy spaces[J]. Front Math Chin, 2012, 7(6): 1195-1212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed