Frontiers in Energy

ISSN 2095-1701 (Print)
ISSN 2095-1698 (Online)
CN 11-6017/TK
Postal Subscription Code 80-972
Formerly Known as Frontiers of Energy and Power Engineering in China
2018 Impact Factor: 1.701
Online First
The manuscripts published below will continue to be available from this page until they are assigned to an issue.
Please wait a minute...
For Selected: View Abstracts Toggle Thumbnails
NOx and H2S formation in the reductive zone of air-staged combustion of pulverized blended coals
Jinzhi CAI, Dan LI, Denggao CHEN, Zhenshan LI
Front. Energy
Abstract   HTML   PDF (2111KB)

Low NOx combustion of blended coals is widely used in coal-fired boilers in China to control NOx emission; thus, it is necessary to understand the formation mechanism of NOx and H2S during the combustion of blended coals. This paper focused on the investigation of reductive gases in the formation of NOx and H2S in the reductive zone of blended coals during combustion. Experiments with Zhundong (ZD) and Commercial (GE) coal and their blends with different mixing ratios were conducted in a drop tube furnace at 1200°C–1400°C with an excessive air ratio of 0.6–1.2. The coal conversion and formation characteristics of CO, H2S, and NOx in the fuel-rich zone were carefully studied under different experimental conditions for different blend ratios. Blending ZD into GE was found to increase not only the coal conversion but also the concentrations of CO and H2S as NO reduction accelerated. Both the CO and H2S concentrations inblended coal combustion increase with an increase in the combustion temperature and a decrease in the excessive air ratio. Based on accumulated experimental data, one interesting finding was that NO and H2S from blended coal combustion were almost directly dependent on the CO concentration, and the CO concentration of the blended coal combustion depended on the single char gasification conversion.Thus, CO, NOx, and H2S formation characteristics from blended coal combustion can be well predicted by single char gasification kinetics.

Table and Figures | Reference | Related Articles | Metrics
Approach and potential of replacing oil and natural gas with coal in China
Junjie LI, Yajun TIAN, Xiaohui YAN, Jingdong YANG, Yonggang WANG, Wenqiang XU, Kechang XIE
Front. Energy
Abstract   HTML   PDF (1338KB)

China’s fossil energy is characterized by an abundance of coal and a relative lack of oil and natural gas. Developing a strategy in which coal can replace oil and natural gas is, therefore, a necessary and practical approach to easing the excessive external dependence on oil and natural gas. Based on the perspective of energy security, this paper proposes a technical framework for defining the substitution of oil and natural gas with coal in China. In this framework, three substitution classifications and 11 industrialized technical routes are reviewed. Then, three scenarios (namely, the cautious scenario, baseline scenario, and positive scenario) are developed to estimate the potential of this strategy for 2020 and 2030. The results indicate that oil and natural gas replaced by coal will reach 67 to 81 Mt and 8.7 to 14.3 Gm3 in 2020 and reach 93 to 138 Mt and 32.3 to 47.3 Gm3 in 2030, respectively. By implementing this strategy, China’s external dependence on oil, natural gas, and primary energy is expected to be curbed at approximately 70%, 40%, and 20% by 2030, respectively. This paper also demonstrates how coal, as a substitute for oil and natural gas, can contribute to carbon and pollution reduction and economic cost savings. It suggests a new direction for the development of the global coal industry and provides a crucial reference for energy transformation in China and other countries with similar energy situations.

Table and Figures | Reference | Related Articles | Metrics
Viability of a concentrated solar power system in a low sun belt prefecture
Front. Energy
Abstract   HTML   PDF (2396KB)

Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.

Table and Figures | Reference | Related Articles | Metrics
Heating energy savings potential from retrofitting old apartments with an advanced double-skin façade system in cold climate
Yeo Beom YOON, Byeongmo SEO, Brian Baewon KOH, Soolyeon CHO
Front. Energy
Abstract   HTML   PDF (2170KB)

Apartments account for over 60% of total residential buildings and consume a significant portion of primary energy in South Korea. Various energy efficiency measures have been implemented for both new apartment constructions and existing apartment retrofits. Old apartment structures have poor thermal performances, resulting in a high energy consumption. The South Korean government initiated retrofitting projects to improve the energy efficiency in old apartments. Apartment owners typically replace old windows with high-performance windows; however, there is still a demand for better and more innovative retrofit methods for a highly improved energy efficiency. This paper proposes an advanced double-skin façade (DSF) system to replace existing balcony windows in old apartments. Considering the cold climate conditions of Seoul, South Korea, it mainly discusses heating energy savings. Three case models were developed: Base-Case with existing apartment, Case-1 with typical retrofitting, and Case-2 with the proposed DSF system. The EnergyPlus simulation program was used to develop simulation models for a floor radiant heating system. A typical gas boiler was selected for low-temperature radiant system modeling. The air flow network method was used to model the proposed DSF system. Five heating months, i.e., November to March, and one representative day, i.e., January 24, were selected for detailed analysis. The main heat loss areas consist of windows, walls, and infiltration. The results reveal that the apartment with the DSF retrofit saves 38.8% on the annual heating energy compared to the Base-Case and 35.2% compared to Case-1.

Table and Figures | Reference | Related Articles | Metrics
Effect of temperature on Lu’an bituminous char structure evolution in pyrolysis and combustion
Yandi ZHANG, Yinhe LIU, Xiaoli DUAN, Yao ZHOU, Xiaoqian LIU, Shijin XU
Front. Energy
Abstract   HTML   PDF (3441KB)

In the process of pyrolysis and combustion of coal particles, coal structure evolution will be affected by the ash behavior, which will further affect the char reactivity, especially in the ash melting temperature zone. Lu’an bituminous char and ash samples were prepared at the N2 and air atmospheres respectively across ash melting temperature. A scanning electron microscope (SEM) was used to observe the morphology of char and ash. The specific surface area (SSA) analyzer and thermogravimetric analyzer were respectively adopted to obtain the pore structure characteristics of the coal chars and combustion parameters. Besides, an X-ray diffractometer (XRD) was applied to investigate the graphitization degree of coal chars prepared at different pyrolysis temperatures. The SEM results indicated that the number density and physical dimension of ash spheres exuded from the char particles both gradually increased with the increasing temperature, thus the coalescence of ash spheres could be observed obviously above 1100°C. Some flocculent materials appeared on the surface of the char particles at 1300°C, and it could be speculated that b-Si3N4 was generated in the pyrolysis process under N2. The SSA of the chars decreased with the increasing pyrolysis temperature. Inside the char particles, the micropore area and its proportion in the SSA also declined as the pyrolysis temperature increased. Furthermore, the constantly increasing pyrolysis temperature also caused the reactivity of char decrease, which is consistent with the results obtained by XRD. The higher combustion temperature resulted in the lower porosity and more fragments of the ash.

Table and Figures | Reference | Related Articles | Metrics
Industrial-scale investigations on effects of tertiary-air declination angle on combustion and steam temperature characteristics in a 350-MW supercritical down-fired boiler
Xiaoguang LI, Lingyan ZENG, Hongye LIU, Yao LI, Yifu LI, Yunlong ZHAO, Bo JIAO, Minhang SONG, Shaofeng ZHANG, Zhichao CHEN, Zhengqi LI
Front. Energy
Abstract   HTML   PDF (1433KB)

Industrial-scale experiments were conducted to study the effects of tertiary air declination angle (TDA) on the coal combustion and steam temperature characteristics in the first 350-MW supercritical down-fired boiler in China with the multiple-injection and multiple-staging combustion (MIMSC) technology at medium and high loads. The experimental results indicated that as the TDA increased from 0° to 15°, the overall gas temperature in the lower furnace rose and the symmetry of temperature field was enhanced. The ignition distance of the fuel-rich coal/air flow decreased. In near-burner region, the concentration of O2 decreased while the concentrations of CO and NO increased. The concentration of NO decreased in near-tertiary-air region. The carbon in fly ash decreased significantly from 8.40% to 6.45% at a load of 260 MW. At a TDA of 15°, the ignition distances were the shortest (2.07 m and 1.73 m) at a load of 210 MW and 260 MW, respectively. The main and reheat steam temperatures were the highest (557.2°C and 559.4°C at a load of 210 MW, 558.4°C and 560.3°C at a load of 260 MW). The carbon in fly ash was the lowest (4.83%) at a load of 210 MW. On changing the TDA from 15° to 25°, the flame kernel was found to move downward and the main and reheat steam temperatures dropped obviously. The change of TDA has little effect on NOx emissions(660–681 mg/m3 at 6% O2). In comprehensive consideration of the pulverized coal combustion characteristics and the unit economic performance, an optimal TDA of 15° is recommended.

Table and Figures | Reference | Related Articles | Metrics
Multi-objective optimal allocation strategy for the energy internet in Huangpu District, Guangzhou, China
Pei LI, Guotian CAI, Yuntao ZHANG, Shangjun KE, Peng WANG, Liping GAO
Front. Energy
Abstract   HTML   PDF (579KB)

To improve the overall efficiency of the energy system, the basic structure for the energy internet of coordination and optimization of “generation-grid-load-storage” of Huangpu District, Guangzhou, China is designed, while the arrangement for the output of centralized and distributed energy module and energy storage are proposed. Taking economic benefit maximization, environmental benefit maximization and energy efficiency maximization as sub-objectives, the mathematical model of multi-objective optimal allocation and operation strategy of the energy internet is established considering supply-demand balance constraints, equipment characteristic constraints, operation mode constraints, and energy conditions constraints. The calculation results show that without considering the outsourced electricity, the balanced strategy, the economic development strategy, the environmental protection strategy, and the energy efficiency strategy are obtained by calculation, which are all superior to the traditional energy supply strategy. Moreover, considering the outsourced electricity, the proportion of outsourced electricity to total electricity is 19.8%, which is the system optimization of the energy internet under certain power demand. Compared with other strategies without outsourced electricity, the outsourced electricity strategy can have a certain emission reduction effect, but at the same time reduce the economic benefit. Furthermore, the huge difference in demand for thermal and cooling load between industrial and commercial areas results in the installed capacity of gas distributed energy stations in industrial areas being nearly twice as large as that in commercial areas. The distributed photovoltaic power generation is allocated according to the proportion of the installed roof areas of photovoltaic power generation system in residential, industrial, and commercial areas.

Table and Figures | Reference | Related Articles | Metrics
Development and technical progress in large-scale circulating fluidized bed boiler in China
Zhong HUANG, Lei DENG, Defu CHE
Front. Energy
Abstract   HTML   PDF (3603KB)

Circulating fluidized bed (CFB) boilers has realized the clean and efficient utilization of inferior coal like gangue and coal slime, high sulfur coal, anthracite, petroleum coke, oil shale and other resources. As a country with the largest amount of CFB boilers and the largest installed capacity in the world, China has 440 100–600 MWe CFB boilers with a total capacity of 82.29 GWe, including 227 units of 135 MWe, 95 units of 300 MWe, and 24 supercritical units. The statistics of typical 100–300 MWe CFB boilers showed that the average number of unplanned shut-down was only 0.37 times per year, among which the 135 MWe was 0.26 times per year and 300 MWe was 0.46 times per year. The auxiliary power ratio of some 300 MWe CFB boilers based on flow-pattern reconstruction can be reduced to about 4%, which is closed to the same level of pulverized coal (PC) boilers. This paper summarizes the development process and application status of China’s large-scale CFB boilers, analyzes the characteristics and technical performance of the iconic units, and introduces solutions to the problems such as water wall wear and bottom ash cooling.

Table and Figures | Reference | Related Articles | Metrics
Distributionally robust optimization of home energy management system based on receding horizon optimization
Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE
Front. Energy
Abstract   HTML   PDF (1023KB)

This paper investigates the scheduling strategy of schedulable load in home energy management system (HEMS) under uncertain environment by proposing a distributionally robust optimization (DRO) method based on receding horizon optimization (RHO-DRO). First, the optimization model of HEMS, which contains uncertain variable outdoor temperature and hot water demand, is established and the scheduling problem is developed into a mixed integer linear programming (MILP) by using the DRO method based on the ambiguity sets of the probability distribution of uncertain variables. Combined with RHO, the MILP is solved in a rolling fashion using the latest update data related to uncertain variables. The simulation results demonstrate that the scheduling results are robust under uncertain environment while satisfying all operating constraints with little violation of user thermal comfort. Furthermore, compared with the robust optimization (RO) method, the RHO-DRO method proposed in this paper has a lower conservation and can save more electricity for users.

Table and Figures | Reference | Related Articles | Metrics
Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review
Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA
Front. Energy
Abstract   HTML   PDF (1240KB)

Presently, the global search for alternative renewable energy sources is rising due to the depletion of fossil fuel and rising greenhouse gas (GHG) emissions. Among alternatives, hydrogen (H2) produced from biomass gasification is considered a green energy sector, due to its environmentally friendly, sustainable, and renewable characteristics. However, tar formation along with syngas is a severe impediment to biomass conversion efficiency, which results in process-related problems. Typically, tar consists of various hydrocarbons (HCs), which are also sources for syngas. Hence, catalytic steam reforming is an effective technique to address tar formation and improve H2 production from biomass gasification. Of the various classes in existence, supported metal catalysts are considered the most promising. This paper focuses on the current researching status, prospects, and challenges of steam reforming of gasified biomass tar. Besides, it includes recent developments in tar compositional analysis, supported metal catalysts, along with the reactions and process conditions for catalytic steam reforming. Moreover, it discusses alternatives such as dry and autothermal reforming of tar.

Table and Figures | Reference | Related Articles | Metrics
First page | Prev page | Next page | Last page Page 1 of 5, 46 articles found