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Abstract Recently, the development and fabrication of
electrode component of the solid oxide fuel cell (SOFC)
have gained a significant importance, especially after the
advent of electrode supported SOFCs. The function of the
electrode involves the facilitation of fuel gas diffusion,
oxidation of the fuel, transport of electrons, and transport
of the byproduct of the electrochemical reaction. Impress-
ive progress has been made in the development of
alternative electrode materials with mixed conducting
properties and a few of the other composite cermets.
During the operation of a SOFC, it is necessary to avoid
carburization and sulfidation problems. The present review
focuses on the various aspects pertaining to a potential
electrode material, the double perovskite, as an anode and
cathode in the SOFC. More than 150 SOFCs electrode
compositions which had been investigated in the literature
have been analyzed. An evaluation has been performed in
terms of phase, structure, diffraction pattern, electrical
conductivity, and power density. Various methods adopted
to determine the quality of electrode component have been
provided in detail. This review comprises the literature
values to suggest possible direction for future research.

Keywords double perovskites, electrode materials,
hydrocarbon fuel, solid oxide fuel cells

1 Introduction

Fuel cells are one of the indispensable empowered
technologies for next generation hydrogen energy produc-
tion [1–3]. These cells are very efficient providers of
electric power, generating electrical energy from chemical
energy with no combustion [4,5]. The annals of the fuel
cell have covered almost two centuries [2]. Nowadays the
application of the fuel cell technology is the most
important for its successful installation, mainly because
of its working temperature (T), efficiency (ƞ), start-up time
and dynamic behavior [6], and the availability of fuel. Fuel
cells applications are replacing internal combustions
engines, providing both stationary power and portable
power due to its very low or zero emissions [7]. For
combustion-based technologies, these cells are used to
generate the electrical power for all sorts of gadgets that are
used every day [8].
As an illustration, the European Union wants to transfer

all its energy system, including transport, into low-carbon
systems by 2050 to reduce greenhouse gas emissions. Even
Japan wants the 2020 Summer Olympics to be held in
Tokyo to run on the renewable energy mainly produced
from hydrogen fuel cells. Both Toyota and Honda are
making fuel cell cars, because the preferable energy
density of the fuel cell cars, in comparison with batteries,
will have a great benefit in the long run [9]. Nissan also has
its SOFC car which run on bioethanol [10]. Figure 1 shows
the annual transport cells in different regions of the whole
world [11].
The proton exchange membrane fuel cell (PEMFC),

direct methanol fuel cell (DMFC), alkaline fuel cell (AFC),
phosphoric acid fuel cell (PAFC), molten carbonate fuel
cell (MCFC), microbial fuel cell, and solid oxide fuel cell
(SOFC) have been used as different types of fuel cells [12],
of which, the SOFC has gained more attention in the world
market due to its high efficiency and longer lifetime [13].
The higher operating temperature of the SOFC sometimes
acts as an obstacle in its applications, but this high
temperature SOFC can reform the fuel internally [14]. In
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fact, not only hydrogen but also a wide variety of fuel
sources such as natural gas, biogas or other renewable fuels
can be used as the fuel in the SOFC [15]. This cell can
produce electricity using existing gas transmission infra-
structure, making it ideal for electricity generation [16].
Why is SOFC? To mitigate environmental degradation,

the world is searching for new fuel sources which will not
emit any toxins like CO2, SO2 or NOx, in the atmosphere
[17]. People are being attracted to SOFC by its potential
benefits. China has already taken one step ahead to
overcome this polluted environment. In the USA, several
SOFC companies have been established in recent years.
Bloom Energy, Precision, Combustion, MO-SCI Corp.,
PolarOnyx, Inc., Lynntech, Inc., UES, Inc., Lupine Labs
(fka FAST Ceramics), NexTech Materials, Sonata LLC,
Protonex, Acumentrics, MEL Chemicals, FuelCell Energy,
Yanhai Power LLC, ATREX ENERGY, INC., Si Energy
Systems, Catacel, and Ztek are known by their names [18],
whose main target is to move people away from
dependence on polluting fuels and to provide clean,
quiet, and efficient energy, as well as to lower manufactur-
ing cost. The global SOFC market is estimated to be USD
403.4 million in 2017 and is projected to grow at a CAGR
of 13.88% from 2017 to 2025 to reach a market size of
USD 1140.6 million by 2025. Figure 2 describes the
raising global demand to use the SOFC in the world market
[19–20].
SOFC attracts researchers by its promising capabilities.

Many scientists are now working on the evolution of new
materials that can accomplish stability under operating
conditions as well as catalytically active. They want to use
that stable material at a reduced temperature while still
enacting the desired stability, durability, and high perfor-
mance of the SOFC. They also want to make the key
components of the SOFC that are much cheaper to sharply
curtail its overall cost. To gain a high electrocatalytic
activity, the SOFC needs novel electrode materials that
exhibit high performances [21]. Many materials have
already been used to make conventional SOFCs, such as
perovskite-type oxides, fluorites, etc. [22]. Recently
research hubs show their keen interest in double perovskite
electrode materials for their promising characteristics, for

instance, high performance and stability with various fuels
[23–25].
This review mainly focuses on electrodes in the SOFC

with different double perovskite materials which have been
used before, as well as their structures and performances.
Besides, it discusses the challenges in using these
perovskite materials and the new combination of novel
materials in the SOFC.

2 Overview of SOFC

SOFC has become an expedient technology for electrical
power generation due to its high-energy conversion
efficiency, wide application range, fuel flexibility, and
scant pollution [26–28]. Fuels, for instance, hydrogen and
hydrocarbons can be used to spawn electricity in the SOFC
as this cell is operated at high temperatures of 500°C–
1000°C. Especially, when using hydrocarbon fuels such as
natural gas to produce electricity, it has been recognized to
be the most promising device with high energy conversion
efficiencies [29,30]. It can generate more electricity than
any other fuel cells of around 100 kW. Owing to high
operating temperature, it has to face some hindrance like
high costs, slow start-up time, high degradation rates, etc.
The SOFC is especially well suited for power plants to
provide a continuous stream of energy to industry as well
as to a whole city [31].
The main advantage of the SOFC is the direct utilization

of hydrocarbon fuels without any pretreatment [32–34].
More abundant hydrocarbon fuels such as natural gas have
attracted researchers to do more work on the advancement
of anode materials of SOFCs that operate directly on low
cost. Solid ceramic electrolytes are used in the SOFC rather
than a liquid one. The anode is fed with fuel where
oxidation transpires and the reduction takes place in the
cathode [28,35]. The new, eco-friendly demeanor deserves
more attention and grandeur for the fuels as only hydrogen
and oxygen are fed to the cell [36]. Hydrogen naturally
exists in the atmosphere without releasing any toxins in the
environment. It is found in the greatest quantities as water
on earth. Pure hydrogen is used as fuel which is the most
copious element on earth and can also be produced from
biomass [37]. High reactivity with a suitable catalyst, high
energy density, and the production of water only at the
anode side make it capable of being used as fuel as the fuel
is oxidized at the anode [38,39]. We can either split water
or use hydrocarbon as a fuel. Direct use of hydrocarbons is
very alluring and cost-effective [28]. Nowadays, CH4 is
also a popular fuel for SOFCs due to its availability.
Generally, the oxidation reaction occurring within the
SOFC at the anode can be written as

CH4 þ 4O2 –� CO2 þ 2H2O þ 8e – (1)

In fact, the methane in this reaction breaks down and

Fig. 1 Annual fuel cell cars and buses that had been (and will be)
sold from 2015 to 2024 in world market in these regions.
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forms CO2. This oxidation reaction takes some steps to
complete. For example,

CH4 þ 3O2�� CO þ 2H2O þ 6e� (2)

The oxide-electrode surface is followed by reaction (3)
and the competing reaction (4)

CO þ O2–� CO2 þ 2e– (3)

2CO � C þ CO2 (4)

Reaction (4) results in the formation of carbon-carbon
bond between two carbon atoms and is known as
Boudouard reaction. Reaction (3) can be faster compared
with reaction (4) on an oxide anode. The electrode surface
may remain free from formation of coking. In reaction (4),
disproportionation is clearly observed, which means no
carbon deposition has occurred here. The steam of gas
feeding through the anode usually removes CO from the
surface. Reaction (5) can be expressed by reaction (6)

CO þ H2O � CO2 þ H2 (5)

H2 þ O2–� H2O þ 2e– (6)

A typical SOFC is shown in Fig. 3 where it consists of
two compartments of electrodes, namely the anode and
cathode with an electrolyte embedded in between. An
electrolyte for the SOFC requires a high ionic conductivity,
a low electronic conductivity, a fully dense structure, a
good mechanical strength, and a long duration stability
[40]. The electrolytes of SOFCs can be either oxide ion
conducting (Fig. 3(a)) or proton conducting (Fig. 3(b))
depending on their materials.
In the case of an oxygen-ion conductor, the movement of

oxygen ion controls the current. However, the reaction
products dilute the fuel. In proton conductor based SOFC,
water will form on the cathode side, attenuating the air, not

the fuel. Water is produced on the cathode side of the cell
rather than the anode as shown in Fig. 3. First hand use of
carbon-containing fuels is no longer possible with proton-
conducting electrolytes because these materials show
impermeability to gases [41–43].
The SOFC needs to lower its operating temperature for

inexpensive materials used in the cell to make it more
affordable because cheaper materials can be used at a low
operating temperature for the components of the SOFC.
These materials will also allow for a longer lifespan and
less degradation. But with reducing temperatures, its
performance decreases [44]. Generally, a SOFC is made
up of four layers, of which three are composed of ceramic
materials such as, anodes, cathodes, and electrolytes and
the interconnect, as the fourth part, is usually incorporated
with metal or ceramic layer which is placed between each
cell in the SOFC stack. Figure 4 is a schematic diagram of
a SOFC stack [48].
Anode: The main responsibilities of the anode materials

in SOFCs are to facilitate the oxidation of the fuel and the
transport of electrons from the electrolyte to the fuel/
electrode interface.
Electrolyte: Electrolyte in the SOFC needs a very fast

ionic transport, a very low electronic conductivity,
thermodynamic stability and stability under oxidizing
and reduction atmospheres. These materials must possess
the thermal expansion compatible with that of the
electrodes and other construction materials, high density,
negligible volatilization of components, suitable mechan-
ical properties and negligible interaction with electrode
materials under operation conditions [45]. The conductiv-
ity of the electrolyte determines the operating temperature
of SOFCs.
Cathode: Pure oxygen or oxygen from the air is reduced

to oxygen ions (O2–) in the cathode. Electronic conducting
oxide materials are used as cathode due to the high
operating temperature [46].
Interconnect: The interconnect must be both chemically

Fig. 2 Raising global demand to use SOFC in the world market.
(a) Top emerging trends in global SOFC market; (b) SOFC market progress in the world by 2025.
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and physically stable in reducing and oxidizing environ-
ments, have good electronic conductivity, have sufficient
strength to support other cells, and be easily fabricated into
the required configuration [47].
Since the SOFC works at very high temperatures,

probably the highest temperature of all types of the fuel
cell, at around 800°C to 1000°C, it can have the
competence of over 60% when converting fuel to
electricity. If the heat produced by the SOFC can be
used, the overall efficiency can inflate up to more than
80%. Recently the SOFC is being tested to be used in
individual homes or buildings with a micro-CHP system

[49,50] which can help to alleviate some of the strain
placed upon the grid by the expansion of electrification in
other areas. The use of the SOFC micro-CHP system in
Germany, Italy, the UK and Poland are escalated. The
company named Solid Power with BlueGen unit is
producing home-scale micro-CHP systems [51]. Figure 5
illustrates the advantages and disadvantages of the SOFC.

3 Perovskite and double perovskite

Nowadays perovskite-type materials are most promising
anode material used in the SOFC for their attractive ionic
and catalytic property [52], superconductivity [53],
magneto resistance [54], ferroelectric, piezoelectric [55]
and pyroelectrical properties. The leading research hub is
focusing on perovskite because almost all the metals in the
periodic table can integrate on the A-site or B-site element.
The elements that can occupy in A-, B-, X-sites are as
follows [56].
A: Sr, Ba, Na, K, Rb, Cs, Y, Ag, Pb, Bi and some rear

earth materials like Nd, La, Sm, Gd, Pr, Yb, and Ce;
B: Mg, Cu, Ni, Fe, Co, Cr, V, W, Zn, Ga, Rh, Al, Si, Sc,

Ti, Cr, Mn, Mo, Zr, Fe, Zr, Nb, Yb, Sn, Hf, Ta, and U;
X: O, H, F, S, Cl, Se, and Br.
The general formula for an optimal perovskite can be

written as ABX3, where the A-site cations are typically
larger than the B-site cations and similar in size to the X-
site anions as depicted by A2+B4+O3 or A1+B5+O3, or
A3+B3+O3 [57].
The structural configuration of this perovskite can be

considered as a face-centered cubic lattice (FCC), where
the A atom is situated at the corner with 12 coordination
numbers, the B atom located at the lattice center with 6
coordination numbers, the X atom pinpointed on the faces

Fig. 3 Schematic diagram of SOFC.
(a) Oxide-ion conducting electrolyte; (b) proton conducting electrolyte (adapted with permission from Ref. [41]).

Fig. 4 Schematic diagram of SOFC stack.
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of the lattice mentioned above. The perovskite structure is
completed by the B atom which stays in the form of BO6

octahedron. The largest atom is the A-site one which is
responsible for the increase of the volume of the whole unit
cell. The ideal perovskite structure is a three-dimensional
system of connections of octahedron named BO6, with the
more ample size of A-cations occupying 12 coordinated
voids to fill the space between the octahedron. The
perovskite structure can accommodate a large number of
anion vacancies which facilitate the electronic/ionic
conduction. This structure can also have a large amount
of tilting/distortion and can be found in seven types of
Bravais lattices (cubic or triclinic). The physical properties
depend not only on the constituting elements but also their
arrangement in the structure. In many cases, the thermal
resistance depends on the A-site cation while the catalytic
activity depends on the B-site [58,59]. Figure 6(a) shows
the B-site cation with 6 coordination numbers and the A-
site cation with 12 coordination numbers, while Fig. 6(b)
demonstrates its ordered double perovskite arrangement
[60]. The three structural degrees of freedom of perovskites
are as follows:
(a) A and B cation displacement from the centers;
(b) The polyhedral distortion of the coordination around

A and B ions;
(c) The BX6 octahedra tilting with respect to one, two, or

three axes.
An ordered rock-salt-like arrangement of corner-sharing

BO6 and B′O6 units in the crystal structure, e.g., A2BB´O6

or AA´BB´O6, where A, A′, B and B′ are different elements,
are termed as double perovskites [60]. This is formed when
the alkali, alkaline earth, or rare earth ions are chosen for
the A-site and the metal ions are chosen for the B- and B′-
sites. Double perovskites can accommodate large amounts
of oxygen non-stoichiometry and have been studied
extensively for their magnetic properties [61–66]. The
divalent A-cation permits a big range of oxidation state for
the B and B′ cations. These two B cations need a
convenient oxidation state to form the perovskite phase.
In the case of A2+cation, the total oxidation state of the B
site will be four, which can also be adapted for B4+/B4+,
B3+/B5+, B2+/B6+, and B+/B7+. For A2

2+BB′O6, the oxida-
tion states in the B site range from 1 to 7. Thus in the case of
A3+cation, the B site combination will be B3+/B3+, B2+/B4+,
and B+/B5+. For the A3+ cation, the average oxidation
state of the B site is three. But for the A+ cation, the ionic
radii are large. Therefore, the B site oxidation state will be
B5+/B5+, B4+/B6+, and B3+/B7+.

Fig. 5 Advantages and disadvantages of SOFC with its working principle.
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According to Huang et al., Sr2MgMoO6–d(SMMO) is
highly attractive because of its redox stability, proper
thermal expansion coefficient compared to the standard
solid electrolytes, and excellent electrocatalytic activity
toward natural gas used directly as fuel [67–69]. At the
same time, Marrero-López et al. [70] and Bernuy-Lopez
et al. [71] have found that SMMO under 5% hydrogen
reducing atmospheres has a high redox stability of up to
900°C. Meanwhile, Sr2MMoO6 (M = Co,Ni) series, as
anode materials, have been reported [72], which exhibit a
high cell power density in the hydrogen and methane
atmosphere. Unfortunately, SMMO based double perovs-
kite showed a lower electrical conduction and hence giving
a higher unfavorable anode polarization. Nonetheless,
doping with donor or acceptor on A or B sites does help in
the electronic or ionic conductivity of Sr2MgMoO6 via the
introduction of various ionic and electronic defects. The
electrocatalytic properties for fuel oxidation could also be
improved by modifying SMMO by substituting the Sr with
La3+ ions but the structural ability deteriorates at high
oxygen partial pressure [73]. Meanwhile, the Mg-site can
be doped with Mn, thus increasing the electrical
conductivity. However, Mn-doped is much sensitive to
pO2 and the electrical conductivity decreases as the partial
pressure of oxygen increases [74]. Fe, Al, and Co-
substituted SMMO have also been investigated to find
the suitability of the material under redox conditions [75–
77].
For pure perovskite structures, the relative size of the A

and B site cations determines the stability of the perovskite
slab. The A-O bond length is equal to

ffiffiffi

2
p

and B-O is
normally 40% smaller than A-O bond length. In the case of
perovskite, the Goldschmidt tolerance factor (t) which is
the mismatch of the size of A- and B-cations can be

described as

t ¼ rA þ rO
ffiffiffi

2
p ðrB þ rOÞ

,

where rA, rB, and rO are the ionic radii of A, B, and O
respectively.
For double perovskites, the Goldschmidt tolerance

factor t [78] can be written as

t ¼ ðra# þ ra$）=2þ rO
ffiffiffi

2
p

x½ðrb# þ rb$Þ=2þ rO�
,

where ra# , ra$ , rO, rb# , and rb$ are the Shannon ionic radii
[79] of the constituent ions. The A-site cation radius is for
the twelve-fold oxygen coordination, whereas the B-site
radius is for the six-fold oxygen coordination. In fact, the
perovskite structure may form in oxides for which
0.89< t< 1.06.
(1) When t < 1, the radius of the A-site cation is smaller

than standard and the perovskite structure can atone for the
size of the cation by tilting BO6 octahedra;
(2) When t > 1, the radius of the A-site cation is

immensely large. Therefore, the perovskite structure
cannot be formed by tilting octahedral [80,81]. Even in
this case, the structure can also be formed instead of tilting
only to change the bond lengths (the A–O bond or the –O
bond).
But sometimes the cation radii are not perceived.

Therefore, the tolerance factor t cannot be calculated. In
A2

2+BB′O6, the A-site cation can affect only the volume of
the unit cell but the B-site cation involves the perovskite
structure and space group found in the literature. Besides,
for a single perovskite, only the A-B cation radii difference
is important, but for the double perovskite structure, the B-

Fig. 6 Schematic 3D representation of perovskite structure.
(a) A general basic perovskite structure (space group: Pm-3m) showing the octahedral (6-coordinated) and cubo-octahedral (12-coordinated) of the B- and
A-site cations, respectively; (b) ideal 1:1 double perovskite in cubic symmetry (space group Fm-3m, a = 2ap).
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B′ cation radii mismatch is very substantial. Table 1 lists
the calculated tolerance factors of some double perovskite
electrodes reported in literature and Fig. 7 plots the
tolerance factor t versus the composition to find the trend.
The reported electrodes have t values in the range of 0.88
to 1.08 [64,72,81–100]. A maximum in a number of
electrodes is found around t = 0.9 to 1.01, where the ionic
radii match is quite close to the ideal.

3.1 A-site doping

Various types of cations can be used to make different
compositions to substitute A- or B-site or both sites.

Perovskite-type oxides can be partial or totally reduced in
the reductive atmosphere, depending on the A- and B-
positions [101]. Thus, double perovskite materials can be
made by substituting the A-site cation like A1 – xAxBB´O6 or
by substituting the B-site cation, for instance, A2B1 – xBx′

O6, or by substituting both, such as A1 – xAxB1 – xBx′O6.
Many studies have been conducted on A-site ordered

double perovskites. Cation ordering on A-site actually
affects the physical properties of double perovskites. For
instance, Parfitt et al. have reported that oxygen self-
diffusion in the double perovskite GdBaCo2O5+d (GBCO),
in which Gd or Ba cations align in alternating (001) layers,
is strongly dependent upon the A-site cation order [102].

Table 1 Calculated tolerance factors of some double perovskite electrode materials

Electrodes t Electrodes t Electrodes t

Ba0.1Sr1.9NiWO6 0.985 Ca2CrWO6 0.945 Sr2MgMoO6 – δ 0.977

Ba0.2Sr1.8NiWO6 0.988 Ca2FeReO6 0.970 Sr2MnMoO6 – δ 0.952

Ba0.25Sr1.75NiWO6 0.989 Ca2FeMoO6 – δ 0.860 Sr2FeMoO6 – δ 0.963

Ba0.3Sr1.7NiWO6 0.991 Ca2CrSbO6 0.880 Sr2CoMoO6 – δ 0.971

Ba0.4Sr1.6NiWO6 0.994 Ca2FeReO6 0.963 Sr2NiMoO6 – δ 0.984

Ba0.5Sr1.5NiWO6 0.997 Ca2CoNbO6 0.961 Sr2ZnMoO6 – δ 0.973

Ba0.75Sr1.25NiWO6 1.004 Ca2NiWO6 0.947 Sr2CrWO6 0.999

BaSrNiWO6 1.011 Ca1.9Sr0.1NiWO6 0.949 Sr2CeSbO6 0.920

Ba1.25Sr0.75NiWO6 1.019 Ca1.8Sr0.2NiWO6 0.951 Sm2LiOsO6 0.900

Ba1.5Sr0.5NiWO6 1.026 Ca1.6Sr0.4NiWO6 0.954 Sr2MnWO6 0.949

Ba2NiWO6 1.041 Ca1.5Sr0.5NiWO6 0.956 Sr2NiWO6 0.982

BaY(Cu0.5Fe0.5)2O5 1.056 Ca1.4Sr0.6NiWO6 0.958 A2MnMoO6 (A = Ba,Sr) 1.050

BaRE1 – xLaxCo2 – yFeyO6 – δ 0.950–1.000 Ca1.25Sr0.75NiWO6 0.960 La2CuNiO6 0.825

Ba2 – xSrxMnReO6

(x = 0, 0.5, 1, 2)
1.000 Ca1.2Sr0.8NiWO6 0.961 La2NaIrO6 0.890

Ba2FeMoO6 – δ 0.980 CaSrNiWO6 0.965 Pr2NaIrO6 0.880

Ba2CrWO6 1.059 Ca0.8Sr1.2NiWO6 0.968 Nd2NaIrO6 0.860

Ba2LaSbO6 0.960 Ca0.6Sr1.4NiWO6 0.972 La2LiOsO6 0.930

Ba2PrSbO6 0.970 Ca0.5Sr1.5NiWO6 0.973 Pr2LiOsO6 0.920

Ba2NdSbO6 0.971 Ca0.4Sr1.6NiWO6 0.975 Nd2LiOsO6 0.910

Ba2SmSbO6 0.977 Ca0.3Sr1.7NiWO6 0.977 Pb2FeMoO6 1.032

Ba2FeReO6 1.060 Ca0.2Sr1.8NiWO6 0.979 La2LiIrO6 0.940

Ba2CaWO6 0.967 Pr2LiIrO6 0.930

Ba2CaReO6 0.979 Nd2LiIrO6 0.920

Ba2CaOsO6 0.980 Sm2LiIrO6 0.910

Ba2CaUO6 0.940 Eu2LiIrO6 0.900

Ba2CaNpO6 0.942

Ba2CaPuO6 0.944

Ba2SrNpO6 0.906

Ba2SrNpO6 0.908

Ba2LaIrO6 0.967

Ba2YIrO6 0.997
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Even La or Ce-doped Sr2NiMoO6, reported by Sabrina
Presto et al., has gained the high electrical conductivity
which can be contemplated as one of the auspicious
anode material for the SOFC running at operating
temperature [103]. Doping in A-site gives good perfor-
mance for SOFC electrode materials. As an illustration,
Pr1 – xCaxBaCo2O5+d (PCBCO) double perovskite exhibits
very good electrochemical performance and chemical
compatibility. The corresponding maximum power density
values decreases from 646.5 mW/cm2 at 800°C [104].

3.2 B-site doping

The materials need a high degree of cation ordering to
accomplish the alluring properties of perovskites. Unfortu-
nately, the assemblage of super lattices is a bit harder
because of their slow growth, which hinders the industrial
interest. For the B-site cation ordering in double perovs-
kite, the similarity of the ionic formal valence and ionic
radius are the major problems. Hence, to achieve a
spontaneous B-site rock salt ordering in bulk, a distinct
difference in FV and rB is necessary [105]. B′ and B″
cations are accountable for the ordering /disordering effect
of perovskite. The charge difference of these cations is
mainly encountered for this effect. The three B-site
ordering sublattice in double perovskites are as follows
(in Fig. 8).
These ordering phenomena always affect the physical

properties of materials. The B-site cation ordering affects
the half-metallic properties of Sr2(Fe1 – xCrx)ReO6 double
perovskites [106]. For PrBaCo2-xCuxO5+d, Cu doping in
the B-site aids the evolution of oxygen vacancies at a lower
temperature [107]. Niu et al. [108] have measured the
excellent performance at reduced atmosphere and found
the coking resistant and sulfur tolerant anode material for
the SOFC. The maximum power density is recorded for

Ni-doped NdBaCo2 – xNixO5+d at 700°C, 750°C, and
800°C and the electrical conductivity is around> 300
S/cm up to 900°C [109]. Single crystals are most
appropriate when examining the sublattice type and
carrying out a structure analysis. Since it is often very
difficult to obtain single crystals, powder diffraction data
can be used (for most of the cases) to determine the types
of sublattice. The determination of sublattice types is based
on the size of the unit cell, systematic absences, crystal
system, and other topological transformations. For some
crystal structures, the arrangement cannot be made
unambiguously, when powder diffraction data are used to
determine the B-cation sublattice type. Neutron diffraction,
electron diffraction microscopy or X-ray diffraction data
from a synchrotron source can be used to ascertain the
single crystal structure. The two main B-site cation
sublattice types and common cell sizes, crystal systems,
and space groups are shown in Table 2. Figure 9 shows a
different kind of B-cation sublattices.

3.2.1 Random/partially ordered type

The difference between valance and ionic radius actually
generates an order. Compounds having a random type
sublattice generally form a cubic unit cell or an
orthorhombic unit cell. The bond length is very important
to form a random type sublattice to get either a cubic unit
cell or an orthorhombic unit cell. Generally, the bond
length A-O is less than

ffiffiffi

2
p

times the bond length B-O when
the orthorhombic cell is formed. In Glazer’s notation for
a+b–b– or a+a–a–, the rotation of BO6 octahedron forms this
cell [115]. Higher order reflections are absent for a cubic
cell in random type sublattice. The reflections, 0hkl: k = 2n
+ 1, are absent in orthorhombic cell. The most common
space group observed for compounds that have random
sublattice with orthorhombic symmetry is Pbnm.

Fig. 7 Number of double perovskite electrodes reported with different values of tolerance factor t.
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3.2.2 Rock salt type

The arrangement of the B-site cation is commensurate to
the positions of anion and cation. The compounds having a
rock salt type sublattice usually crystallize in a 2ap cubic
unit cell, for instance [112], Sr2CuWO6 [116] or a
monoclinic

ffiffiffi

2
p

ap�
ffiffiffi

2
p

ap�
ffiffiffi

2
p

ap unit cell, such as
Ca2MnWo6 [65], Ca2FeMoO6 [117]. A monoclinic cell is
found when the most common tilting found as a+b–b– in
Glazer’s notation or a+a–a–. This cell stands with the
minimum tolerance factor with a rotation of BO6

octahedron where each octahedron is isolated from others.
These types of compounds show the evidence of the B-site
cation ordering. In a cubic cell, the cation ordering is
different as the lattice parameter is doubled with respect to
the cation for random distribution. Higher order reflection

is observed in cubic cell. When the tolerance factor is quite
large, the cubic diction takes place. To amend the A-site
cation, bonding is the main purpose of octahedral tilting in
rock salt type ordering.

3.2.3 Layered type

When the B′ and B″cations can alternate in one direction,
the layered type is formed. The monoclinic structure of a
layered type double perovskite material, such as
La2CuSnO6 [118], has 2ap�2ap�2apunit cell. These
three sublattice types are different from each other by the
presence of the valance. For instance, the unit cell
arrangement of layered type is 2ap�2ap�2ap, while the
random arrangement is ap�ap�ap. Even the rock salt type
is quite different from the layered one as the BO6

octahedron can rotate in two dimensions [105].
Layered type double perovskites with a large number of

oxygen vacancies have been proved to be good electrode
materials for the SOFC. Recent research focuses on
lanthanide (Ln)-containing oxide materials doped with
alkaline elements (Ba, Sr, Ca, etc.) and transition metals
(Cr, Mn, Fe, etc.). Hence, their good mixed electronic and
ionic conducting behavior are recognized as very promis-
ing (LT, IT, HT-SOFCs) for electrode materials. However,
these materials still exhibit slow oxygen transportation
kinetics, specifically at intermediate temperatures of

Fig. 8 B-cation sublattice types.

Table 2 Sublattice types, cell sizes, crystal system, and space groups of two main B-site cations

Sublattice type Cell size Cryatal system Space group Representative references

Random ap�ap�ap Cubic Pm-3m [110]

2ap�√2ap�2ap Orthorhombic Pbnm [111]

Ordered 2ap�2ap�2ap Cubic Fm-3ma [112]

√2ap�√2ap�2ap Tetragonal I4/ma [62,113]

√2ap�√2ap�2ap Monoclinic P2l/n
a [65]

2ap�2ap�2ap Monoclinic P2l/m
b [114]

Notes: a—NaCl-type; b—layered type; ap(~3.9Å) is the unit cell parameter of ideal cubic perovskite.

Fig. 9 A different kind of B-cation sublattices (adapted with permission from Ref. [105]).
(a) Random; (b) layered; (c) rock salt arrangement.
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500°C–800°C. A-site layered perovskite PrBaCoMn2O5+d
[119] has been introduced with the structure-property
relationship. Recently, a layered perovskite anode,
PrBaMn2O5+d has been demonstrated as a good
redox stable with tolerance to coking and sulphurconta-
mination from hydrocarbon fuels PrBaCo2O5+d is reported
to have suitable electrical properties to use as a cathode in
the SOFC [120]. In a recent study, the material of
NdBaMn2O5+d has been investigated with regard to its
structure and electrical conductivity [21].

4 Exploring new electrodes for SOFC

Since the anode acts in reducing environment while the
cathode is in oxidizing environment, the electrode material
of a symmetrical SOFC has to take the challenge to
demonstrate chemical and structural stability in both
reducing and oxidizing environments and maintain the
dual electrocatalytic performance for both oxygen reduc-
tion and fuel oxidation. Different types of oxides with
perovskite, fluorite, and pyrochlore structures have already
been investigated as potential redox stable electrode
materials [121,122].
Anode is much more responsible for the performance

and endurance of the SOFC. The anode requires reducing
environment. The most commonly used anode material is
the Ni-based composites which exhibit a good conductiv-
ity and a high performance for pure hydrogen oxidation
[123]. However, Ni-based anode materials also demon-
strate some detriments such as low tolerance to carbon
unless a large amount of steam is added to reform the fuel,
exposure to sulfur substantially existing in natural fuels
[124], and nickel coarsening as well as poor volume
stability upon redox cycling. To overcome these obstacles
with maximizing the convenience of the intrinsic fuel
flexibility of the SOFC, the development of anode
materials should have to be concentrated on. Seungdoo
Park et al. [125] have reported that Cu-CeO2-YSZ
composite anodes operated on a range of dry hydrocarbons
can reduce carbon deposition and have a good sulfur
tolerance. Cu particles are excellent electronic conductors
but show a poor catalytic activity [126].
Anode materials should have the following basic

requirements [127]:
(1) Porous anode (easy evacuation of hydrogen and

formed water);
(2) The prerequisite of an anode in the SOFC is the

excessive fuel flexibility that would receive feed sources
such as natural gas, hydrogen, and other various light
hydrocarbons;
(3) Relatively high electrical conductivity;
(4) High-temperature stability;
(5) Flexibility for electron and conduction;
(6) Fuel-flexible, ease of fabrication, and low cost;

(7) Thermal expansion coefficient (TEC) and chemical
compatibility matched with the adjoining components;
(8) High wettability needed to compare with the

electrolyte substrate;
(9) Excellent carburization and sulfidation resistance on

using hydrocarbons as a fuel.
A lot of efforts have been made to synthesize and

characterize these anode components to get ultimate cell
performance.
In this section, a few structural and electrochemical

parameters are focused on to compare the electrode (anode
and cathode) materials investigated, such as diffraction
pattern and space group with phase, electrical conductivity
and power density. Table 3 tabulates the major character-
ization of some double perovskite anode materials used in
the SOFC. The space group, phase, diffraction pattern,
electrical conductivity (S/cm) and power density (mW/cm2

–W/cm2) acquired from literature are reported here.
For anode materials, the highest electrical conductivity

is obtained for Ca2FeMoO6 with monoclinic (Table 3, Ref.
[128]), while much lower conductivity value is reported in
Sr2 – xBaxMMoO6 – d (M = Co, Ni; x = 0, 0.5, 1.0, 1.5 and
2.0),< 10–2 S/cm for Ni- containing materials at 800 C
[129]. The highest power density value is obtained for
1066 mW/cm2 at 800 C under humidified H2 [130].
The thermal expansion coefficient plays a vital role in

whole SOFC performance. The selection of cathode
materials mainly depends on the electrolyte materials
[161]. SOFC can be operated at a very low cell voltage to
establish cathode durability. The partial pressure of O2 at
the cathode ternary phase boundary can be quite low for a
redox stable cathode. Lanthanum strontium manganite,
(La,Sr)MnO3 – d (LSM), is a common cathode material for
the SOFC. This material has a very high performance with
its high electrochemical activity for the O2 reduction
reaction at high temperatures, a good thermal stability,
chemical stability, and rapport with the electrolyte in the
SOFC [162,163]. Though LSM has an excellent electrical
conductivity, it has a low oxygen ionic conductivity [164].
For these reasons, the LSM component is not suitable for
SOFC operation. For stability, significant efforts have been
made to search for cathode materials with a high ionic
conductivity operable at lower temperatures.
Kim et al. [165] have measured a very high electrical

conductivity at a lower temperature and made the oxygen
ion diffusion easily. Therefore it can be a good cathode for
the SOFC. Some cathode materials execute chemical
stability as well as high catalytic activity, and remain stable
under CO2 like PrBa0.5Sr0.5Co1.5Fe0.5O5+d (PBSCF)
[166]. Table 4 shows the major characterizations of some
double perovskite anode materials used in the SOFC.
The expected properties of a good cathode are as follows

[167]:
(1) Higher electronic conductivity (ideally more than

100 S/cm under oxidizing ambience);
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(2) Matched thermal expansion coefficient (TEC) and
chemical compatibility with the electrolyte and intercon-
nect materials;
(3) High amount of porosity to allow gaseous oxygen to

readily diffuse through the cathode to the cathode/
electrolyte interface;
(4) Durability under oxidizing atmosphere during

fabrication and operation;
(5) High catalytic activity for the oxygen reduction

reaction (ORR);
(6) Low cost.
Table 4 presents the structural and electrochemical

parameters to compare the cathode materials investigated.
In this case, it is worth noting the large spread of
conductivity value of 389 S/cm at 850°C (Table 4,
Ref. [168]) and the highest power density value of
1541 mW/cm2 at 800oC [169].

5 Challenges to use double perovskite in
SOFC

The challenges are mainly posed to double perovskite
materials located on the ordering of B′- and B″materials. In
these materials, a deviation from the primitive cubic unit
cell is expected due to the differences in the A, B, and
oxygen ion sizes, together with their electronic, oxidation,
and magnetic states. This may ultimately induce a lower
crystal symmetry and is easily interpreted using the
tolerance factor [232]. The major problem raised in
SOFC operation is the durability of anode and cathode
for a longtime. These components can be affected by either
air or fuels used in the system or the volatile types of fuel
cell component [233]. To make a perfect SOFC system, not
only the high cell performance but also the stability under
high temperature and the tolerance of various elements like
sulfur are required [164].

5.1 Mixed ionic and electronic conductivity (MIEC)

Mixed ionic electronic conducting (MIEC) double per-
ovskites are very important for electrochemical systems.
They are major components in many devices like SOFCs.
However, using nickel in anode has a few flaws e.g., these
materials deteriorated easily due to sulfur poisoning, poor
redox stability, coking (carbon deposition) and the fact that
Ni particles to agglomerate after prolonged operation
[234]. Aside from doped-SrTiO3 mixed ionic and electro-
nic conductors (MIECs) [235,236], other MIECs that have
been investigated as potential anode materials over the last
few years include Sr2FeNbO6[237], PrBaCo2O5+d(PBCO)
[238], Ln1 – xSrxCr0.5Mn0.5O3 – d (Ln = La and Pr) [239],
La0.75Sr0.25Cr0.5Mn0.5 – xMxO3 – d (M = Ga, Ti, Mg)
[119,121,236], Ce0.9Sr0.1VOx (x = 3,4) [240], Sr2Fe4/3
Mo2/3O6[69], YSr2Fe3O8[241], PrSrMn2O5+d [1]
and Sr2MnMoO6perovskites [67,242]. (La,Sr)CoO3-d

(LSC) have also been studied as cathode [243].
(La,Sr)MnO3 – d (LSM), (La,Sr)CoO3 – d (LSC) and
La0.6Sr0.4Co0.2Fe0.8O3 – d (LSCF) show mixed ionic and
electronic behavior which is good for SOFC cathode [244].
(La0.75Sr0.25)12xCr0.5Mn0.5O3 – d as complex perovskite

has very good performances compared with those of
hydrogen to nickel-zirconia cermet and excellent catalytic
activity with CH4 at a high temperature [245]. None-
theless, the low electrical conductivity (1 S/cm at 1000°C)
for this material has also been discovered by Tao et al.
[246]. Low tolerance against sulfur species is shown in the
fuel. Highly redox and chemical stable materials with a
high resistance can demolish sulfur impurities, but the
electrocatalytic activity and ionic conductivity require
more treatment to get good results [247–249].

5.2 Porosity

Electrode materials in SOFC should exhibit a very good
microstructure with a uniform particle size and porosity.
Porosity acts on transporting gases to/from the fuel cell
electrodes. The use of the porous electrode in SOFC
assumes that the effect of microstructural properties such
as surface area, volume fraction of the various phases, and
irregularity of gas, ionic, and electronictransport paths will
be improved. Most anodes are porous cermets (a
composite of ceramic and metal), which allow conduction
of electrons through the structure [250] as well as a
cathode. But the electrolytes are dense materials. The
cathode reduces partial oxygen pressure by releasing
continuous oxygen [251]. A cross-sectional image of
SOFC with YSZ electrolyte is shown in Fig. 10. The
electrodes present adequate porosity and probably good
contact with the electrolyte for Sr2BMoO6 – d (B =Mg, Ni,
Co) and Sr2Fe1.5Mo0.5O6 – d [252].

5.3 Phase composition and crystalline structure determina-
tion

The phase composition and crystalline structure are one of
the main characterizations to be done for the development
of SOFC materials. From the cell parameter, the structure
of the crystal can be determined. The cation ionic radii,
synthesis process, electronic stability, bond strength, and
oxygen occupancy play a very crucial role in the crystalline
structure determination [253]. X-ray diffraction is the most
common structure determination tool for components in
SOFC. More accurate oxygen vacancies and atomic
positions can be determined only through neutron diffrac-
tion [253]. NdBaMn2O5+d has been tested by in-situ
neutron diffraction and conductivity measurement which
shows very promising performance in SOFC [254].
The B-site ordered double perovskite cathode,
Ba2CoMo0.5Nb0.5O6 – d (BCMN), has also been examined
by NPD which belongs to the Fm-3m space group [255].
For example, the X-ray diffraction (XRD) of
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A2FeMoO6 – d samples in 5% H2/Ar for 10 h are shown in
Fig. 11 where the sintering temperature is 1100oC. The
single-phase double perovskite oxides A2FeMoO6 – d has
been observed after final sintering. The XRD pattern
shows a clear observation with zero impurity.
Ca2FeMoO6 – d exhibits a monoclinic structure with the
space group P21/n, Sr2FeMoO6 – d shows a tetragonal
structure with the I4/m space group, and Ba2FeMoO6 – d
manifests a cubic structure with the Fm-3m space group.
Besides, NdSrMn2O6 can be a good anode with an

orthorhombic (Pmmm) structure [256]. These are appro-
priately fitted with the given materials [257,258]. Figure 11
shows the Rietveld refinement profile of a new anode
material which has been reported recently.

5.4 Electrical conductivity

The electronic conductivity of double perovskite materials
depends mainly on the B-site cation ordering. Almost all
the transitional metals, lanthanides, and actinides can
occupy in the B-site. Mostly, the elements occupy in the
periodic table 3d, 4d, or 5d series show very alluring
electrical conductive properties. Most of the DP elements
show insulating or semiconducting behavior as described
in the literature. The real challenge is to identify a good
stable electrode material exhibiting a high conductivity in a
reduced atmosphere for SOFC operation.
Zhang and He [27] have measured the electrical

conductivity of Sr2 – xSmxMgMoO6 – d by using the van
der Pauw method running under H2 at different tempera-
tures. The highest value of conductivity is found at x = 0.6
and it is 16 S/cm in H2 at 800°C [260]. The electrical
conductivity of SSMM samples in H2, measured during the
time of cooling is shown in Fig. 12. The polaronic
conducting behavior is commonly seen for these samples
running in H2. As molybdenum is a very good catalyst,
these samples demonstrate that the amount of Mo increases
with supplanting Sm instead of Sr.

Fig. 10 Cross-sectional SEM micrographs of the SOFC micro-
structure (adapted with permission from Ref. [21]).

Fig. 11 Observed (red dots) and calculated (black line) XRD intensity profiles for SFTN0.05 at room temperature (The short vertical
lines indicate the angular position of the allowed Bragg reflections. At the bottom, the difference plot (blue line), Iobs–Icalc, is shown. Insert
shows the 3D schematic diagram, adapted with permission from Ref. [259].)
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In all atmospheres, a positive temperature coefficient is
observed from Fig. 12, i.e., the polaron helps to increase
the value of conductivity with increasing temperature. In
air, s which is temperature dependence can be discussed
with the whole temperature range 400°C£T£800°C by
polaron expression s = (A/T)exp(-Ea/kT), where the
activation energy Ea= ΔHm+ ΔHt/2 is the sum of the
polaron motional enthalpy ΔHm and the enthalpy ΔHt to
free a polaron from the oxygen vacancy that creates it. The
value of Ea is (0.134�0.001) eV. In 5% H2/Ar, the
formation of oxygen vacancies with the introduction of
additional electronic polaron charge carriers leads to a
reduction.
In consonance with Zhang et al. [145] on A2FeMoO6 – d

(A = Ca, Sr, Ba), the bulk electrical resistivity is acting as a
function of temperature for the samples A2FeMoO6 – d in
H2 between the temperature range of 50°C and 850°C. For
Ca2FeMoO6 – d, the electrical resistivity is suggested that
metallic-like conduction behavior is seen throughout the
whole measured temperature range. The electrical resis-
tivity of Sr2FeMoO6 – d, in another way, can be described
for various conduction behaviors in three regions:
(1) Metallic conduction behavior below 150°C;
(2) Semiconducting region or localization of the carriers

in the temperature range of 150°C–550°C;
(3) Reverting to metallic conduction behavior between

550°C and 850°C.

5.5 Fuel cell performance

The performance of fuel cells depends mainly on
constituent materials, their processing, and microstructure.
A number of researches have been conducted to measure

single-cell performances using different types of materials,
fuels at different temperatures. A good performance of

SOFC also means a very attractive material for that cell.
All studies have been listed in Tables 2 and 3 where double
perovskites have been used as anode or cathode.
Sr2 – xSmxMgMoO6 – d (726 mW/cm2) (SSMM) [260],

Sr2CoMoO6 – d (1017 mW/cm2) (SCMO) [68] and
A2FeMoO6 – d (A = Ca, Sr, Ba) (831 mW/cm2) [261] are
some examples of double perovskite electrodes showing
good performance. The Sr2CoMoO6 – d anode material has
been prepared and assessed for single fuel cell running on
H2 and CH4 fuels to appraise its electrochemical
performance. 300 µm-thick LSGM electrolyte has been
assembled to test the cell, and a thin LDC buffer layer
between the electrolyte and anode has been used with a
porous SFC cathode, like, SCMO/LDC/LSGM/SCF
combination. The power density as a function of current
density at 800°C as well as cell voltage is featured in
Fig. 13. Sr2CoMoO6-d anode manifests an excellent
performance under H2 and wet CH4 (containing 3%
H2O). The maximum power density Pmax is 1017 mW/cm2

under H2, and 634 mW/cm2 under wet CH4at 800°C for
Sr2CoMoO6 – d, and the values are significantly higher than
those with of Sr2MgMoO6 – d anode [67].

Consequently, the high performance for Sr2CoMoO6 – d
in wet CH4 fuel is resulted from the reformer reaction (5)
that not only abolishes the CO resulting from reaction (2)
but also releases H2 to create the extra oxide-ion vacancies.

6 Conclusions

SOFCs made with the perovskite oxide materials have
definitely increased the interest over the last 20 years. The
vast diversity of compositions obtained with doping
elements allows the modification of properties in a wide
range. Higher efficiencies and electricity generation

Fig. 12 Electrical conductivity of the SSMM sample (0£
x£0.8) sintered at 1200 °C for 20 h (adapted with permission
from Ref. [27]).

Fig. 13 Power density and cell voltage as functions of current
density in H2, dry CH4 and wet CH4 at 800 °C for Sr2CoMoO6 –d

(adapted with permission from Ref. [68]).
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enhances the chance to use SOFC in day-to-day life and
make it the most auspicious candidate of the renewable
energy sector.
Based on the literature, it has been found that double

perovskite materials perform as the most amicable
materials that can be used as an electrode in SOFC for
its impressive catalytic traits. The structural and electro-
chemical properties are generally determined by the
arrangement of the B-site cations. Ordering and disorder-
ing of B-site cations play a vital role in making a suitable
electrode for SOFC.
Researchers have already worked on making high-

performance electrode with perovskite. Synthesizing,
oxidation state, and the B-site cation ordering are mainly
responsible for achieving maximum power density as they
show good carbon and sulfur tolerance in commercial city
gas.
There are different compositions with a wide range of

properties of double perovskite materials that can be
synthesized. Novel materials for SOFC still attract
researchers to create a new podium in the transport and
industrial sector. To make a cost-effective, high catalyti-
cally active electrode operated at low temperature for
SOFC will be the next step.

7 Recommendation for future work

In the SOFC sector, many experiments have been done to
produce a much more effective and inexpensive cell that
can be used in day to day life easily. Though double
perovskites electrode materials have been used already in
practical sectors, it is still a distant dream. The current
research has focused on the development of double
perovskite electrodes that can be used in SOFC because
researchers have not yet obtained the practically stable
double perovskite electrode materials which can be used
economically in commercial sectors.
Future research needs to focus on finding more efficient

anodes for direct hydrocarbon conversion that are sulfur
tolerant and can be operated at a relatively low
temperature. These materials should have a good electrical
conductivity as well as a good stablity at a high
temperature. SOFC is a device with a solid-solid and
gas-solid interface that should be stable at an exalted
temperature for a long time. The double perovskite
structure can accommodate different types of combinations
of transition metals and lanthanides. Because of the
potential of the perovskite structure to tolerate a wide
range of elements of different sizes and charges, there is a
large number of possible permutations of these cations.
There are nine possible open dn configurations, giving
(9�8)/2 distinct pairs of 3d ions. However, 4d ions are also
likely to be magnetic in these compounds, including the
number of possibilities of (18�17)/2 pairs. Since an ion
can be in a few different charge states, each 3dn or 4dn

configuration can be attained by more than one ion. If an
average of two charge states per ion are taken, another
factor of 22 can be obtained. The cation A can be chosen
from di- and tri-valent cations (including the rare earth) and
even some univalent ions, amounting to some 25 ions. The
number of compounds then is of the order of

25� 22 � 18� 17

2
� 15000: (7)

Considering also the possibility of splitting the cation A
to A′A″ leads to an additional factor of 24/2 or a total of the
order of 2�105 [262]. This perspective can facilitate the
design of the next generation SOFC using double
perovskite electrode materials for finding practical appli-
cation in power generation.
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