Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • REVIEW ARTICLE
    Shammya AFROZE, AfizulHakem KARIM, Quentin CHEOK, Sten ERIKSSON, Abul K. AZAD
    Frontiers in Energy, 2019, 13(4): 770-797. https://doi.org/10.1007/s11708-019-0651-x

    Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

  • RESEARCH ARTICLE
    Yan SU, Fangjun HONG, Lianjie SHU
    Frontiers in Energy, 2020, 14(4): 901-921. https://doi.org/10.1007/s11708-020-0679-y

    A quantitative energy leakage model was developed based on the thermography image data measured for both external and internal building surfaces. The infrared thermography images of both surfaces of doors, windows, and walls of an office building in the Hengqin Campus of University of Macao were taken at various times in a day for four seasons. The transient heat flux for sample units were obtained based on measurements of the seasonal transient local temperature differences and calculations of the effective thermal conductivity from the multiple-layer porous medium conduction model. Effects of construction unit types, orientations, and seasons were quantitatively investigated with unit transient orientation index factors. The corresponding electric energy consumption was calculated based on the air conditioning system coefficient of performance of heat pump and refrigerator cycles for different seasons. The model was validated by comparing to the electric meter records of energy consumption of the air conditioning system. The uncertainties of the predicted total building energy leakage are about 14.7%, 12.8%, 12.4%, and 15.8% for the four seasons, respectively. The differences between the predicted electric consumption and meter values are less than 13.4% and 5.4% for summer and winter, respectively. The typical daily thermal energy leakage value in winter is the highest among the four seasons. However, the daily electric energy consumption by the air conditioning system in summer and autumn is higher than that in winter. The present decomposition model for energy leakage is expected to provide a practical tool for quantitative analysis of energy leakage of buildings.

  • REVIEW ARTICLE
    Xi CHEN, Fangming JIN
    Frontiers in Energy, 2019, 13(2): 207-220. https://doi.org/10.1007/s11708-019-0628-9

    To tackle the crisis of global warming, it is imperative to control and mitigate the atmospheric carbon dioxide level. Photocatalytic reduction of carbon dioxide into solar fuels furnishes a gratifying solution to utilize and reduce carbon dioxide emission and simultaneously generate renewable energy to sustain the societies. So far, titanium oxide-based semiconductors have been the most prevalently adopted catalysts in carbon dioxide photoreduction. This mini-review provides a general summary of the recent progresses in titanium oxide-catalyzed photocatalytic reduction of carbon dioxide. It first illustrates the use of structural engineering as a strategy to adjust and improve the catalytic performances. Then, it describes the introduction of one/two exogenous elements to modify the photocatalytic activity and/or selectivity. Lastly, it discusses multi-component hybrid titanium oxide composites.

  • REVIEW ARTICLE
    Liang YIN, Yonglin JU
    Frontiers in Energy, 2020, 14(3): 530-544. https://doi.org/10.1007/s11708-019-0657-4

    The key technologies of liquefied hydrogen have been developing rapidly due to its prospective energy exchange effectiveness, zero emissions, and long distance and economic transportation. However, hydrogen liquefaction is one of the most energy-intensive industrial processes. A small reduction in energy consumption and an improvement in efficiency may decrease the operating cost of the entire process. In this paper, the detailed progress of design and optimization for hydrogen liquefaction in recent years are summarized. Then, based on the refrigeration cycles, the hydrogen liquefaction processes are divided into two parts, namely precooled liquefaction process and cascade liquefaction process. Among the existing technologies, the SEC of most hydrogen liquefaction processes is limited in the range of 5–8 kWh/ k g L H 2 : liquid hydrogen). The exergy efficiencies of processes are around 40% to 60%. Finally, several future improvements for hydrogen liquefaction process design and optimization are proposed. The mixed refrigerants (MRs) as the working fluids of the process and the combination of the traditional hydrogen liquefaction process with the renewable energy technology will be the great prospects for development in near future.

  • RESEARCH ARTICLE
    Abdelkarim AMMAR, Amor BOUREK, Abdelhamid BENAKCHA
    Frontiers in Energy, 2020, 14(4): 836-849. https://doi.org/10.1007/s11708-017-0444-z

    This paper proposes a design of control and estimation strategy for induction motor based on the variable structure approach. It describes a coupling of sliding mode direct torque control (DTC) with sliding mode flux and speed observer. This algorithm uses direct torque control basics and the sliding mode approach. A robust electromagnetic torque and flux controllers are designed to overcome the conventional SVM-DTC drawbacks and to ensure fast response and full reference tracking with desired dynamic behavior and low ripple level. The sliding mode controller is used to generate reference voltages in stationary frame and give them to the controlled motor after modulation by a space vector modulation (SVM) inverter. The second aim of this paper is to design a sliding mode speed/flux observer which can improve the control performances by using a sensorless algorithm to get an accurate estimation, and consequently, increase the reliability of the system and decrease the cost of using sensors. The effectiveness of the whole composed control algorithm is investigated in different robustness tests with simulation using Matlab/Simulink and verified by real time experimental implementation based on dS pace 1104 board.

  • RESEARCH ARTICLE
    S. L. ARUN, M. P. SELVAN
    Frontiers in Energy, 2019, 13(4): 715-730. https://doi.org/10.1007/s11708-018-0538-2

    In the present scenario, the utilities are focusing on smart grid technologies to achieve reliable and profitable grid operation. Demand side management (DSM) is one of such smart grid technologies which motivate end users to actively participate in the electricity market by providing incentives. Consumers are expected to respond (demand response (DR)) in various ways to attain these benefits. Nowadays, residential consumers are interested in energy storage devices such as battery to reduce power consumption from the utility during peak intervals. In this paper, the use of a smart residential energy management system (SREMS) is demonstrated at the consumer premises to reduce the total electricity bill by optimally time scheduling the operation of household appliances. Further, the SREMS effectively utilizes the battery by scheduling the mode of operation of the battery (charging/floating/discharging) and the amount of power exchange from the battery while considering the variations in consumer demand and utility parameters such as electricity price and consumer consumption limit (CCL). The SREMS framework is implemented in Matlab and the case study results show significant yields for the end user.

  • RESEARCH ARTICLE
    Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN
    Frontiers in Energy, 2019, 13(1): 131-148. https://doi.org/10.1007/s11708-017-0446-x

    Photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is intermittent because of depending on weather conditions. Therefore, the wind power can be considered to assist for a stable and reliable output from the PV generation system for loads and improve the dynamic performance of the whole generation system in the grid connected mode. In this paper, a novel topology of an intelligent hybrid generation system with PV and wind turbine is presented. In order to capture the maximum power, a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. The average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison with the conventional methods. The pitch angle of the wind turbine is controlled by radial basis function network-sliding mode (RBFNSM). Different conditions are represented in simulation results that compare the real power values with those of the presented methods. The obtained results verify the effectiveness and superiority of the proposed method which has the advantages of robustness, fast response and good performance. Detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  • REVIEW ARTICLE
    Alireza HEIDARI, Ali ESMAEEL NEZHAD, Ahmad TAVAKOLI, Navid REZAEI, Foad H. GANDOMAN, Mohammad Reza MIVEH, Abdollah AHMADI, Majid MALEKPOUR
    Frontiers in Energy, 2020, 14(3): 510-529. https://doi.org/10.1007/s11708-020-0671-6

    Recently, renewable energy resources and their impacts have sparked a heated debate to resolve the Australian energy crisis. There are many projects launched throughout the country to improve network security and reliability. This paper aims to review the current status of different renewable energy resources along with their impacts on society and the environment. Besides, it provides for the first time the statistics of the documents published in the field of renewable energy in Australia. The statistics include information such as the rate of papers published, possible journals for finding relative paper, types of documents published, top authors, and the most prevalent keywords in the field of renewable energy in Australia. It will focus on solar, wind, biomass, geothermal and hydropower technologies and will investigate the social and environmental impacts of these technologies.

  • RESEARCH ARTICLE
    B. TUDU, K. K. MANDAL, N. CHAKRABORTY
    Frontiers in Energy, 2019, 13(2): 269-283. https://doi.org/10.1007/s11708-018-0573-z

    The present paper has disseminated the design approach, project implementation, and economics of a nano-grid system. The deployment of the system is envisioned to acculturate the renewable technology into Indian society by field-on-laboratory demonstration (FOLD) and “bridge the gaps between research, development, and implementation.” The system consists of a solar photovoltaic (PV) (2.4 kWp), a wind turbine (3.2 kWp), and a battery bank (400 Ah). Initially, a prefeasibility study is conducted using the well-established HOMER (hybrid optimization model for electric renewable) software developed by the National Renewable Energy Laboratory (NREL), USA. The feasibility study indicates that the optimal capacity for the nano-grid system consists of a 2.16 kWp solar PV, a 3 kWp wind turbine, a 1.44 kW inverter, and a 24 kWh battery bank. The total net present cost (TNPC) and cost of energy (COE) of the system are US$20789.85 and US$0.673/kWh, respectively. However, the hybrid system consisting of a 2.4 kWp of solar PV, a 3.2 kWp of wind turbine, a 3 kVA of inverter, and a 400 Ah of battery bank has been installed due to unavailability of system components of desired values and to enhance the reliability of the system. The TNPC and COE of the system installed are found to be US$20073.63 and US$0.635/kWh, respectively and both costs are largely influenced by battery cost. Besides, this paper has illustrated the installation details of each component as well as of the system. Moreover, it has discussed the detailed cost breakup of the system. Furthermore, the performance of the system has been investigated and validated with the simulation results. It is observed that the power generated from the PV system is quite significant and is almost uniform over the year. Contrary to this, a trivial wind velocity prevails over the year apart from the month of April, May, and June, so does the power yield. This research demonstration provides a pathway for future planning of scaled-up hybrid energy systems or microgrid in this region of India or regions of similar topography.

  • REVIEW ARTICLE
    Lei ZHANG, Junqing ZHANG
    Frontiers in Energy, 2019, 13(2): 221-250. https://doi.org/10.1007/s11708-019-0629-8

    Metal-organic frameworks (MOFs) have attracted much attention because of their large surface areas, tunable structures, and potential applications in many areas. In recent years, MOFs have shown much promise in CO2 photoreduction. This review summarized recent research progresses in MOF-based photocatalysts for photocatalytic reduction of CO2. Besides, it discussed strategies in rational design of MOF-based photocatalysts (functionalized pristine MOFs, MOF-photosensitizer, MOF-semiconductor, MOF-metal, and MOF-carbon materials composites) with enhanced performance on CO2 reduction. Moreover, it explored challenges and outlook on using MOF-based photocatalysts for CO2 reduction.

  • REVIEW ARTICLE
    Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD
    Frontiers in Energy, 2020, 14(2): 359-382. https://doi.org/10.1007/s11708-018-0546-2

    The main concerns in the world today, especially in the energy field, are subjected to clean, efficient, and durable sources of energy. These three aspects are the main goals that scientist are paying attention to. However, the various types of energy resources include fossil and sustainable ones, but still some challenges are chasing these kinds from energy conversion, storage, and efficiency. Hence, the most reliable and considered energy resource nowadays is the utilized one which is as highly efficient, clean, and everlasting as possible. So, in this review, an attempt is made to highlight one of the promising types as a clean and efficient energy resource. Solid oxide fuel cell (SOFC) is the most efficient type of the fuel cell types involved with hydrogen and hydrocarbon-based fuels, especially when it works with combined heat and power (CHP). The importance of this type is due to its nature of work as conversion tool from chemical to electrical for generation of power without noise, pollution, and can be safely handled.

  • RESEARCH ARTICLE
    Xuelin ZHANG, Tong ZHANG, Xiaodai XUE, Yang SI, Xuemin ZHANG, Shengwei MEI
    Frontiers in Energy, 2020, 14(4): 889-900. https://doi.org/10.1007/s11708-020-0704-1

    Hot dry rock is a new type of geothermal resource which has a promising application prospect in China. This paper conducted a comparative research on performance evaluation of two eligible bottoming cycles for a hot dry rock power plant in the Gonghe Basin. Based on the given heat production conditions, a Kalina cycle and three organic Rankine cycles were tested respectively with different ammonia-water mixtures of seven ammonia mass fractions and nine eco-friendly working fluids. The results show that the optimal ammonia mass fraction is 82% for the proposed bottoming Kalina cycle in view of maximum net power output. Thermodynamic analysis suggests that wet fluids should be supercritical while dry fluids should be saturated at the inlet of turbine, respectively. The maximum net power output of the organic Rankine cycle with dry fluids expanding from saturated state is higher than that of the other organic Rankine cycle combinations, and is far higher than the maximum net power output in all tested Kalina cycle cases. Under the given heat production conditions of hot dry rock resource in the Gonghe Basin, the saturated organic Rankine cycle with the dry fluid butane as working fluid generates the largest amount of net power.

  • REVIEW ARTICLE
    Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO
    Frontiers in Energy, 2022, 16(5): 706-733. https://doi.org/10.1007/s11708-022-0833-9

    Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

  • SHORT COMMUNICATION
    F. D’AURIA
    Frontiers in Energy, 2021, 15(4): 854-859. https://doi.org/10.1007/s11708-021-0729-0

    Nuclear reactor safety (NRS) and the branch accident analysis (AA) constitute proven technologies: these are based on, among the other things, long lasting research and operational experience in the area of water cooled nuclear reactors (WCNR). Large break loss of coolant accident (LBLOCA) has been, so far, the orienting scenario within AA and a basis for the design of reactors. An incomplete vision for those technologies during the last few years is as follows: Progress in fundamentals was stagnant, namely in those countries where the WCNR were designed. Weaknesses became evident, noticeably in relation to nuclear fuel under high burn-up. Best estimate plus uncertainty (BEPU) techniques were perfected and available for application. Electronic and informatics systems were in extensive use and their impact in case of accident becomes more and more un-checked (however, quite irrelevant in case of LBLOCA). The time delay between technological discoveries and applications was becoming longer. The present paper deals with the LBLOCA that is inserted into the above context. Key conclusion is that regulations need suitable modification, rather than lowering the importance and the role of LBLOCA. Moreover, strengths of emergency core cooling system (ECCS) and containment need a tight link.

  • RESEARCH ARTICLE
    Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN
    Frontiers in Energy, 2017, 11(3): 326-333. https://doi.org/10.1007/s11708-017-0489-z

    In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

  • REVIEW ARTICLE
    Wenwei LEI, Norihiro SUZUKI, Chiaki TERASHIMA, Akira FUJISHIMA
    Frontiers in Energy, 2021, 15(3): 577-595. https://doi.org/10.1007/s11708-021-0756-x

    Photocatalysts have attracted great research interest owing to their excellent properties and potential for simultaneously addressing challenges related to energy needs and environmental pollution. Photocatalytic particles need to be in contact with their respective media to exhibit efficient photocatalytic performances. However, it is difficult to separate nanometer-sized photocatalytic materials from reaction media later, which may lead to secondary pollution and a poor recycling performance. Hydrogel photocatalysts with a three-dimensional (3D) network structures are promising support materials for photocatalysts based on features such as high specific surface areas and adsorption capacities and good environmental compatibility. In this review, hydrogel photocatalysts are classified into two different categories depending on their elemental composition and recent progresses in the methods for preparing hydrogel photocatalysts are summarized. Moreover, current applications of hydrogel photocatalysts in energy conversion and environmental remediation are reviewed. Furthermore, a comprehensive outlook and highlight future challenges in the development of hydrogel photocatalysts are presented.

  • RESEARCH ARTICLE
    Shouwei ZHOU, Qingping LI, Xin LV, Qiang FU, Junlong ZHU
    Frontiers in Energy, 2020, 14(3): 433-442. https://doi.org/10.1007/s11708-020-0684-1

    As a new clean energy resource in the 21st century, natural gas hydrate is considered as one of the most promising strategic resources in the future. This paper, based on the research progress in exploitation of natural gas hydrate (NGH) in China and the world, systematically reviewed and discussed the key issues in development of natural gas hydrate. From an exploitation point of view, it is recommended that the concepts of diagenetic hydrate and non-diagenetic hydrate be introduced. The main factors to be considered are whether diagenesis, stability of rock skeleton structure, particle size and cementation mode, thus NGHs are divided into 6 levels and used unused exploitation methods according to different types. The study of the description and quantitative characterization of abundance in hydrate enrichment zone, and looking for gas hydrate dessert areas with commercial exploitation value should be enhanced. The concept of dynamic permeability and characterization of the permeability of NGH by time-varying equations should be established. The ‘Three-gas co-production’ (natural gas hydrate, shallow gas, and conventional gas) may be an effective way to achieve early commercial exploitation. Although great progress has been made in the exploitation of natural gas hydrate, there still exist enormous challenges in basic theory research, production methods, and equipment and operation modes. Only through hard and persistent exploration and innovation can natural gas hydrate be truly commercially developed on a large scale and contribute to sustainable energy supply.

  • REVIEW ARTICLE
    Andreas SCHAFFRATH, Andreas WIELENBERG, Robert KILGER, Armin SEUBERT
    Frontiers in Energy, 2021, 15(4): 793-809. https://doi.org/10.1007/s11708-021-0751-2

    The Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH as the main technical support organization for the German Federal Government in nuclear safety has been dealing with small modular reactors (SMRs) for about one decade since SMRs are one interesting option for new builds in most countries worldwide which continue to use nuclear energy for commercial electricity production. Currently four different SMR designs are in operation, four in construction, one is licensed, and further 12 are in a licensing process. In this paper, definitions, history, and current developments of SMRs are presented. Subsequently, selected trends of SMR development such as factory fabrication and transport, compactness and modularity, core design, improved core cooling, exclusion of accidents, features for preventing and limiting the impact of severe accidents, economic viability, competitiveness and licensing are discussed. Modeling gaps of the GRS simulation chain programs with a view to applications in nuclear licensing procedures are identified and a strategy for closing these gaps is presented. Finally, selected work on the extension and improvement of the simulation chain and first generic test analyses are presented.

  • RESEARCH ARTICLE
    Jitan WU, Yonglin JU
    Frontiers in Energy, 2020, 14(4): 683-698. https://doi.org/10.1007/s11708-020-0705-0

    The brazed plate heat exchanger (BPHE) has some advantages over the plate-fin heat exchanger (PFHE) when used in natural gas liquefaction processes, such as the convenient installation and transportation, as well as the high tolerance of carbon dioxide (CO2) impurities. However, the BPHEs with only two channels cannot be applied directly in the conventional liquefaction processes which are designed for multi-stream heat exchangers. Therefore, the liquefaction processes using BPHEs are different from the conventional PFHE processes. In this paper, four different liquefaction processes using BPHEs are optimized and comprehensively compared under respective optimal conditions. The processes are compared with respect to energy consumption, economic performance, and robustness. The genetic algorithm (GA) is applied as the optimization method and the total revenue requirement (TRR) method is adopted in the economic analysis. The results show that the modified single mixed refrigerant (MSMR) process with part of the refrigerant flowing back to the compressor at low temperatures has the lowest specific energy consumption but the worst robustness of the four processes. The MSMR with fully utilization of cold capacity of the refrigerant shows a satisfying robustness and the best economic performance. The research in this paper is helpful for the application of BPHEs in natural gas liquefaction processes.

  • RESEARCH ARTICLE
    Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI
    Frontiers in Energy, 2020, 14(4): 867-881. https://doi.org/10.1007/s11708-020-0707-y

    This paper proposes a comprehensive thermodynamic and economic model to predict and compare the performance of concentrated solar power plants with traditional and novel receivers with different configurations involving operating temperatures and locations. The simulation results reveal that power plants with novel receivers exhibit a superior thermodynamic and economic performance compared with traditional receivers. The annual electricity productions of power plants with novel receivers in Phoenix, Sevilla, and Tuotuohe are 8.5%, 10.5%, and 14.4% higher than those with traditional receivers at the outlet temperature of 550°C. The levelized cost of electricity of power plants with double-selective-coated receivers can be decreased by 6.9%, 8.5%, and 11.6%. In Phoenix, the optimal operating temperature of the power plants is improved from 500°C to 560°C by employing a novel receiver. Furthermore, the sensitivity analysis of the receiver heat loss, solar absorption, and freeze protection temperature is also conducted to analyze the general rule of influence of the receiver performance on power plants performance. Solar absorption has a positive contribution to annual electricity productions, whereas heat loss and freeze protection temperature have a negative effect on electricity outputs. The results indicate that the novel receiver coupled with low melting temperature molten salt is the best configuration for improving the overall performance of the power plants.

  • REVIEW ARTICLE
    Junheng FU, Chenglin ZHANG, Tianying LIU, Jing LIU
    Frontiers in Energy, 2020, 14(1): 81-104. https://doi.org/10.1007/s11708-019-0653-8

    The room temperature liquid metal (LM) is recently emerging as a new class of versatile materials with fascinating characteristics mostly originated from its simultaneous metallic and liquid natures. The melting point is a typical parameter to describe the peculiarity of LM, and a pivotal factor to consider concerning its practical applications such as phase change materials (PCMs) and advanced thermal management. Therefore, the theoretical exploration into the melting point of LM is an essential issue, which can be of special value for the design of new LM materials with desired properties. So far, some available strategies such as molecular dynamics (MD) simulation and classical thermodynamic theory have been applied to perform correlative analysis. This paper is primarily dedicated to performing a comprehensive overview regarding typical theoretical strategies on analyzing the melting points. It, then, presents evaluations on several factors like components, pressure, size and supercooling that may be critical for melting processes of liquid metal. After that, it discusses applications associated with the characteristic of low melting points of LM. It is expected that a great many fundamental and practical works are to be conducted in the coming future.

  • RESEARCH ARTICLE
    Dong LIU, Zhuqing YAN, Peng ZENG, Haoran LIU, Tianyou PENG, Renjie LI
    Frontiers in Energy, 2021, 15(3): 721-731. https://doi.org/10.1007/s11708-021-0766-8

    Titanium nitride (TiN) decorated N-doped titania (N-TiO2) composite (TiN/N-TiO2) is fabricated via an in situ nitridation using a hydrothermally synthesized TiO2 and melamine (MA) as raw materials. After the optimization of the reaction condition, the resultant TiN/N-TiO2 composite delivers a hydrogen evolution activity of up to 703 μmol/h under the full spectrum irradiation of Xe-lamp, which is approximately 2.6 and 32.0 times more than that of TiO2 and TiN alone, respectively. To explore the underlying photocatalytic mechanism, the crystal phase, morphology, light absorption, energy band structure, element composition, and electrochemical behavior of the composite material are characterized and analyzed. The results indicate that the superior activity is mainly caused by the in situ formation of plasmonic TiN and N-TiO2 with intimate interface contact, which not only extends the spectral response range, but also accelerates the transfer and separation of the photoexcited hot charge carrier of TiN. The present study provides a fascinating approach to in situ forming nonmetallic plasmonic material/N-doped TiO2 composite photocatalysts for high-efficiency water splitting.

  • REVIEW ARTICLE
    Shuwei ZHANG, Liyan SHANG, Zhen PAN, Li ZHOU, You GUO
    Frontiers in Energy, 2022, 16(5): 747-773. https://doi.org/10.1007/s11708-022-0830-z

    There is nothing illogical in the concept that hydrates are easily formed in oil and gas pipelines owing to the low-temperature and high-pressure environment, although requiring the cooperation of flow rate, water content, gas-liquid ratio, and other specific factors. Therefore, hydrate plugging is a major concern for the hydrate slurry pipeline transportation technology. In order to further examine potential mechanisms underlying these processes, the present paper listed and analyzed the significant research efforts specializing in the mechanisms of hydrate blockages in the liquid-rich system, including oil-based, water-based, and partially dispersed systems (PD systems), in gathering and transportation pipelines. In addition, it summarized the influences of fluid flow and water content on the risk of hydrate blockage and discussed. In general, flow rate was implicated in the regulation of blockage risk through its characteristic to affect sedimentation tendencies and flow patterns. Increasing water content can potentiate the growth of hydrates and change the oil-water dispersion degree, which causes a transition from completely dispersed systems to PD systems with a higher risk of clogging. Reasons of diversity of hydrate plugging mechanism in oil-based system ought to be studied in-depth by combining the discrepancy of water content and the microscopic characteristics of hydrate particles. At present, it is increasingly necessary to expand the application of the hydrate blockage formation prediction model in order to ensure that hydrate slurry mixed transportation technology can be more maturely applied to the natural gas industry transportation field.

  • RESEARCH ARTICLE
    Seyed Saeed HOSEINI, Mohammad Amin SOBATI
    Frontiers in Energy, 2019, 13(4): 636-657. https://doi.org/10.1007/s11708-019-0646-7

    The nitrogen oxide (NOx) release of diesel engines can be reduced using water in diesel emulsion fuel without any engine modification. In the present paper, different formulations of water in diesel emulsion fuels were prepared by ultrasonic irradiation. The water droplet size in the emulsion, polydisperisty index, and the stability of prepared fuel was examined, experimentally. Afterwards, the performance characteristics and exhaust emission of a single cylinder air-cooled diesel engine were investigated using different water in diesel emulsion fuels. The effect of water content (in the range of 5%–10% by volume), surfactant content (in the range of 0.5%–2% by volume), and hydrophilic-lipophilic balance (HLB) (in the range of 5–8) was examined using Box-Behnken design (BBD) as a subset of response surface methodology (RSM). Considering multi-objective optimization, the best formulation for the emulsion fuel was found to be 5% water, 2% surfactant, and HLB of 6.8. A comparison was made between the best emulsion fuel and the neat diesel fuel for engine performance and emission characteristics. A considerable decrease in the nitrogen oxide emission (–18.24%) was observed for the best emulsion fuel compared to neat diesel fuel.

  • REVIEW ARTICLE
    Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA
    Frontiers in Energy, 2020, 14(3): 545-569. https://doi.org/10.1007/s11708-020-0800-2

    Presently, the global search for alternative renewable energy sources is rising due to the depletion of fossil fuel and rising greenhouse gas (GHG) emissions. Among alternatives, hydrogen (H2) produced from biomass gasification is considered a green energy sector, due to its environmentally friendly, sustainable, and renewable characteristics. However, tar formation along with syngas is a severe impediment to biomass conversion efficiency, which results in process-related problems. Typically, tar consists of various hydrocarbons (HCs), which are also sources for syngas. Hence, catalytic steam reforming is an effective technique to address tar formation and improve H2 production from biomass gasification. Of the various classes in existence, supported metal catalysts are considered the most promising. This paper focuses on the current researching status, prospects, and challenges of steam reforming of gasified biomass tar. Besides, it includes recent developments in tar compositional analysis, supported metal catalysts, along with the reactions and process conditions for catalytic steam reforming. Moreover, it discusses alternatives such as dry and autothermal reforming of tar.

  • FEATURE ARTICLE
    Long GU, Xingkang SU
    Frontiers in Energy, 2021, 15(4): 810-831. https://doi.org/10.1007/s11708-021-0760-1

    China’s accelerator driven subcritical system (ADS) development has made significant progress during the past decade. With the successful construction and operation of the international prototype of ADS superconducting proton linac, the lead-based critical/subcritical zero-power facility VENUS-II and the comprehensive thermal-hydraulic and material test facilities for LBE (lead bismuth eutectic) coolant, China is playing a pivotal role in advanced steady-state operations toward the next step, the ADS project. The China initiative Accelerator Driven System (CiADS) is the next facility for China’s ADS program, aimed to bridge the gaps between the ADS experiment and the LBE cooled subcritical reactor. The total power of the CiADS will reach 10 MW. The CiADS engineering design was approved by Chinese government in 2018. Since then, the CiADS project has been fully transferred to the construction application stage. The subcritical reactor is an important part of the whole CiADS project. Currently, a pool-type LBE cooled fast reactor is chosen as the subcritical reactor of the CiADS. Physical and thermal experiments and software development for LBE coolant were conducted simultaneously to support the design and construction of the CiADS LBE-cooled subcritical reactor. Therefore, it is necessary to introduce the efforts made in China in the LBE-cooled fast reactor to provide certain supporting data and reference solutions for further design and development for ADS. Thus, the roadmap of China’s ADS, the development process of the CiADS, the important design of the current CiADS subcritical reactor, and the efforts to build the LBE-cooled fast reactor are presented.

  • HUANG Yongcheng, WANG Shangxue, ZHOU Longbao
    Frontiers in Energy, 2008, 2(3): 261-267. https://doi.org/10.1007/s11708-008-0062-x
    Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.
  • REVIEW ARTICLE
    Shuo XU, Jing LIU
    Frontiers in Energy, 2019, 13(1): 27-53. https://doi.org/10.1007/s11708-018-0603-x

    Metals are unconventional hydrogen production materials which are of high energy densities. This paper comprehensively reviewed and digested the latest researches of the metal-based direct hydrogen generation and the unconventional energy utilization ways thus enabled. According to the metal activities, the reaction conditions of metals were generalized into three categories. The first ones refer to those which would violently react with water at ambient temperature. The second ones start to react with water after certain pretreatments. The third ones can only react with steam under somewhat harsh conditions. To interpret the metal-water reaction mechanisms at the molecular scale, the molecule dynamics simulation and computational quantum chemistry were introduced as representative theoretical analytical tools. Besides, the state-of-the-art of the metal-water reaction was presented with several ordinary metals as illustration examples, including the material treatment technologies and the evaluations of hydrogen evolution performances. Moreover, the energy capacities of various metals were summarized, and the application potentials of the metal-based direct hydrogen production approach were explored. Furthermore, the challenges lying behind this unconventional hydrogen generation method and energy strategy were raised, which outlined promising directions worth of further endeavors. Overall, active metals like Na and K are appropriate for rapid hydrogen production occasions. Of these metals discussed, Al, Mg and their alloys offer the most promising hydrogen generation route for clean and efficient propulsion and real-time power source. In the long run, there exists plenty of space for developing future energy technology along this direction.

  • RESEARCH ARTICLE
    Haoqing WU, Yaoyuan ZHANG, Shijie MI, Wenbin ZHAO, Zhuoyao HE, Yong QIAN, Xingcai LU
    Frontiers in Energy, 2023, 17(5): 678-691. https://doi.org/10.1007/s11708-022-0859-z

    Gasoline compression ignition (GCI) combustion faces problems such as high maximum pressure rise rate (MPRR) and combustion deterioration at high loads. This paper aims to improve the engine performance of the GCI mode by regulating concentration stratification and promoting fuel-gas mixing by utilizing the double main-injection (DMI) strategy. Two direct injectors simultaneously injected gasoline with an octane number of 82.7 to investigate the energy ratio between the two main-injection and exhaust gas recirculation (EGR) on combustion and emissions. High-load experiments were conducted using the DMI strategy and compared with the single main-injection (SMI) strategy and conventional diesel combustion. The results indicate that the DMI strategy have a great potential to reduce the MPRR and improve the fuel economy of the GCI mode. At a 10 bar indicated mean effective pressure, increasing the main-injection-2 ratio (Rm-2) shortens the injection duration and increases the mean mixing time. Optimized Rm-2 could moderate the trade-off between the MPRR and the indicated specific fuel consumption with both reductions. An appropriate EGR should be adopted considering combustion and emissions. The DMI strategy achieves a highly efficient and stable combustion at high loads, with an indicated thermal efficiency (ITE) greater than 48%, CO and THC emissions at low levels, and MPRR within a reasonable range. Compared with the SMI strategy, the maximum improvement of the ITE is 1.5%, and the maximum reduction of MPRR is 1.5 bar/°CA.

  • REVIEW ARTICLE
    Zhen PAN, Yi WU, Liyan SHANG, Li ZHOU, Zhien ZHANG
    Frontiers in Energy, 2020, 14(3): 463-481. https://doi.org/10.1007/s11708-020-0675-2

    Natural gas hydrate is an alternative energy source with a great potential for development. The addition of surfactants has been found to have practical implications on the acceleration of hydrate formation in the industrial sector. In this paper, the mechanisms of different surfactants that have been reported to promote hydrate formation are summarized. Besides, the factors influencing surfactant-promoted hydrate formation, including the type, concentration, and structure of the surfactant, are also described. Moreover, the effects of surfactants on the formation of hydrate in pure water, brine, porous media, and systems containing multiple surfactants are discussed. The synergistic or inhibitory effects of the combinations of these additives are also analyzed. Furthermore, the process of establishing kinetic and thermodynamic models to simulate the factors affecting the formation of hydrate in surfactant-containing solutions is illustrated and summarized.