### **REVIEW ARTICLE**

### Lei ZHANG, Junqing ZHANG

# Metal-organic frameworks for CO<sub>2</sub> photoreduction

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract Metal-organic frameworks (MOFs) have attracted much attention because of their large surface areas, tunable structures, and potential applications in many areas. In recent years, MOFs have shown much promise in  $CO_2$  photoreduction. This review summarized recent research progresses in MOF-based photocatalysts for photocatalytic reduction of  $CO_2$ . Besides, it discussed strategies in rational design of MOF-based photocatalysts (functionalized pristine MOFs, MOF-photosensitizer, MOF-semiconductor, MOF-metal, and MOF-carbon materials composites) with enhanced performance on  $CO_2$  reduction. Moreover, it explored challenges and outlook on using MOF-based photocatalysts for  $CO_2$ reduction.

**Keywords** metal-organic frameworks (MOFs), photocatalysis, CO<sub>2</sub> photoreduction, composite

# **1** Introduction

Carbon dioxide (CO<sub>2</sub>) released in the combustion of fossil fuels, such as oil, coal, and natural gas, makes up the majority of greenhouse gas emissions, which is the major contributor to global warming [1,2]. Therefore, it is imperative to develop technologies to reduce CO<sub>2</sub> emissions. To date, the main approaches developed to reduce CO<sub>2</sub> emissions include ① CO<sub>2</sub> capture and sequestration and ② CO<sub>2</sub> conversion and utilization. CO<sub>2</sub> capture and sequestration is a set of technologies developed for reducing CO<sub>2</sub> emissions from fossil-fueled power plants. CO<sub>2</sub> capture is to separate CO<sub>2</sub> from gas mixtures via chemical absorption using an agent such as monoethanol amine or physical adsorption using solid adsorbents such as activated carbons and metal organic frameworks (MOFs), membrane separation and cryogenic

Received Dec. 17, 2018; accepted Feb. 23, 2019; online May 30, 2019

Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

E-mails: lzhang14@alaska.edu; jzhang16@alaska.edu

separation at a low temperature [3]. CO<sub>2</sub> sequestration refers to long-term storage of CO<sub>2</sub> in ocean, soils, plants, and geologic formations [3,4]. However, these technologies are relatively energy-intensive and thus are not costeffective. An alternative sustainable approach to mitigating CO<sub>2</sub> emissions is CO<sub>2</sub> utilization and conversion. CO<sub>2</sub> utilization describes the uses of CO<sub>2</sub> in both physical processes such as welding medium and chemical processes such as chemical synthesis. The CO<sub>2</sub> utilization technology has found applications in several industries such as carbonated drinks, dry ice, solvent, food preservation, refrigerant, and fire extinguisher. These direct CO2 utilization applications, however, have a small effect on the overall  $CO_2$  emission reduction due to the limited usage [5].  $CO_2$  utilization can also be employed indirectly in industries to promote a process such as in enhanced gas recovery, enhanced oil recovery, and enhanced geothermal systems.  $CO_2$  conversion refers to the transformation of CO<sub>2</sub> into valuable products such as fuels and chemicals.  $CO_2$  can be utilized directly as a feedstock to react with other components to form chemical products such as urea and formic acid under heat and/or pressure. CO<sub>2</sub> can also be utilized indirectly as a building block of a chemical product [6]. It is worth noting that  $CO_2$  is a highly stable molecule. The C-O bond strength in CO<sub>2</sub> molecule is 364 kJ/mol and the carbon atom has the highest oxidation state, therefore, CO<sub>2</sub> conversion into valuable chemicals generally requires a significant input of energy and the use of a catalyst [7]. The main approaches to converting  $CO_2$  into valuable products include photocatalysis [8,9], chemical fixation [10], hydrogenation [11], and electrocatalysis [12]. Among these methods, photocatalytic reduction of  $CO_2$ attracts much attention because it converts CO2 into useful products by utilizing solar energy via a clean and sustainable route. Under sunlight irradiation, photocatalysts can induce CO<sub>2</sub> reduction and convert it into fuels and chemicals, mainly including CO, HCHO, HCOOH, CH<sub>3</sub>OH, C<sub>2</sub>H<sub>5</sub>OH, and CH<sub>4</sub>, etc., which is determined by the number of electrons and protons  $(e^{-}/H^{+})$  transferred in the reactions. The selectivity of product and efficiency of CO<sub>2</sub> reduction may have been affected by the thermodynamic reduction potentials and reaction conditions. H<sub>2</sub>O

Lei ZHANG (🖾), Junqing ZHANG (🖾)

is commonly used as a solvent for  $CO_2$  photocatalytic reduction because it is of low cost and is natural abundance of hydrogen. The photoreduction reactions of  $CO_2$  in aqueous solution at pH = 7 and their reduction potentials with reference to the normal hydrogen electrode (NHE) at 25°C and 1 atm are given in Table 1 [13,14].

**Table 1** Photoreduction reactions of  $CO_2$  in aqueous solution at pH = 7and their reduction potentials with reference to normal hydrogenelectrode (NHE) at 25°C and 1 atm

| Reaction                                                                                                        | Thermodynamics potential (V) vs. NHE |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $\overline{\text{CO}_2 + 2\text{H}^+ + 2e^-} \rightarrow \text{HCOOH}$                                          | -0.61                                |
| $\mathrm{CO}_2 + 4\mathrm{H}^+ + 4\mathrm{e}^- \!\rightarrow\!\mathrm{HCHO} + \mathrm{H_2O}$                    | -0.52                                |
| $\mathrm{CO}_2 + 2\mathrm{H}^+ + 2e^- \!\rightarrow \mathrm{CO} + \mathrm{H}_2\mathrm{O}$                       | -0.48                                |
| $\mathrm{CO}_2 + 6\mathrm{H}^+ + 6\mathrm{e}^- \!\rightarrow \mathrm{CH}_3\mathrm{OH} + \mathrm{H}_2\mathrm{O}$ | -0.38                                |
| $\mathrm{CO}_2 + 8\mathrm{H}^+ + 8\mathrm{e}^- \!\rightarrow \mathrm{CH}_4 + 2\mathrm{H}_2\mathrm{O}$           | -0.24                                |
| ${\rm H_2O} \ \to 1/2{\rm O_2} + 2{\rm H^+} + 2e^-$                                                             | +0.82                                |
| $2H^+ + 2e^- \!\rightarrow H_2$                                                                                 | -0.41                                |

Photocatalysis is a process that converts solar energy to chemical energy, where solar energy is the driving force for the excitation and transfer of holes and electrons to induce oxidation and reduction reactions. The photocatalytic CO<sub>2</sub> reduction process can be explained as follows: first, under light illumination with energy greater than the band gap of the photocatalysts, electrons are excited from the valence band (VB) to the conduction band (CB), generating an equal number of holes in the VB. Secondly, electron-hole pairs separate from each other and move to the surface of photocatalyst. Finally, the electrons reduce CO<sub>2</sub> into chemical products, while the holes oxidize a sacrificial agent or H<sub>2</sub>O. To induce CO<sub>2</sub> photoreduction, it requires that reduction potential and oxidation potential of the reaction is less negative and less positive than the CB edge and the VB edge of the photocatalyst, respectively.

Since Fujishima et al. reported on the feasibility of using TiO<sub>2</sub> for photoelectron chemical water splitting under ultraviolet (UV) irradiation [15], many different photocatalysts have been developed, most of which are inorganic semiconductors such as TiO<sub>2</sub> [16], CdS [17], ZnO [18], ZnS [19], Fe<sub>2</sub>O<sub>3</sub> [20], g-C<sub>3</sub>N<sub>4</sub> [21], Ag<sub>3</sub>PO<sub>4</sub> [22] and their composites. Some cocatalysts such as Pt have also been explored [23,24]. However, the wide band gap, high recombination rate of electron-hole pairs, low adsorption capacities for CO<sub>2</sub>, and less tunable structure of the conventional semiconductors limit their practical applications. For example, TiO<sub>2</sub> is mainly used for UV light photocatalysis because of its wide band gap (3-3.2 eV) [25]. ZnO and CdS are not stable under irradiation in an aqueous solution, making them inactive over time [26,27]. Therefore, it is imperative to develop new photocatalytic materials with finely tunable energy band structures and high stability.

Metal-organic frameworks (MOFs), a new class of inorganic-organic hybrid material composed of inorganic metal clusters and organic linkers which are connected through coordination bonds, have attracted much interest due to their large surface areas, tunable structures and high porosity [28–34]. These excellent properties enable their wide applications in many fields, such as gas storage and separation [35], catalysis [36], drug delivery [37], water treatments [38], and sensing [39]. Recently, MOFs have found applications in CO<sub>2</sub> photoreduction, degradation of organics, and chemical synthesis as photocatalytic materials [40-42]. In photocatalytic reaction, MOFs undergo a similar process to traditional semiconductors, but differently, the VB and CB are described as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) in MOFs, respectively [36,43]. In general, the HOMO and LUMO energy levels are associated with the redox potential energy levels of the organic linker and the metal-oxo cluster, respectively [42]. The tunable organic linkers and/or metal clusters in MOFs can act as antennas to harvest light to generate electronhole pairs for photocatalysis. Most of the photocatalytic reactions in MOFs reported to date are ascribed to a localized metal-to-ligand charge transfer (MLCT), a ligand-to-metal charge transfer (LMCT), or a  $\pi - \pi^*$ transition of the aromatic ligand [36]. MOFs are utilized for photocatalytic reduction of CO<sub>2</sub> because of their attributes as follows: (1) both the organic linkers and metal clusters can serve as the light harvesting sites and they can be tailored to tune the optical absorption range of MOFs [44], ② some MOFs have a catalytic activity resulting from the catalytically active organic linkers and/or unsaturated metal sites [45,46], ③ MOFs have a large surface area and a high CO<sub>2</sub> adsorption capacity, and the high CO<sub>2</sub> concentration in the pores can facilitate the photocatalytic reactions, and ④ the three-dimensional porous structures and high surface areas enable MOFs to incorporate foreign photoactive species into their frame works, through which photocatalytic reactions can be enhanced by the synergistic cooperation of the metal clusters, organic linkers and the incorporated active sites [47]. Based on these unique properties, MOFs are promising photocatalysts for CO<sub>2</sub> reduction.

MOF photocatalysts can be classified into two categories: ① Pristine MOF photocatalysts, which are also called "opportunistic" photocatalysts. The photocatalytic properties of some pristine MOFs are a consequence of the catalytically active organic linkers and unsaturated metal sites [48], and some MOFs are semiconductors [49–51] whose photocatalytic reactions are completed through LMCT. Most pristine MOFs as photocatalysts, however, have large band gaps and barely absorb visible light, which limits their practical applications. These MOFs generally have a low photon energy utilization efficiency, and are typically employed for photocatalytic degradation of organics which have high thermodynamic driving forces and low kinetic barriers [36]. ② Modified MOF photocatalysts, which refer to MOFs functionalized to increase light harvesting and decrease the recombination rate of the photo-generated charge carriers for photocatalytic activity enhancement. To date, many strategies have been developed for enhancing the photocatalytic properties of MOFs under solar illumination, including the decoration of the metal clusters and organic linkers [52,53], incorporation of foreign photocatalytic species such as metal particles, semiconductors [54–56], and photosensitizers [57–59].

So far, a number of good literature reviews have summarized the photocatalytic applications of MOFs [60–69], most of which have discussed the role of MOFs and their performances in water splitting [70–73], degradation of organic pollutants [74–77], hydrogen evolution [36,78–80], and CO<sub>2</sub> conversion [36,43,66,78,80–85]. Therefore, this review is mainly focused on reviewing the recent progresses of MOF-based photocatalysts in CO<sub>2</sub> photoreduction. Besides, it discusses modification strategies of MOFs and their photocatalytic activities in CO<sub>2</sub> reduction. Moreover, it explores the challenges and future perspectives of MOFs-based photocatalysts in CO<sub>2</sub> photoreduction.

# 2 Modification of pristine MOFs as photocatalysts

Compared to traditional inorganic semiconductors, it is more convenient to tune the optical properties and consequently the photocatalytic properties of MOFs by modification of the metal clusters or organic linkers. It is reported that the linker decoration can change the energy band gap of MOFs by shifting the photo absorption edge from the UV to visible light region [86]. Many strategies have been developed to functionalize organic linkers and metal clusters [44,87–92], such as amine and photosensitizer functionalization of organic linkers and metal sites (e.g., Ti–O, Fe–O, and Zr–O clusters). The performances of recent photocatalytic MOFs for CO<sub>2</sub> photoreduction are summarized in Table 2.

### 2.1 Metal cluster nodes

MOFs have three-dimensional structures constructed from the interconnection of metal cluster nodes with organic linkers. Besides photoactive ligands, metal cluster nodes in MOFs can also drive photocatalytic  $CO_2$  reduction. To date, Ti-, Zr-, and Fe-based MOFs are among the most investigated photocatalytic MOFs whose photoactive metal nodes in metal-oxo clusters can initiate photocatalytic reaction by trapping photo-excited electrons and decreasing recombination rate of electron-hole pairs [83]. These MOFs share the similarity that they all contain metal ions with variable valence states (e.g.,  $Ti^{4+}/Ti^{3+}$ ,  $Zr^{4+}/Zr^{3+}$ , and  $Fe^{3+}/Fe^{2+}$ ), which enables their effectiveness on photocatalytic reduction.

Of the Ti-based MOFs, MIL-125(Ti) ( $Ti_8O_8(OH)_4(O_2C-C_6H_4-CO_2)_6$ ) is the most studied MOF, which is constructed from the  $Ti_8O_8(OH)_4$  secondary building units (SBUs) and 1,4-benzenediacarboxylate (BDC) ligands. Fu et al. investigated the CO<sub>2</sub> photoreduction over MIL-125(Ti) [53]. 2.41 µmol HCOO<sup>-</sup> was detected in the acetonitrile (MeCN) solvent with TEOA under 365 nm UV light irradiation for 10 h. A number of strategies have been developed to functionalize MIL-125(Ti) to enhance the photocatalytic reduction of CO<sub>2</sub>, such as organic linker decoration and incorporation of foreign photocatalytic components into MOFs to form MOF composites. These strategies will be discussed in Section 2.2 and Section 3.

Zr-based MOFs, which have robust structures and excellent thermal and chemical stabilities [112,113], are another popular class of photocatalytic MOFs since their synthesis in 2008 [114]. The representative examples are UiO-66(Zr) and UiO-67(Zr), which are constructed by integrating Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub> SBUs with BDC ligands and 4,4'biphenyldicarboxylic acid (BPDC) ligands, respectively [114,115]. Compared to Ti-based MOFs, Zr-based MOFs have more negative redox potential  $(Ti^{4+}/Ti^{3+} (-0.1 \text{ V}))$ ,  $Zr^{4+}/Zr^{3+}$  (-1.06 V)) [116,117]. However, UiO-66 exhibits no absorption under visible light irradiation owing to the higher redox potential energy level of the  $Zr_6O_4(OH)_4$ SBUs in UiO-66 than the LUMO of the BDC linkers, leading to the low efficiency in LMCT and consequently low efficacy in CO<sub>2</sub> photoreduction [94]. Partial substitution of metal cations in MOFs can introduce metal-to-metal charge transfer, which can promote photocatalytic performance especially under visible light irradiation [94,96]. A bimetallic UiO-based MOF, NH<sub>2</sub>-UiO-66(Zr/Ti), was prepared by Cohen and coworkers by partially substituting Zr in NH<sub>2</sub>-UiO-66(Zr) with Ti [94]. NH<sub>2</sub>-UiO-66(Zr/Ti) had a better performance in photocatalytic CO<sub>2</sub> reduction under visible light irradiation compared to NH<sub>2</sub>-UiO-66 (Zr). The reason for this is that Ti ions incorporated enable the SBUs to accept the electrons generated via light absorption by the organic linkers. No HCOO<sup>-</sup> was produced over the parent UiO-66(Zr)-NH<sub>2</sub>, demonstrating that Ti was critical for photocatalysis.

Sun et al. also prepared Ti-substituted NH<sub>2</sub>-UiO-66(Zr/Ti) MOFs (NH<sub>2</sub>-UiO-66(Zr/Ti)-120-16 and NH<sub>2</sub>-UiO-66 (Zr/Ti)-100-4) doped with different amounts of Ti by a post-synthetic exchange method and examined their photocatalytic performance on CO<sub>2</sub> reduction under visible light irradiation (Fig. 1(a)) [96]. NH<sub>2</sub>-UiO-66(Zr/Ti)-120-16 had an enhanced photocatalytic activity toward CO<sub>2</sub> conversion with a yield of 5.8 mmol/mol of HCOO<sup>-</sup> after 10 h visible light irradiation in MeCN solvent with TEOA as a sacrificial agent, which was 1.7 times of that observed over NH<sub>2</sub>-UiO-66(Zr) (3.4 mmol/mol) under similar conditions. In contrast, NH<sub>2</sub>-UiO-66(Zr/Ti)-100-4 produced 4.2 mmol/mol of HCOO<sup>-</sup>, which was less than NH<sub>2</sub>-

| Table 2         Performances of recent pl                               | hotocatalytic MOFs for CO <sub>2</sub> photo   | oreduction  |                           |                    |                           |                 |       |
|-------------------------------------------------------------------------|------------------------------------------------|-------------|---------------------------|--------------------|---------------------------|-----------------|-------|
| Functionalization                                                       | MOF                                            | Irradiation | Solvent/sacrificial agent | Main product       | Photocatalytic reactivity | Reaction time/h | Ref.  |
|                                                                         | MIL-125(Ti)                                    | ΩΛ          | MeCN/TEOA                 | HC00 <sup>-</sup>  | 2.41 µmol                 | 10              | [53]  |
|                                                                         | MIL-125(Ti)                                    | Visible     |                           |                    | 0                         |                 |       |
| NH2-functionalized linker                                               | MIL-125(Ti)-NH <sub>2</sub>                    |             |                           |                    | 8.14 µmol                 |                 |       |
| NH2-functionalized linker                                               | NH2-UiO-66(Zr)                                 | Visible     | MeCN/TEOA                 | HCOO <sup>-</sup>  | 13.2 µmol                 | 10              | [93]  |
|                                                                         | (NH <sub>2</sub> ) <sub>2</sub> -UiO-66(Zr)    |             |                           |                    | 20.7 µmol                 |                 |       |
| NH <sub>2</sub> -modified with partial Ti cation substitution           | NH <sub>2</sub> -UiO-66(Zr/Ti)                 | Visible     | MeCN/TEOA BNAH            | HC00 <sup>-</sup>  | 22.23 µmol                | 6               | [94]  |
|                                                                         | (NH <sub>2</sub> ) <sub>2</sub> -UiO-66(Zr/Ti) |             |                           |                    | 31.57±1.64 µmol           |                 |       |
| I                                                                       | MIL-101(Fe)                                    | Visible     | MeCN/TEOA                 | HC00 <sup>-</sup>  | 59.0 µmol                 | 8               | [95]  |
| NH2-functionalized linker                                               | MIL-101(Fe)-NH <sub>2</sub>                    |             |                           |                    | 178 µmol                  |                 |       |
|                                                                         | MIL-53(Fe)                                     |             |                           |                    | 29.7 µmol                 |                 |       |
| NH2-functionalized linker                                               | MIL-53(Fe)-NH <sub>2</sub>                     |             |                           |                    | 46.5 µmol                 |                 |       |
| 1                                                                       | MIL-88B(Fe)                                    |             |                           |                    | 9.0 µmol                  |                 |       |
| NH <sub>2</sub> -modified with partial metal ion substitution           | MIL-88B(Fe)-NH <sub>2</sub>                    |             |                           |                    | 30 µmol                   |                 |       |
| NH <sub>2</sub> -modified with partial Ti cation substitution           | NH <sub>2</sub> -UiO-66(Zr/Ti)                 | Visible     | MeCN/TEOA                 | HC00 <sup>-</sup>  | 3.4 mmol/mol              | 10              | [96]  |
|                                                                         | NH <sub>2</sub> -UiO-66(Zr/Ti)-100-4           |             |                           |                    | 4.2 mmol/mol              |                 |       |
|                                                                         | NH <sub>2</sub> -UiO-66(Zr/Ti)-120-16          |             |                           |                    | 5.8 mmol/mol              |                 |       |
| Porphyrin- functionalized linker                                        | Rh-PMOF-1(Zr)                                  | Visible     | MeCN/TEOA                 | HCOO <sup>-</sup>  | 6.1 µmol/µmol             | 18              | [67]  |
| Porphyrin- functionalized linker                                        | Zn/PMOF                                        | UV-visible  | H <sub>2</sub> O vapor    | $\mathrm{CH}_4$    | 10.43 µmol                | 4               | [86]  |
| Porphyrin- functionalized linker                                        | Al/PMOF                                        | Visible     | H <sub>2</sub> O/TEOA     | CH <sub>3</sub> OH | 37.5 ppm/(g·h)            | I               | [66]  |
| Porphyrin- functionalized linker<br>with partial Cu cation substitution | Cu-Al/PMOF                                     |             |                           |                    | 262.6 ppm/(g·h)           |                 |       |
| Porphyrin- functionalized linker                                        | MOF-525                                        | Visible     | MeCN/TEOA                 | CO                 | 64.02 μmol/(g·h)          | 6               | [100] |
|                                                                         |                                                |             |                           | $CH_4$             | 6.2 µmol /(g·h)           |                 |       |

224

# Front. Energy 2019, 13(2): 221-250

|                                                                    |                                                                                                       |             |                           |                   |                           | (Conti          | ned)  |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------|---------------------------|-------------------|---------------------------|-----------------|-------|
| Functionalization                                                  | MOF                                                                                                   | Irradiation | Solvent/sacrificial agent | Main product      | Photocatalytic reactivity | Reaction time/h | Ref.  |
| Porphyrin- functionalized linker<br>with<br>embedded<br>Zn cations | MOF-525-Zn                                                                                            |             |                           | CO                | 111.7 µmol /(g·h)         |                 |       |
|                                                                    |                                                                                                       |             |                           | $CH_4$            | 11.64 µmol/(g·h)          |                 |       |
| Porphyrin- functionalized linker<br>with<br>embedded<br>Co cations | MOF-525-Co                                                                                            |             |                           | CO                | 200.6 µmol /(g·h)         |                 |       |
|                                                                    |                                                                                                       |             |                           | $CH_4$            | 36.76 µmol/(g·h)          |                 |       |
| Porphyrin- functionalized linker                                   | PCN-222                                                                                               | Visible     | MeCN/TEOA                 | HC00 <sup>-</sup> | 30 µmol                   | 10              | [101] |
| Photosensitizer functionalization                                  | Eu-Ru(phen) <sub>3</sub> -MOF                                                                         | Visible     | MeCN/TEA                  | HC00 <sup>-</sup> | 47 µmol                   | 10              | [102] |
| Photosensitizer functionalization                                  | UiO-67-Re <sup>1</sup> (CO) <sub>3</sub> (5,5'-dcbpy)Cl                                               | Visible     | MeCN/TEA                  | CO                | TON = 5.0                 | 9               | [103] |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 0.5                 |                 |       |
|                                                                    |                                                                                                       |             |                           | CO                | TON = 10.9                | 20              |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 2.5                 |                 |       |
| I                                                                  | Re <sup>I</sup> (CO) <sub>3</sub> (5,5'-dcbpy)Cl                                                      |             |                           | CO                | TON = 5.6                 | 9               |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 0.3                 |                 |       |
|                                                                    |                                                                                                       |             |                           | CO                | TON = 7.0                 | 20              |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 1.0                 |                 |       |
| Photosensitizer functionalization                                  | $\mathrm{Zr}_6(\mathrm{O})_4(\mathrm{OH})_4[\mathrm{Re}(\mathrm{CO})_3\mathrm{Cl}(\mathrm{bpydb})]_6$ | Visible     | MeCN/TEA                  | CO                | TON = 6.44                | 9               | [104] |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 0.40                | 9               |       |
| Photosensitizer functionalization                                  | UiO-67-Re <sup>I</sup> (CO) <sub>3</sub> (5,5'-dcbpy)Cl                                               | Visible     | TEA                       | CO                | 0.5 µmol/(g·h)            | 9               | [52]  |
|                                                                    | UiO-67-Re <sup>1</sup> (CO) <sub>3</sub> (5,5'-dcbpy)Cl <sup>-</sup> NH <sub>2</sub><br>(33% (mol))   |             |                           | CO                | 1.5 µmol/(g·h)            | 9               |       |
| Photosensitizer functionalization                                  | UiO-67-Cp*Rh(5,5'- dcbpy)Cl <sub>2</sub> (10%)                                                        | Visible     | ACN/TEOA                  | HC00 <sup>-</sup> | TON = 47                  | 10              | [105] |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 36                  |                 |       |
| I                                                                  | Cp*Rh(5,5'- dcbpy)Cl <sub>2</sub>                                                                     |             |                           | HC00 <sup>-</sup> | TON = 42                  |                 |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 38                  |                 |       |
| I                                                                  | [Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub>                                                                |             |                           | HC00 <sup>-</sup> | TON = 125                 |                 |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | TON = 55                  |                 |       |
| Photosensitizer functionalization                                  | MOF-253-Ru(CO) <sub>2</sub> Cl <sub>2</sub>                                                           | Visible     | MeCN/TEOA                 | HC00 <sup>-</sup> | 0.67 µmol                 | 8               | [106] |
|                                                                    |                                                                                                       |             |                           | CO                | 1.86 µmol                 |                 |       |
|                                                                    |                                                                                                       |             |                           | $\mathrm{H}_2$    | lomu 0.09                 |                 |       |

# Lei ZHANG et al. Metal-organic frameworks for $\mathrm{CO}_2$ photoreduction

225

|                                                                                                     |                                                                                                    |                                          |                                                                      |                                                 |                                                                   | (Conti                                       | inued)                    |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|---------------------------|
| Functionalization                                                                                   | MOF                                                                                                | Irradiation                              | Solvent/sacrificial agent                                            | Main product                                    | Photocatalytic reactivity                                         | Reaction time/h                              | Ref.                      |
|                                                                                                     | Ru(bpy) <sub>2</sub> Cl <sub>2</sub> - sensitized MOF-253-Ru<br>(CO) <sub>2</sub> Cl <sub>2</sub>  |                                          |                                                                      | HC00 <sup>-</sup>                               | 4.84 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | CO                                              | 1.85 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | $\mathrm{H}_2$                                  | 0.72 µmol                                                         |                                              |                           |
|                                                                                                     | MOF-253-Ru(bpy) <sub>2</sub><br>Cl <sub>2</sub>                                                    |                                          |                                                                      | HC00 <sup>-</sup>                               | 0.46 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | CO                                              | 0.21 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | $\mathrm{H}_2$                                  | 0.07 µmol                                                         |                                              |                           |
| I                                                                                                   | $Ru(bpy)_2Cl_2$                                                                                    |                                          |                                                                      | HCOO <sup>-</sup>                               | 0.27 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | CO                                              | 0.18 µmol                                                         |                                              |                           |
|                                                                                                     |                                                                                                    |                                          |                                                                      | $\mathrm{H}_2$                                  | 0 µmol                                                            |                                              |                           |
| Photosensitizer functionalization                                                                   | Y[Ir(ppy) <sub>2</sub> (4,4'-dcbpy)] <sub>2</sub> [OH]                                             | Visible                                  | MeCN/TEOA                                                            | HCOO <sup>-</sup>                               | 118.8 µmol/(g·h)                                                  | 9                                            | [107]                     |
| Photosensitizer functionalization                                                                   | [Cd <sub>2</sub> [Ru(4,4'-dcbpy) <sub>3</sub> ] · 12H <sub>2</sub> O] <sub>n</sub> nano-<br>flower | Visible                                  | MeCN/TEOA                                                            | HC00 <sup>-</sup>                               | 77.2 µmol/(g·h)                                                   | ∞                                            | [108]                     |
|                                                                                                     | [Cd <sub>2</sub> [Ru(4,4'-dcbpy) <sub>3</sub> ] · 12H <sub>2</sub> O] <sub>n</sub> micro-<br>flake |                                          |                                                                      |                                                 | 52.7 µmol/(g·h)                                                   |                                              |                           |
|                                                                                                     | [Cd <sub>2</sub> [Ru(4,4'-dcbpy) <sub>3</sub> ] · 12H <sub>2</sub> O], bulk<br>crystals            |                                          |                                                                      |                                                 | 30.6 µmol/(g·h)                                                   |                                              |                           |
| Photosensitizer functionalization                                                                   | $[Cd_{3}[Ru(5,5'-dcbpy)_{3}]_{2} \cdot 2(Me_{2}NH_{2})]_{n}$                                       | Visible                                  | MeCN/TEOA                                                            | HCOO <sup>-</sup>                               | 67.5 µmol/(g·h)                                                   | 9                                            | [109]                     |
|                                                                                                     | [Cd[Ru(bpy)(4,4'-dcbpy)_2] · 3H <sub>2</sub> O] <sub>n</sub>                                       |                                          |                                                                      |                                                 | 71.7 µmol/(g·h)                                                   |                                              |                           |
| Catechol- functionalized linker                                                                     | UiO-66-Cr <sup>III</sup> catbdc                                                                    | Visible                                  | MeCN/TEOA/BNAH                                                       | HCOO <sup>-</sup>                               | $TON = 11.22 \pm 0.37$                                            | 9                                            | [110]                     |
|                                                                                                     | UiO-66-Ga <sup>III</sup> catbdc                                                                    |                                          |                                                                      |                                                 | $TON = 6.14 \pm 0.22$                                             |                                              |                           |
| Anthracene- functionalized linker                                                                   | NNU-28                                                                                             | Visible                                  | MeCN/TEOA                                                            | HC00 <sup>-</sup>                               | 183.3 µmol/(h·mmol)                                               | 10                                           | [111]                     |
| Notes: ACN-acetonitrile; BNAH-<br>trimethylamine; TEOA-triethanola<br>bipyridine-4,4*-dicarboxylate | l-benzyl-1,4-dihydronicotinamide; bpy-2,2'-<br>mine; TONtotal turnover number; 5,3'-di             | -bipyridine; catbd<br>lcbpy-2,2'-bipyrid | c-2,3-dihydroxyterephthalic acic<br>ine-5,5'-dicarboxylic acid; bpy, | l; Cp*-pentamethylcy<br>db-4,4'-(2,2'-bipyridin | clopentadiene; MeCN-acetonitri<br>e-5,5'-diyl)dibenzoate; ppy-2-p | ile; phen-phenanthrc<br>henylpyridine; 4,4'- | line; TEA-<br>dcbpy-2,2'- |

226

# Front. Energy 2019, 13(2): 221-250

UiO-66(Zr/Ti)-120-16, but still higher than that over the pristine NH<sub>2</sub>-UiO-66(Zr). The enhancement in photocatalytic performance over Ti-substituted NH<sub>2</sub>-UiO-66(Zr/Ti) MOFs is associated with the increase in CO<sub>2</sub> adsorption capacity and photocatalytic sites, both of which result from Ti doped into Zr-O clusters of NH<sub>2</sub>-UiO-66(Zr). Based on the experimental observations and theoretical studies, the mechanism for enhanced photocatalytic reactions over  $NH_2$ -UiO-66(Zr/Ti) is proposed (see Fig. 1(b)). When  $Zr^{4+}$ centers in  $Zr_6O_4(OH)_4$  are partially substituted by  $Ti^{4+}$  to form (Ti/Zr)<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>, the excited NH<sub>2</sub>-BDC upon visible light irradiation can transfer electrons to either Zr<sup>4+</sup> or Ti<sup>4+</sup> centers. The theoretical calculations show that there is a higher probability for electrons to be transferred to Ti<sup>4+</sup> than that to  $Zr^{4+}$  centers, leading to the formation of  $(Ti^{3+}/$  $Zr^{4+})_6O_4(OH)_4$  SBUs. The  $T\bar{i}^{3+}$  in the excited  $(Ti^{3+}/$  $Zr^{4+}$  )<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub> SBUs can play a role of electron donor to donate electrons to Zr<sup>4+</sup>, leading to Ti<sup>4+</sup>-O-Zr<sup>3+</sup> formation. As a result, the substituted Ti center in NH<sub>2</sub>-UiO-66 (Zr/Ti) facilitates the interfacial charge transfer from the excited NH2-BDC to Zr-O clusters, which boosts the enhanced photocatalytic reactions over NH<sub>2</sub>-UiO-66(Zr/ Ti).



Fig. 1 Enhanced photoreduction of  $CO_2$  over  $NH_2$ -UiO-66(Zr) induced by Ti substitution and the proposed  $CO_2$  photoreduction mechanism

(a) Amount of HCOO<sup>-</sup> produced over different samples as a function of light irradiation time; (b) proposed mechanism for the  $CO_2$  photoreduction over NH<sub>2</sub>-UiO-66(Zr/Ti) (Reproduced with permission from Ref. [96]. Copyright 2015, Royal Society of Chemistry)

Recently, Fe-based MOFs as photocatalysts for  $CO_2$  reduction have attracted much interest owing to the fact

that the Fe-O clusters can be directly photoexcited to induce electron transfer from O<sup>2-</sup> to Fe<sup>3+</sup> to form Fe<sup>2+</sup> under visible light irradiation, which drives the photocatalytic reaction [95,118]. Since the Fe sites play a role of photocatalytic centers, Fe-based MOFs are capable of photocatalytically reducing CO<sub>2</sub> under visible light irradiation in the absence of LMCT. Wang et al. reported a series of Fe-based MOFs, MIL-101(Fe), MIL-53(Fe), MIL-88B(Fe), all of which had a photocatalytic activity for CO<sub>2</sub> reduction to produce HCOO<sup>-</sup> under visible light irradiation [95]. It showed that the photocatalytic activity of MIL-101(Fe), MIL-53(Fe) and MIL-88B(Fe) toward CO<sub>2</sub> conversion into HCOO<sup>-</sup> in MeCN solvent with TEOA as a sacrificial reactant was 59.0, 29.7, and 9.0 µmol, respectively, after visible light irradiation for 8 h. Of the three investigated Fe-based MOFs, MIL-101(Fe) had the best photocatalytic performance attributing to the existence of the unsaturated Fe sites in its structure that were absent in MIL-53(Fe) and MIL-88B(Fe). MIL-53(Fe) had a better activity than MIL-88B(Fe) attributing to its higher CO<sub>2</sub> adsorption capacity (13.5 g/cm<sup>3</sup>) than MIL-88B(Fe) (10.4 g/cm<sup>3</sup>) which might be ascribed to its one dimensional framework structure which possessed a better electroconductivity. The photocatalytic activities of the three Febased MOFs were enhanced by amine functionalization. The HCOO<sup>-</sup> yield of 178, 46.5, and 30 µmol was produced over NH<sub>2</sub>-MIL-101(Fe), NH<sub>2</sub>-MIL-53(Fe), and NH<sub>2</sub>-MIL-88B(Fe), respectively, under the same photocatalytic conditions, which were higher in comparison to the parent Fe-MOFs. This photocatalytic activity enhancement is caused by the existence of the dual excitation pathways: excitation of NH<sub>2</sub>-functionalized organic ligands to transfer electrons to the Fe center in addition to the direct excitation of Fe-O clusters (see Fig. 2).



Fig. 2 Proposed  $CO_2$  photoreduction through the dual excitation pathways over amino-functionalized Fe-based MOFs (Reproduced with permission from Ref. [95]. Copyright 2014, American Chemical Society)

#### 2.2 Modification of organic linkers

Functionalization of organic linkers has been considered as an effective approach to increase the absorption of light and decrease the recombination rate of the photo-generated charge carriers and consequently to improve the photocatalytic reduction of  $CO_2$ . To date, several different organic linker functionalization strategies have been developed for enhancing the photocatalytic performance of MOFs toward  $CO_2$  reduction under light illumination, including amine functionalization, utilization of porphyrinbased organic linkers, and photosensitizer functionalization.

#### 2.2.1 Amine functionalization

Studies have shown that amine groups incorporated into the organic linkers in MOFs contribute to the CO<sub>2</sub> adsorption capacity enhancement, adsorption region broadening, and CO<sub>2</sub> photoreduction performance boost. The introduction of amine groups into aromatic polycarboxylates in MOFs can increase the interactions between CO<sub>2</sub> molecules and the modified linkers [119]. The CO<sub>2</sub> photoreduction improvement is attributed to the lone pair of electrons in amine groups, which can interact with the  $\pi^*$ -orbitals of the benzene ring, leading to the donation of electrons to the anti-bonding orbitals. This interaction enables the formation of a new higher energy HOMO level, which leads to a broader optical absorption region and consequently enhanced CO<sub>2</sub> photoreduction [69].

In 2012, Li and coworkers [53], for the first time, prepared an amino-functionalized MOF, NH<sub>2</sub>-MIL-125 (Ti), and examined CO<sub>2</sub> adsorption and photoreduction under visible light irradiation. NH<sub>2</sub>-MIL-125(Ti) had a higher CO<sub>2</sub> adsorption capacity (132.2 cm<sup>3</sup>/g) in comparison to that of MIL-125(Ti) (98.6 cm<sup>3</sup>/g) due to the increased interaction between CO<sub>2</sub> molecules and the amine-modified linkers. Moreover, amine functionalization led to a broader adsorption range of 550 nm for NH<sub>2</sub>-MIL-125(Ti) compared to MIL-125(Ti) with an adsorption range of 350 nm (see Fig. 3(a)). Photoreduction of CO<sub>2</sub> over NH<sub>2</sub>-MIL-125(Ti) was performed in MeCN solvent

with TEOA as an electron donor. After visible light irradiation for 10 h, 8.14 µmol of HCOO<sup>-</sup> was obtained, which was much higher than that of MIL-125(Ti) with no yield. The photocatalytic mechanism is proposed as follows (see Fig. 3(b)): under visible light irradiation, electrons are transferred from organic linkers to Ti<sup>4+</sup> cations, and Ti<sup>4+</sup> cations are reduced to Ti<sup>3+</sup> by TEOA acting as an electron donor, leading to the formation of a long-lived excited charge separation. Ti<sup>3+</sup> cations subsequently reduce CO<sub>2</sub> to HCOO<sup>-</sup>. In 2013, the same research group (Li and coworkers) [93] developed another aminofunctionalized MOF, NH2-UiO-66(Zr), and found that it had a higher activity for CO<sub>2</sub> photoreduction than previously reported NH<sub>2</sub>-MIL-125(Ti) in the presence of TEOA as a sacrificial agent. Similar to previous reports, substitution of the organic linker in UiO-66(Zr) by NH<sub>2</sub>-BDC led to a broader optical absorption range of NH<sub>2</sub>-UiO-66(Zr) due to the increased interaction between the NH<sub>2</sub>-BDC linker and the Zr-O clusters. CO<sub>2</sub> uptake of NH<sub>2</sub>-UiO-66(Zr) (68 cm<sup>3</sup>/g) was also improved in comparison to the parent UiO-66(Zr) (53 cm<sup>3</sup>/g) owing to the enhanced interactions of the NH<sub>2</sub> functional groups with the CO<sub>2</sub> molecules [119,120]. After visible light irradiation over NH2-UiO-66(Zr) for 10 h, 13.2 µmol of HCOO<sup>-</sup> was produced. Partial substitution of the organic linker NH<sub>2</sub>-BDC by (NH<sub>2</sub>)<sub>2</sub>-BDC in NH<sub>2</sub>-UiO-66(Zr) further improved its CO<sub>2</sub> photoreduction activity, which gave 20.7 µmol of HCOO<sup>-</sup> under the same conditions as over NH<sub>2</sub>-UiO-66(Zr) (Fig. 4). The improvement in CO<sub>2</sub> photocatalytic reduction over the mixed NH<sub>2</sub>-UiO-66(Zr) is attributed to enhanced light absorption in the visible region and increased CO<sub>2</sub> adsorption (71 cm<sup>3</sup>/g). Similar results were reported by Cohen and coworkers [94] who investigated the CO<sub>2</sub> photocatalytic reduction performance over (NH<sub>2</sub>)<sub>2</sub>-UiO-66(Zr) and (NH<sub>2</sub>)<sub>2</sub>-UiO-66(Zr/Ti) prepared by the introduction of diamine-substituted ligands into (NH<sub>2</sub>)-UiO-66(Zr) and (NH<sub>2</sub>)-UiO-66(Zr/Ti), respectively. It was found that an increase of the amino group



Fig. 3 Enhanced visible light absorption in  $NH_2$ -MIL-125(Ti) induced by amino functionality and the proposed  $CO_2$  photoreduction mechanism

(a) UV-visible spectra of i) MIL-125(Ti) and ii) NH<sub>2</sub>-MIL-125(Ti) (The inset shows the samples of i) MIL-125(Ti) and ii) NH<sub>2</sub>-MIL-125(Ti).); (b) proposed CO<sub>2</sub> photoreduction mechanism over NH<sub>2</sub>-MIL-125(Ti) under visible light irradiation (Reproduced with permission from Ref. [53].)



Fig. 4 Amount of  $HCOO^-$  produced over  $NH_2$ -UiO-66(Zr) and mixed  $NH_2$ -UiO-66(Zr) as a function of light irradiation time (Reproduced with permission from Ref. [93]. Copyright 2013, Wiley)

number introduced new energy levels for additional light absorption and charge transfer, leading to enhancement in photocatalytic activities.

### 2.2.2 Utilization of porphyrin-based organic linkers

Porphyrins have complex cyclic structures consisting of four pyrrole rings linked to each other by methine groups. Due to their strong interactions with  $CO_2$ , high light adsorption efficiency and catalytic performance, porphyrin-based organic linkers have been incorporated into MOFs for  $CO_2$  photoreduction.

Su and coworkers [97] prepared a rhodium(III)porphyrin zirconium MOF (Rh-PMOF-1(Zr)) using a Rh-based metalloporphyrin tetracarboxylic ligand Rh (TCPP)Cl (TCPP = tetrakis(4-carboxyphenyl) porphyrin) and ZrCl<sub>4</sub>. The CO<sub>2</sub> adsorption and photoreduction over Rh-PMOF-1(Zr) were examined. Rh-PMOF-1(Zr) had a high CO<sub>2</sub> adsorption capacity of 53 cm<sup>3</sup>/g at 298 K. After visible-light irradiation for 18 h, the yield of HCOOreached  $6.1 \ \mu mol/\mu mol_{cat}$ . This showed that Rh-PMOF-1 (Zr) had a long-lived excited-state under vacuum at 298 K with the lifetime of 207  $\mu$ s, which contributed to the improvement in the photocatalytic activity of Rh-PMOF-1 (Zr). Two catalytic reactions contribute to the  $CO_2$ photocatalytic reduction to the formation of HCOO<sup>-</sup> over Rh-PMOF-1(Zr): ① metalloporphyrin ligand plays a role of an antenna to harvest light, generate electrons, and transfer electrons to the zirconium oxo clusters, reducing  $CO_2$  to HCOO<sup>-</sup>, and 2 the rhodium-porphyrin ligands serve as photocatalytic centers toward CO<sub>2</sub> photoreduction.

Sharifnia and coworkers [98] used TCPP as ligand and  $Zn(NO_3)_2 \cdot 6H_2O$  to prepare a porphyrin-based MOF (Zn/PMOF) and performed photocatalytic reduction of CO<sub>2</sub> over Zn/PMOF in the presence of H<sub>2</sub>O vapor under UV-visible light. After 4 h irradiation, Zn/PMOF had a

 $CO_2$  photoreduction activity with  $CH_4$  formation of 10.43 µmol. Only a small amount of  $CH_4$  (10.77 µmol) was produced by extending the irradiation time to 24 h, which may have been caused by the fact that the intermediate product and/or byproduct formed after 4 h have saturated the active sites.

Huang et al. [99] synthesized two types of porphyrinbased MOFs, Al/PMOF and Cu-Al/PMOF, and compared their CO<sub>2</sub> adsorption capacities and photoreduction of CO<sub>2</sub> toward methanol. Al/PMOF was synthesized using TCPP as organic linker and AlCl<sub>3</sub>·6H<sub>2</sub>O while Cu-Al/PMOF was produced by doping Cu<sup>2+</sup> into Al/PMOF. It showed that Cu<sup>2+</sup> in Cu-Al/PMOF contributed to the enhanced photocatalytic reduction of CO<sub>2</sub>. Cu-Al/PMOF had a higher  $CO_2$  adsorption capacity (277.4 mg/g) than that of Al/PMOF (153.1 mg/g). Moreover, the methanol formation rate over Cu-Al/PMOF (262.6 ppm/( $g \cdot h$ )) was 7 times as high as that of Al/PMOF (37.5 ppm/(g·h)). As demonstrated by in situ Fourier transform infrared (FT-IR) spectra,  $CO_2$  could be chemically adsorbed on the Cu site in Cu-Al/PMOF, where the linear CO<sub>2</sub> molecules would bend, thus lowering the reaction barrier and improving the photocatalytic efficiency.

coworkers [100] prepared MOF-525 Ye and  $(Zr_6O_4(OH)_4(TCPP-H_2)_3)$  by integrating  $Zr_6$  clusters with porphyrin-based organic linkers. MOF-525-Co and MOF-525-Zn were also developed by the introduction of coordinatively unsaturated Co sites and Zn sites into the porphyrin units of MOF-525, respectively. As shown in Fig. 5, both MOF-525-Co (33.6 cm<sup>3</sup>/g) and MOF-525-Zn  $(28.1 \text{ cm}^3/\text{g})$  had a higher CO<sub>2</sub> adsorption capacity than that of pristine MOF-525 (25.3 cm<sup>3</sup>/g) due to the enhanced interaction between CO2 molecules and the introduced open Co and Zn metal sites. CO<sub>2</sub> photoreduction over MOF-525, MOF-525-Co and MOF-525-Zn was performed in the presence of MeCN solvent and TEOA as an electron donor under visible light irradiation for 6 h, and two products, CO and CH<sub>4</sub> were produced. MOF-525-Co had the highest CO evolution rate of 200.6 µmol/(g·h) (yield: 2.42 µmol), and a CH<sub>4</sub> evolution rate of 36.76  $\mu$ mol/(g·h) (yield: 0.42  $\mu$ mol), followed by MOF-525-Zn (CO, 111.7 µmol/(g·h); CH<sub>4</sub>, 11.635 µmol/(g·h)) and MOF-525 (CO, 64.02 µmol/(g·h); CH<sub>4</sub>, 6.2 µmol/(g·h)). The photocatalytic activity enhancement for MOF-525-Co and MOF-525-Zn is partially ascribed to the difference in their charge separation efficiencies. MOF-525-Co and MOF-525-Zn had an enhanced efficiency in charge separation because of the lower energy at Co or Zn site, to which the electrons can be transferred from porphyrin units with a higher easiness. Furthermore, MOF-525-Co had a higher electron transfer efficiency (62.1%) than that of MOF-525-Zn (24.9%). These partially account for the better catalytic activity of MOF-525-Co than that of MOF-525-Zn. In addition, MOF-525-Co had a good stability and a good reproducible photocatalytic activity after three cycles (Fig. 5).



Fig. 5 Effect of metallization on the photocatalytic behavior of MOF-525

(a) Evolution rate of CO; (b) evolution rate of CH<sub>4</sub> over MOF-525-Co (green), MOF-525-Zn (orange), MOF-525 (purple) photocatalysts, and  $H_6$ TCPP ligand (pink) as a function of reaction time; (c) enhancement of production evolution over MOF-525-Co (green), MOF-525-Zn (orange), and MOF-525-Zn (purple); (d) production yield of CO (green) and CH<sub>4</sub> (orange) over MOF-525-Co photocatalyst as a function of cycling runs (Reproduced with permission from Ref. [100]. Copyright 2016, Wiley)

Xu et al. [101] prepared a zirconium-porphyrin MOF. PCN-222 (also named as MOF-545 or MMPF-6), by employing zirconium (IV) chloride and TCPP as ligand. PCN-222 had a CO<sub>2</sub> uptake of 35 cm<sup>3</sup>/g at 298 K and 1 atm. Photocatalytic reduction of CO<sub>2</sub> over PCN-222 was performed in MeCN as solvent and TEOA as a sacrificial agent. After visible light irradiation for 10 h, HCOO<sup>-</sup> was produced with a yield of 30 µmol, which was much higher than that observed over the TCPP ligand alone (2.4 µmol), as shown in Fig. 6. It is proposed that upon irradiation, the TCPP in PCN-222 acts as an antenna to harvest visible light, generate electron-hole pairs, and transfer electrons to the Zr-oxo clusters toward CO<sub>2</sub> reduction to HCOO<sup>-</sup> in the presence of TEOA as the electron donor. Two factors contribute to the enhancement in photocatalytic performance of PCN-222: (1) the high CO<sub>2</sub> adsorption capacity of PCN-222 might enable higher interaction with CO<sub>2</sub> in MeCN, thereby promoting the photocatalytic reaction, and (2) the ultrafast transient absorption and photoluminescence spectroscopy reveals that the emergence of an extremely long-lived electron trap state in PCN-222 significantly suppresses the electron-hole recombination, thus enhancing the CO<sub>2</sub> photoreduction efficiency.

### 2.2.3 Photosensitizer functionalization

Photosensitizers are able to harvest light to generate electron-hole pairs and act as catalyst sites for  $CO_2$  photoreduction. Photoactive metal complexes, such as Ru, Re, and Ir-based polypyridine units, have been widely used to functionalize MOFs to enhance their  $CO_2$  photocatalytic reaction activities by introducing catalytic active centers and photosensitive sites for visible light harvesting [121–123].

Yan et al. [102] produced an Eu-Ru(phen)<sub>3</sub>-MOF (phen = phenanthroline) by integrating the triangular Ru(phen)<sub>3</sub>-derived tricarboxylate ligand as photosensitizer into Eu-MOF with Eu(III)<sub>2</sub>( $\mu_2$ -H<sub>2</sub>O) SBUs. Transient absorption results and theoretical calculations showed that photo-excitation of the Ru metalloligands in Eu-Ru(phen)<sub>3</sub>-MOF initiated electron transfer into the nodes to generate dinuclear [Eu(II)]<sub>2</sub> active sites, which selectively converted CO<sub>2</sub> to HCOO<sup>-</sup> with a yield of 47 µmol in 10 h in the presence of MeCN and TEOA under visible light irradiation. This was higher than that observed over the Ru (phen)<sub>3</sub>-derived tricarboxylate acid metalloligand alone under the same condition.



**Fig. 6** Left: Amount of HCOO<sup>-</sup> produced as a function of visible light irradiation time over PCN-222 (a), H<sub>2</sub>TCPP (b), no PCN-222 (c), no TEOA (d), and no CO<sub>2</sub> (e). Right: <sup>13</sup>C Nuclear magnetic resonance (NMR) spectra for the product obtained from reaction with <sup>13</sup>CO<sub>2</sub> (a) or <sup>12</sup>CO<sub>2</sub> (b) (Reproduced with permission from Ref. [101]. Copyright 2015, American Chemical Society)

Lin and coworkers [103] incorporated Re<sup>I</sup>(CO)<sub>3</sub>(5,5'dcbpy)Cl (at 4 wt% doping level, 5,5'-dcbpy = 2,2'bipyridine-5,5'-dicarboxylic acid) into the UiO-67 framework built from  $Zr_6(\mu_3-O)_4(\mu_3-OH)_4$  SBUs and BPDC ligands, and tested the photocatalytic reduction of CO<sub>2</sub> in MeCN solvent and trimethylamine (TEA) as a sacrificial agent under visible light. The total turnover number (TON) of CO and H<sub>2</sub> over the as-doped UiO-67 reached 5.0 and 0.5, respectively, under visible light irradiation of 6 h. After 20 h, CO-TON and H<sub>2</sub>-TON reached 10.9 and 2.5, respectively, which were higher than that observed for the bare  $\text{Re}^{I}(\text{CO})_{3}(5,5'-\text{dcbpy})\text{Cl}$  (CO-TON = 7.0, H<sub>2</sub>-TON = 1.0) under the same condition because of the decomposition of  $\text{Re}^{I}(\text{CO})_{3}(5,5'-\text{dcbpy})\text{Cl}$  under irradiation. This enhanced TON is proposed to be associated with the stabilization effect of the active-site isolation of the immobilized Re-based catalysts in the framework. Lately, the same group produced another photosensitizer-functionalized MOF, Zr<sub>6</sub>(O)<sub>4</sub>(OH)<sub>4</sub>[Re(CO)<sub>3</sub>Cl(bpydb)]<sub>6</sub>(MOF-1), by integrating the elongated linear (bpy)Re  $(CO)_3Cl$ -containing dicarboxylate ligand (bpydb = 4,4'-(2,2'-bipyridine-5,5'-diyl)dibenzoate; bpy = 2,2'-bipyridine) with  $Zr_6(\mu_3-O)_4(\mu_3-OH)_4$  SBUs (Fig. 7) [104]. Under the same experimental condition as described above, CO-TON and H2-TON reached 6.44 and 0.4 in 6 h, respectively, which were higher than those of the homogeneous counterpart (CO-TON = 1.12 and H<sub>2</sub>-TON 0.18). Ryu et al. [52] embedded Re<sup>I</sup>(CO)<sub>3</sub>(5,5'-dcbpy)Cl and amine (-NH<sub>2</sub>) functional group within UiO-67 (denoted as Re-MOF-NH<sub>2</sub>) and varied the ratio of the-NH<sub>2</sub> functional groups from 0 to 80 mol%. Photocatalytic CO<sub>2</sub> conversion was performed in the presence of TEA under visible light. The results showed that Re-MOF-NH<sub>2</sub> incorporated with 33 mol% of -NH<sub>2</sub> functional groups had the highest photocatalytic CO<sub>2</sub> conversion rate (1.5  $\mu$ mol/(g·h)) to CO, which was three times as that observed for Re-MOF without -NH2 incorporation

(0.5  $\mu$ mol/(g·h)). The enhancement in photocatalytic activity is caused by the induced different bond lengths for Re-CO in Re<sup>I</sup>(CO)<sub>3</sub>(5,5'-dcbpy)Cl by the incorporation of -NH<sub>2</sub> functional groups, which endows the intermolecular stabilization of carbamate with CO<sub>2</sub>, thus boosting the photocatalytic activity. Fontecave and coworkers [105] functionalized UiO-67 MOF by replacing 5%–35% of BPDC linkers with Cp\*Rh(5,5'-bpydb)Cl<sub>2</sub> (Cp\* = pentamethylcyclopentadiene) (named as Cp\*Rh@UiO-67). Under visible light irradiation for 10 h in the presence of acetonitrile (ACN) and TEOA, HCOO<sup>-</sup>-TON and H<sub>2</sub>-TON of 10%-Cp\*Rh@UiO-67 reached 47 and 36, respectively, with [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> as a photosensitizer.

Li and coworkers [106] incorporated Ru(CO)<sub>2</sub>Cl<sub>2</sub> into MOF-253 (Al(OH)(5,5'-dcbpy)), named as MOF-253-Ru  $(CO)_2Cl_2$ , and enhanced the  $CO_2$  photoreduction by producing 0.67 µmol of HCOO<sup>-</sup>, 1.86 µmol of CO as well as 0.09 µmol H<sub>2</sub> after irradiation under visible light for 8 h in MeCN and TEOA, whereas no products were detected over pristine MOF-253 under the same condition. The performance of MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub> was further improved via photosensitizer (Ru(bpy)<sub>2</sub>Cl<sub>2</sub>) functionalization, by enhancing the light absorption in the visible light region. The HCOO<sup>-</sup>, CO, and H<sub>2</sub> produced in 8 h over sensitized MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub> (Ru(bpy)<sub>2</sub>Cl<sub>2</sub>/Ru-complex was 1: 2) was 4.84, 1.85, and 0.72 µmol, respectively, which was much higher than those observed over the nonsensitized MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub> under the same condition. In the sensitized MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub>, Ru(CO)<sub>2</sub>Cl<sub>2</sub> reacted with the surface N,N-chelated sites to form MOF-253-supported Ru(bpy)<sub>2</sub>(X<sub>2</sub>bpy)<sup>2+</sup>, which extended the light absorption edge to 630 nm, wider than that of MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub> (470 nm), thus promoting the photocatalytic CO<sub>2</sub> reduction. However, a decrease in the photoreactivity of the sensitized MOF-253-Ru(CO)<sub>2</sub>Cl<sub>2</sub> was observed with increasing the amount of the photosensitizer Ru(bpy)<sub>2</sub>Cl<sub>2</sub>, which might be attributed to the pore

simulated from CIF Intensity 10 30 20 40 $2\theta/(\circ)$ (b) (d)

Fig. 7 Crystal structure of Zr<sub>6</sub>(O)<sub>4</sub>(OH)<sub>4</sub>[Re(CO)<sub>3</sub>Cl(bpydb)]<sub>6</sub> (MOF-1) (a) Showing an octahedral cage; (b) showing a tetrahedral cage with SBUs displayed as polygons; (c) as viewed along the [100] direction of the unit cell; (d) X-ray diffraction(XRD) (black) and simulated XRD pattern (red) of MOF-1 (Reproduced with permission from Ref. [104]. Copyright 2016, Wiley)

blocking of MOF-253 by the Ru(bpy)<sub>2</sub>Cl<sub>2</sub>.

Luo and coworkers [107] developed a photocatalytic MOF (Y[Ir(ppy)<sub>2</sub>(4,4'-dcbpy)]<sub>2</sub>[OH]) (Ir-CP, ppy: 2phenylpyridine, 4,4'-dcbpy: 2,2'-bipyridine-4,4'-dicarboxylate) using Y(NO<sub>3</sub>)<sub>3</sub> and Ir(ppy)<sub>2</sub>(Hdcbpy). Photoreduction of CO<sub>2</sub> over Ir-CP was performed in MeCN and TEOA under visible light irradiation. It showed that 38.0 umol HCOO<sup>-</sup> was produced in 6 h, with a product formation rate of 118.8  $\mu$ mol/(g·h). The photocatalytic mechanism is proposed as follows: the [Ir(ppy)<sub>2</sub>(dcbpy)] unit in Ir-CP is excited under visible light and is reductively quenched by TEOA, and the CO<sub>2</sub> molecules are reduced to HCOO<sup>-</sup> by getting electrons from [Ir  $(ppy)_2(dcbpy)$ <sup>2-</sup> units. Lately, the same group [108,109] incorporated Ru-polypyridine complexes into MOF structures as metalloligands and produced a series of photocatalytic MOFs. Ru-MOF, with a chemical formula of  $[Cd_2[Ru(4,4'-dcbpy)_3] \cdot 12H_2O]_n$ , was constructed from  $[Cd_2(CO_2)_6]$  SBUs and  $[Ru(4,4'-dcbpy)_3]^{4-}$  metalloligands [108]. The morphologies of Ru-MOF can be tuned to form nanoflowers, microflakes, and bulk crystals structures by controlling the reactants concentration, as shown in Fig. 8. In the mixture of MeCN/TEOA, Ru-MOF nanoflowers had the highest HCOO<sup>-</sup> formation rate of 77.2  $\mu$ mol/(g·h) under visible light irradiation for 8 h, followed by

microflakes  $(52.7 \,\mu mol/(g \cdot h))$  and bulk crystals  $(30.6 \mu mol/(g \cdot h))$ . The Ru-MOF nanoflowers had a better photocatalytic activity than their bulk counterparts because of their high visible light harvesting and long-lasting excited-state originated from their large surface area (8.08  $m^2/g$ ; microflake: 1.33  $m^2/g$ ) and high energy transfer efficiency. After this work, Luo and coworkers [109] synthesized two Ru-polypyridine-functionalized MOFs,  $[Cd_3[Ru(5,5'-dcbpy)_3]_2 \cdot 2(Me_2NH_2)]_n$  and  $[Cd[Ru(bpy)]_3]_2 \cdot 2(Me_2NH_2)]_n$  $(4,4'-dcbpy)_2] \cdot 3H_2O]_n$ , with non-interpenetrated and interpenetrated structures, respectively. CO<sub>2</sub> photoreduction over the two MOFs was conducted in the presence of MeCN and TEOA under visible light irradiation. It showed that the HCOO<sup>-</sup> production over  $[Cd_3[Ru(5,5'-dcbpy)_3]_2 \cdot 2$  $(Me_2NH_2)]_n$  and  $[Cd[Ru(bpy)(4,4'-dcbpy)_2]\cdot 3H_2O]_n$ reached 16.1 and 17.2 µmol in 6 h (with a production rate of 67.5 and 71.7  $\mu$ mol/(g·h)), respectively. The difference in photocatalytic performance of the two MOFs may have been associated with their structural stabilities.  $[Cd_3[Ru(5,5'udcbpy)_3]_2 \cdot 2(Me_2NH_2)]_n$  has a non-interpenetrated structure in which the porous framework is supported by the coordination between metal ions and organic linkers as well as the interactions between the framework and the guest molecules in the pores. In the photocatalytic process, the exchange of guest molecules







**Fig. 8** Amount of HCOO<sup>-</sup> produced as a function of irradiation time of visible light over (a) nanoflowers, (b) microcrystals, and (c) bulk crystals of the Ru-MOF ( $[Cd_2[Ru(4,4'-dcbpy)_3]\cdot 12H_2O]_n$ ). (d) visible light irradiation without a sample (Inset images (from top to bottom) show nanoflowers, microcrystals and bulk crystals of the Ru-MOF, respectively. Reproduced with permission from Ref. [108]. Copyright 2015, Royal Society of Chemistry)

with the solvent molecules may cause the collapse of structure, leading to the decrease in photocatalytic activity. In contrast,  $[Cd[Ru(bpy)(4,4'-dcbpy)_2] \cdot 3H_2O]_n$  with an interpenetrated structure has a higher structural stability, which endows its better photocatalytic activity than  $[Cd_3[Ru(5,5'-dcbpy)_3]_2 \cdot 2(Me_2NH_2)]_n$ .

In addition to the ligand functionalization strategies discussed as above, catechol- [110] and anthracene-based [111] organic linkers were also utilized to functionalize MOF structures, which all had high photocatalytic performances on  $CO_2$  reduction.

# **3 MOF composite photocatalysts**

MOFs have shown much potential on  $CO_2$  photoreduction thanks to their large surface areas, high  $CO_2$  uptake, as well as tunable structures and optical properties. To further improve the photocatalytic performance of MOFs, photosensitizers, semiconductors, metals and carbon materials have been incorporated into MOF structures to promote photo-generated electrons transfer and charge separation processes. The performances of MOF composites as photocatalysts for  $CO_2$  reduction are summarized in Table 3.

3.1 MOF composites incorporated with photosensitizers

As discussed in Section 2.2.3, metal-complex photosensitizers have been used to functionalize MOFs to enhance the photocatalytic activity. Photosensitizers can also be incorporated into MOFs to produce MOF composites for  $CO_2$  photoreduction.

Ru-based photosensitizer has been incorporated into several MOFs to enhance CO<sub>2</sub> photocatalytic reduction [57-59]. Wang and coworkers [57] investigated the performance of a series of MOFs (Co-ZIF-9, Co-MOF-74, Mn-MOF-74, Zn-ZIF-8, Zr-UiO-66-NH<sub>2</sub>) in conjunction with [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub>·6H<sub>2</sub>O toward CO<sub>2</sub> photocatalytic reduction, where the MOF acts as a co-catalyst and [Ru (bpy)<sub>3</sub>]Cl<sub>2</sub>·6H<sub>2</sub>O acts as a photosensitizer. Photoreduction of CO<sub>2</sub> was performed in MeCN and H<sub>2</sub>O solvent with TEOA as a sacrificial agent. After visible light irradiation for 0.5 h, 41.8 µmol of CO and 29.9 µmol of H<sub>2</sub> were obtained over Co-ZIF-9 incorporated with [Ru(bpy)<sub>3</sub>]  $Cl_2 \cdot 6H_2O$ , which outperformed the counterparts with a lower yield of CO and H<sub>2</sub> under the same condition (as shown in Table 3). Co-ZIF-9 is a microporous cobaltcontaining benzimidazolate MOF. The superior performance of Co-ZIF-9 with regard to CO<sub>2</sub> photocatalytic reduction is a result of the synergetic effect of the imidazolate-based ligand which has a strong interaction with CO<sub>2</sub> molecules for CO<sub>2</sub> adsorption and cobalt with electron-mediating functions. Lately, the same group incorporated  $[Ru(bpy)_3]Cl_2 \cdot 6H_2O$  as a photosensitizer into Co-ZIF-67 acting as a co-catalyst [59]. Under the similar reaction condition, 37 µmol of CO and 13 µmol of  $H_2$  were produced over Co-ZIF-67/[Ru(bpy)\_3]Cl<sub>2</sub>·6H<sub>2</sub>O in 0.5 h under visible light irradiation. This was higher than that observed over Zn-ZIF-8/[Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> $\cdot$ 6H<sub>2</sub>O (1.8 µmol of CO and 2.0 µmol of H<sub>2</sub> production in 0.5 h under the same condition), where the co-catalyst Zn-ZIF-8 has the same organic linker (2-methylimidazole) as Co-ZIF-67 but different metal site (Zn-based). This further confirmed the effect of cobalt on the photocatalytic reaction.

Cohen and coworkers [58] incorporated a photosensiti-

|                                    | nervourd?                                                                                        |             |                                |                   |                           |              |           |  |
|------------------------------------|--------------------------------------------------------------------------------------------------|-------------|--------------------------------|-------------------|---------------------------|--------------|-----------|--|
| Strategy                           | MOF composite                                                                                    | Irradiation | Solvent/<br>sacrificial agent  | Main product      | Photocatalytic reactivity | Reaction tir | ne/h Ref. |  |
| Photosensitizer incorpora-<br>tion | Co-ZIF-9/[Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub> ·6H <sub>2</sub> O                               | Visible     | MeCN/H <sub>2</sub> O/<br>TEOA | CO                | 41.8 µmol                 | 0.5          | [57]      |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 29.9 µmol                 |              |           |  |
|                                    | $Co-MOF-74/[Ru(bpy)_3]Cl_2 \cdot 6H_2O$                                                          |             |                                | CO                | 11.7 µmol                 |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 7.3 µmol                  |              |           |  |
|                                    | Mn-MOF-74/[Ru(bpy) <sub>3</sub> ]Cl <sub>2</sub> ·6H <sub>2</sub> O                              |             |                                | CO                | 1.5 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 2.9 µmol                  |              |           |  |
|                                    | $Zn-ZIF-8/[Ru(bpy)_3]Cl_2\cdot 6H_2O$                                                            |             |                                | CO                | 2.1 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 2.4 µmol                  |              |           |  |
|                                    | $Zr-UiO-66-NH_2/[Ru(bpy)_3]Cl_2 \cdot 6H_2O$                                                     |             |                                | CO                | 1.2 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 2.2 µmol                  |              |           |  |
|                                    | $Co-ZIF-67\ /[Ru(bpy)_3]Cl_2\cdot 6H_2O$                                                         | Visible     | MeCN/H <sub>2</sub> O/TEOA     | CO                | 29.6 µmol (               | 0.5          | [59]      |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 14.8 μmol                 |              |           |  |
|                                    | $Zn-ZIF-9/[Ru(bpy)_3]Cl_2 \cdot 6H_2O$                                                           |             |                                | CO                | 1.8 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 2.0 µmol                  |              |           |  |
|                                    | $Cu-HKUST-1/[Ru(bpy)_3]Cl_2\cdot 6H_2O$                                                          |             |                                | CO                | 1.2 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 1.5 µmol                  |              |           |  |
|                                    | Fe-MIL-101-NH $_2/[Ru(bpy)_3]Cl_2 \cdot 6H_2O$                                                   |             |                                | CO                | 4.7 µmol                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 2.1 µmol                  |              |           |  |
|                                    | $Zr-UiO-66-NH_2/[Ru(bpy)_3]Cl_2 \cdot 6H_2O$                                                     |             |                                | CO                | lomu 0.0                  |              |           |  |
|                                    |                                                                                                  |             |                                | $\mathrm{H}_2$    | 1.2 µmol                  |              |           |  |
| UiC                                | )-67-Mn(5,5' - dcbpy) (CO) <sub>3</sub> Br)/Ru(dmb) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub> | Visible     | DMF/TEOA/ BNAH                 | HC00 <sup>-</sup> | TON = 50                  | 4            | [58]      |  |
|                                    |                                                                                                  |             |                                |                   | TON= 110                  | 18           |           |  |
| 1                                  | UiO-67-Mn(5,5' - dcbpy)(CO) <sub>3</sub> Br) (without a photosensitizer)                         |             |                                |                   | TON = 18                  | 18           |           |  |
|                                    | $Mn(5,5' - dcbpy)(CO)_3Br)/$<br>Ru(dmb) <sub>3</sub> (PF <sub>6</sub> ) <sub>2</sub>             |             |                                |                   | TON = 32                  | 4            |           |  |
|                                    |                                                                                                  |             |                                |                   | TON = 57                  | 18           |           |  |

 Table 3
 Performances of recent photocatalytic MOF composites for CO<sub>2</sub>photoreduction

|                                   |                                                                                     |             |                                                |                                  |                                                  |          | (Continued) |
|-----------------------------------|-------------------------------------------------------------------------------------|-------------|------------------------------------------------|----------------------------------|--------------------------------------------------|----------|-------------|
| Strategy                          | MOF composite                                                                       | Irradiation | Solvent/<br>sacrificial agent                  | Main product                     | Photocatalytic reactivity                        | Reaction | time/h Ref. |
|                                   | $Mn(bpy)(CO)_3Br)/Ru(dmb)_3(PF_6)_2$                                                |             |                                                |                                  | TON = 35                                         | 4        |             |
|                                   |                                                                                     |             |                                                |                                  | TON = 70                                         | 18       |             |
|                                   | $UiO-67-5.5' - dcbpy)/Ru(dmb)_3(PF_6)_2$                                            |             |                                                |                                  | TON = 38                                         | 18       |             |
|                                   | $[Ru(dmb)_3]^{2+}$                                                                  |             |                                                | HC00 <sup>-</sup>                | TON = 33                                         | 18       |             |
| Semiconductor incorpora- ZIF tion | -8/TiO <sub>2</sub> (ZIF-8 growth step on TiO <sub>2</sub> film was repeated twice) | UV          | H <sub>2</sub> O vapor                         | CO                               | 0.53 µmol/(g·h)                                  | S        | [124]       |
|                                   |                                                                                     |             |                                                | $CH_4$                           | 0.18 µmol/(g·h)                                  |          |             |
|                                   | ZIF-8/Ti/TiO2 nanotube                                                              | UV-visible  | Na <sub>2</sub> SO <sub>4</sub><br>(0.1 mol/L) | C <sub>2</sub> H <sub>5</sub> OH | 10 mmol/L                                        | ς        | [125]       |
|                                   |                                                                                     |             |                                                | CH <sub>3</sub> OH               | 0.7 mmol/L                                       |          |             |
| C0-Z                              | $\mathrm{TF}$ -9/TiO_2 (mass ratio of Co-ZIF-9 in composite is 0.03)                | UV-visible  | $H_2O$ vapor                                   | CO                               | 8.79 µmol                                        | 10       | [54]        |
|                                   |                                                                                     |             |                                                | $CH_4$                           | 10mu 0.99                                        |          |             |
|                                   |                                                                                     |             |                                                | $\mathrm{H}_2$                   | 1.30 µmol                                        |          |             |
|                                   | TiO <sub>2</sub>                                                                    |             |                                                | CO                               | 3.58 µmol                                        |          |             |
|                                   |                                                                                     |             |                                                | $CH_4$                           | 0.60 µmol                                        |          |             |
|                                   |                                                                                     |             |                                                | $\mathrm{H}_2$                   | 0.63 µmol                                        |          |             |
|                                   | Co-ZIF-9                                                                            |             |                                                | CO                               | 0                                                |          |             |
|                                   |                                                                                     |             |                                                | $CH_4$                           | 0                                                |          |             |
|                                   |                                                                                     |             |                                                | $\mathrm{H}_2$                   | 0                                                |          |             |
| Phys                              | ical mixture of TiO_2 and Co-ZIF-9 with the mass ratio of $0.03; 0.07$              |             |                                                | CO                               | 3.86 µmol                                        |          |             |
|                                   |                                                                                     |             |                                                | $CH_4$                           | 0.42 µmol                                        |          |             |
|                                   |                                                                                     |             |                                                | ${\rm H}_2$                      | 0.56 µmol                                        |          |             |
|                                   | Cu-BTC/TiO <sub>2</sub>                                                             | N۷          | H <sub>2</sub> O vapor                         | $CH_4$                           | 2.64 $\mu$ mol/(g <sub>TiO2</sub> ·h)            | 4        | [126]       |
|                                   | $TiO_2$                                                                             |             |                                                | $CH_4$                           | $0.52 \ \mu mol/(g_{TiO_2} \cdot h)$             |          |             |
|                                   |                                                                                     |             |                                                | $\mathrm{H}_2$                   | 2.29 $\mu$ mol/(g <sub>TiO<sub>2</sub></sub> ·h) |          |             |
|                                   | Cu-BTC                                                                              |             |                                                | $CH_4$                           | 0                                                |          |             |
|                                   |                                                                                     |             |                                                | $\mathrm{H}_2$                   | 0                                                |          |             |
| Ŭ                                 | u-BTC/TiO <sub>2</sub> (molar ratio of Cu-BTC to TiO <sub>2</sub> is $3.33$ )       | N/A         | CO <sub>2</sub> /H <sub>2</sub> O<br>vapor     | СО                               | 256.38 µmol/(g <sub>TiO2</sub> ·h)               | ×        | [127]       |

| (Continued) | time/h Ref.                     |                                 |        | [128]             |             |                  |             |           |        |                                                                            |             |            | [129]                                     |                                       |                                        |                                        |                  |                         | [130]              |                |               |                |               |                |              |                |                                |                |
|-------------|---------------------------------|---------------------------------|--------|-------------------|-------------|------------------|-------------|-----------|--------|----------------------------------------------------------------------------|-------------|------------|-------------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|------------------|-------------------------|--------------------|----------------|---------------|----------------|---------------|----------------|--------------|----------------|--------------------------------|----------------|
|             | tocatalytic reactivity Reaction | .48 µmol/(g <sub>TiO2</sub> ·h) | 0      | 40.9 µmol/g 10    | 23.5 µmol/g | 22.5 µmol/g      | 13.7 µmol/g | 0         | 0      | 8.5 µmol/g                                                                 | 18.9 µmol/g | 7.1 µmol/g | 3.74 μmol/(g·h)                           | 4.24 µmol/(g·h)                       | 3.37 µmol/(g·h)                        | 2.85 µmol/(g·h)                        | 2.85 µmol/(g·h)  | 1.50 µmol/(g·h)         | 50.4 µmol 1<br>5   | 11.1 µmol      | 39.6 µmol     | 7.7 µmol       | 1.0 µmol      | 2.0 µmol       | 0.6 µmol     | 0.6 µmol       | 0.4 µmol                       | 0.3 µmol       |
|             | Main product Pho                | 11                              |        | CO                | $CH_4$      | CO               | $CH_4$      | CO        | $CH_4$ | $\mathrm{H}_2$                                                             | CO          | $CH_4$     | CO                                        |                                       |                                        |                                        |                  |                         | СО                 | $\mathrm{H}_2$ | CO            | $\mathrm{H}_2$ | CO            | $\mathrm{H}_2$ | CO           | $\mathrm{H}_2$ | CO                             | $\mathrm{H}_2$ |
|             | Solvent/<br>sacrificial agent   |                                 |        | $H_2O$ vapor      |             |                  |             |           |        |                                                                            |             |            | CO <sub>2</sub> /H <sub>2</sub>           |                                       |                                        |                                        |                  |                         | MeCN/H2O /TEOA/bpy |                |               |                |               |                |              |                |                                |                |
|             | Irradiation                     |                                 |        | UV                |             |                  |             |           |        |                                                                            |             |            | UV-visible                                |                                       |                                        |                                        |                  |                         | Visible            |                |               |                |               |                |              |                |                                |                |
|             | MOF composite                   | TiO <sub>2</sub>                | Cu-BTC | $CPO-27-Mg/TiO_2$ |             | TiO <sub>2</sub> |             | CPO-27-Mg |        | Physical mixture of TiO <sub>2</sub> and CPO-27-Mg with the ratio of $6:4$ |             |            | NH2-UiO-66/TiO2 (with 19%(wt) NH2-UiO-66) | NH2-UiO-66/TiO2 (19.5%(wt)NH2-UiO-66) | NH2-UiO-66/TiO2 (24.5%(wt) NH2-UiO-66) | NH2-UiO-66/TiO2 (36.8%(wt) NH2-UiO-66) | TiO <sub>2</sub> | NH <sub>2</sub> -UiO-66 | Co-ZIF-9/CdS       |                | Co-MOF-74/CdS |                | Mn-MOF-74/CdS |                | Zn-ZIF-8/CdS |                | Zr-UiO-66-NH <sub>2</sub> /CdS |                |
|             | Strategy                        |                                 |        |                   |             |                  |             |           |        |                                                                            |             |            |                                           |                                       |                                        |                                        |                  |                         |                    |                |               |                |               |                |              |                |                                |                |

|          |                                                                                                                           |             |                                                   |                    |                           | (Continued)          |   |
|----------|---------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------|--------------------|---------------------------|----------------------|---|
| Strategy | MOF composite                                                                                                             | Irradiation | Solvent/<br>sacrificial agent                     | Main product       | Photocatalytic reactivity | Reaction time/h Ref. | I |
|          | CdS                                                                                                                       |             |                                                   | CO                 | 0.5 µmol                  |                      | 1 |
|          |                                                                                                                           |             |                                                   | $\mathrm{H}_2$     | 0.6 µmol                  |                      |   |
|          | Co-ZIF-9                                                                                                                  |             |                                                   | CO                 | 0                         |                      |   |
|          |                                                                                                                           |             |                                                   | $\mathrm{H}_2$     | 0                         |                      |   |
|          | UiO-66-NH <sub>2</sub> /Cd <sub>0.2</sub> Zn <sub>0.8</sub> S (10%(wt)UiO-66-NH <sub>2</sub> )                            | Visible     | Na <sub>2</sub> S/Na <sub>2</sub> SO <sub>3</sub> | $\mathrm{H}_2$     | 4591.6 µmol/(g·h)         | [55]                 |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 4.1 µmol/(g·h)            |                      |   |
|          | $UiO-66-NH_2/Cd_{0.2}Zn_{0.8}S (20\%(wt)UiO-66-NH_2)$                                                                     |             |                                                   | $\mathrm{H}_2$     | 5846.5 µmol/(g·h)         |                      |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 6.8 µmol/(g·h)            |                      |   |
|          | $UiO-66-NH_2/Cd_{0.2}Zn_{0.8}S$ (30%(wt)UiO-66-NH <sub>2</sub> )                                                          |             |                                                   | $\mathrm{H}_2$     | 5235.9 µmol/(g·h)         |                      |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 5.9 µmol/(g·h)            |                      |   |
|          | UiO-66-NH <sub>2</sub> /Cd <sub>0.2</sub> Zn <sub>0.8</sub> S (40%(wt)UiO-66-NH <sub>2</sub> )                            |             |                                                   | $\mathrm{H}_2$     | 4922.7 µmol/(g·h)         |                      |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 5.3 µmol/(g·h)            |                      |   |
|          | $\mathrm{Cd}_{0.2}\mathrm{Zn}_{0.8}\mathrm{S}$                                                                            |             |                                                   | $\mathrm{H}_2$     | 2804.2 μmol/(g·h)         |                      |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 2.0 µmol/(g·h)            |                      |   |
|          | UiO-66-NH <sub>2</sub>                                                                                                    |             |                                                   | $\mathrm{H}_2$     | 0                         |                      |   |
|          |                                                                                                                           |             |                                                   | CH <sub>3</sub> OH | 0                         |                      |   |
|          | Co-ZIF-9/mesoporous g-C <sub>3</sub> N <sub>4</sub>                                                                       | Visible     | MeCN/H2O /TEOA/bpy                                | CO                 | 20.8 µmol                 | 2 [131]              |   |
|          |                                                                                                                           |             |                                                   | $\mathrm{H}_2$     | 3.3 µmol                  |                      |   |
|          | Co-ZIF-9                                                                                                                  |             |                                                   | CO                 | 0                         |                      |   |
|          |                                                                                                                           |             |                                                   | $\mathrm{H}_2$     | 0                         |                      |   |
|          | $g$ - $C_3N_4$                                                                                                            |             |                                                   | CO                 | 0                         |                      |   |
|          |                                                                                                                           |             |                                                   | $\mathrm{H}_2$     | 0                         |                      |   |
|          | ZIF-8/g-C <sub>3</sub> N <sub>4</sub> nanotubes (molar ratio of g-C <sub>3</sub> N <sub>4</sub> nanotubes to ZIF-8 is 10) | UV-visible  | CO <sub>2</sub> /H <sub>2</sub> O<br>vapor        | CH <sub>3</sub> OH | 0.64 µmol/(g·h)           | 1 [56]               |   |
|          | ZIF-8/g-C <sub>3</sub> N <sub>4</sub> nanotubes (molar ratio of g-C <sub>3</sub> N <sub>4</sub> nanotubes to ZIF-8 is 8)  |             |                                                   |                    | 0.75 µmol/(g·h)           |                      |   |
|          | ZIF-8/g-C <sub>3</sub> N <sub>4</sub> nanotubes (molar ratio of g-C <sub>3</sub> N <sub>4</sub> nanotubes to ZIF-8 is 5)  |             |                                                   |                    | 0.45 µmol/(g·h)           |                      |   |
|          | ZIF-8/g-C <sub>3</sub> N <sub>4</sub> nanotubes (molar ratio of g-C <sub>3</sub> N <sub>4</sub> nanotubes to ZIF-8 is 2)  |             |                                                   |                    | 0.31 µmol/(g·h)           |                      |   |

237

|                     |                                                                                                                          |             |                               |                    |                                                         |                | Continued) |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------|--------------------|---------------------------------------------------------|----------------|------------|
| Strategy            | MOF composite                                                                                                            | Irradiation | Solvent/<br>sacrificial agent | Main product       | Photocatalytic reactivity                               | / Reaction tin | ıe/h Ref.  |
|                     | ZIF-8/g-C <sub>3</sub> N <sub>4</sub> nanotubes (molar ratio of g-C <sub>3</sub> N <sub>4</sub> nanotubes to ZIF-8 is 1) |             |                               |                    | 0.16 µmol/(g·h)                                         |                |            |
|                     | $g-C_3N_4$ nanotubes                                                                                                     |             |                               |                    | 0.49 µmol/(g·h)                                         |                |            |
|                     | Bulk g-C <sub>3</sub> N <sub>4</sub>                                                                                     |             |                               |                    | 0.24 µmol/(g·h)                                         |                |            |
|                     | ZIF-8 nanocrystals                                                                                                       |             |                               |                    | 0                                                       |                |            |
|                     | UiO-66/g-C <sub>3</sub> N <sub>4</sub> nanosheets                                                                        | Visible     | MeCN/TEOA                     | CO                 | 9.9 $\mu mol/(g_{g-C_3N_4}\cdot h)$                     | 9              | [132]      |
|                     | UiO-66/bulk g-C <sub>3</sub> N <sub>4</sub>                                                                              |             |                               |                    | 3.2 $\mu mol/(g \ _{g}\text{-}C_{_{3}}N_{_{4}}\cdot h)$ |                |            |
|                     | g-C <sub>3</sub> N <sub>4</sub> nanosheets                                                                               |             |                               |                    | 2.9 $\mu mol/(g_{g-C_3N_4} \cdot h)$                    |                |            |
|                     | Bulk $g-C_3N_4$                                                                                                          |             |                               |                    | $2.0\ \mu mol/(g\ _{g-C_{3}N_{4}}\cdot h)$              |                |            |
|                     | UiO-66                                                                                                                   |             |                               |                    | 0                                                       |                |            |
|                     | BIF-20/g- $C_3N_4$ nanosheets (10%(wt) g- $C_3N_4$ nanosheets)                                                           | Visible     | MeCN/TEOA                     | CO                 | 3.42 μmol                                               | 9              | [133]      |
|                     |                                                                                                                          |             |                               | $CH_4$             | 1.12 μmol                                               |                |            |
|                     | BIF-20/g- $C_3N_4$ nanosheets (15%(wt) g- $C_3N_4$ nanosheets)                                                           |             |                               | CO                 | 4.86 μmol                                               |                |            |
|                     |                                                                                                                          |             |                               | $CH_4$             | 1.45 µmol                                               |                |            |
|                     | BIF-20/g- $C_3N_4$ nanosheets (20%(wt) g- $C_3N_4$ nanosheets)                                                           |             |                               | СО                 | 6.12 µmol                                               |                |            |
|                     |                                                                                                                          |             |                               | $CH_4$             | 1.76 μmol                                               |                |            |
|                     | BIF-20/g- $C_3N_4$ nanosheets (25%(wt) g- $C_3N_4$ nanosheets)                                                           |             |                               | CO                 | 5.14 µmol                                               |                |            |
|                     |                                                                                                                          |             |                               | $CH_4$             | 1.51 µmol                                               |                |            |
|                     | ZIF-8/Zn <sub>2</sub> GeO <sub>4</sub> (25%(wt) ZIF-8)                                                                   | N/A         | $Na_2SO_3$                    | CH <sub>3</sub> OH | 0.22 µmol/(g·h)                                         | 11             | [134]      |
| Metal incorporation | Pt/NH2-MIL-125(Ti)                                                                                                       | Visible     | MeCN/TEOA                     | HCOO <sup>-</sup>  | 12.96 µmol                                              | 8              | [135]      |
|                     |                                                                                                                          |             |                               | $\mathrm{H}_2$     | 235 µmol                                                |                |            |
|                     | Au/NH <sub>2</sub> -MIL-125(Ti)                                                                                          |             |                               | HCOO <sup>-</sup>  | 9.06 µmol                                               |                |            |
|                     |                                                                                                                          |             |                               | $\mathrm{H}_2$     | 40.2 µmol                                               |                |            |
|                     | $NH_2$ -MIL-125(Ti)                                                                                                      |             |                               | HC00 <sup>-</sup>  | 10.75 µmol                                              |                |            |
|                     |                                                                                                                          |             |                               | $\mathrm{H}_2$     | 0                                                       |                |            |
|                     | 1%(wt) Co/NH <sub>2</sub> -MIL-125(Ti)                                                                                   | Visible     | MeCN/TEOA                     | HC00 <sup>-</sup>  | 384.2 µmol                                              | 10             | [136]      |
|                     | 2%(wt) Co/NH <sub>2</sub> -MIL-125(Ti)                                                                                   |             |                               |                    | 321.8 μmol                                              |                |            |
|                     | 3%(wt) Co/NH <sub>2</sub> -MIL-125(Ti)                                                                                   |             |                               |                    | 239.4 µmol                                              |                |            |
|                     | NH <sub>2</sub> -MIL-125(Ti)                                                                                             |             |                               |                    | 162.8 μmol                                              |                |            |
|                     | ${\rm Ag {\subset} Re_3-MOF}$ (16 nm thick ${\rm Re_3-MOF})$                                                             | Visible     | MeCN/TEOA                     | CO                 | $TON\approx 2.8$                                        | 48             | [137]      |

# Front. Energy 2019, 13(2): 221-250

| rategy                           | MOF composite                                               | Irradiation | Solvent/<br>sacrificial agent | Main product      | Photocatalytic reactivit | y Reaction ti | ime/h Ref. |
|----------------------------------|-------------------------------------------------------------|-------------|-------------------------------|-------------------|--------------------------|---------------|------------|
|                                  | $\mathrm{Re}^{\mathrm{l}}(\mathrm{CO})_{3}(5,5'$ - dcbpy)Cl |             |                               |                   | $TON \approx 1.7$        |               |            |
| arbon materials incor-<br>ration | 1%(wt) UiO-66-NH <sub>2</sub> /graphene                     | Visible     | DMF/TEOA/H <sub>2</sub> O     | HC00 <sup>-</sup> | 12.3 µmol                | 4             | [138]      |
|                                  |                                                             |             |                               | $CH_4$            | 0.25 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 15.2 µmol                |               |            |
|                                  | 1.5%(wt) UiO-66-NH <sub>2</sub> /graphene                   |             |                               | HC00 <sup>-</sup> | 21.2 µmol                |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0.59 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 13.9 µmol                |               |            |
|                                  | 2%(wt) UiO-66-NH <sub>2</sub> /graphene                     |             |                               | $HCOO^{-}$        | 33.5 µmol                |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0.90 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 13.2 µmol                |               |            |
|                                  | 2.5%(wt) UiO-66-NH <sub>2</sub> /graphene                   |             |                               | $HCOO^{-}$        | 14.9 µmol                |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0.51 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 15.1 µmol                |               |            |
|                                  | 3%(wt) UiO-66-NH <sub>2</sub> /graphene                     |             |                               | HC00 <sup>-</sup> | 8.6 µmol                 |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0.19 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 16.8 µmol                |               |            |
|                                  | UiO-66-NH <sub>2</sub>                                      |             |                               | $HCOO^{-}$        | 3.1 µmol                 |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0.11 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 16.9 µmol                |               |            |
|                                  | Graphene                                                    |             |                               | HC00 <sup>-</sup> | 0                        |               |            |
|                                  |                                                             |             |                               | $CH_4$            | 0                        |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 0                        |               |            |
| 1                                | JiO-66-NH <sub>2</sub> /graphene (hydrothermal synthesis)   |             |                               | $HC00^{-}$        | 16.1 µmol                |               |            |
|                                  |                                                             |             |                               | $\mathrm{H}_2$    | 20.4 µmol                |               |            |
|                                  | Al-PMOF/5%(wt) NH2-rGO                                      | Visible     | MeCN/TEOA                     | HC00 <sup>-</sup> | 685.6 μmol/(g·h)         | 6             | [139]      |
|                                  | Al-PMOF/15%(wt) NH2-rGO                                     |             |                               |                   | 479.8 µmol/(g·h)         |               |            |
|                                  | Al-PMOF/25%(wt) NH2-rGO                                     |             |                               |                   | 476.4 µmol/(g·h)         |               |            |
|                                  | AI-PMOF                                                     |             |                               |                   | 165.3 µmol/(g·h)         |               |            |

zer  $[Ru(dmb)_3]^{2+}$  (dmb = 4,4'-dimethyl-2,2'-bipyridine) into UiO-67 which was functionalized with a Mn<sup>+</sup> bipyridine complex, Mn(5,5'-5,5'-dcbpy)-(CO)\_3Br for CO<sub>2</sub> photocatalytic reduction. In the mixture of *N*, *N*dimethylformamide (DMF), TEOA and BNAH, HCOO<sup>-</sup> was produced with the TON of 110 under visible light irradiation for 18 h, which outperformed the UiO-67-Mn (5,5'-dcbpy)-(CO)\_3Br without a photosensitizer [Ru (dmb)\_3]<sup>2+</sup> and the homogeneous reference systems (Fig. 9). The superior photocatalytic performance is attributed to the isolated active sites in MOF framework, which endows the high stability of the catalyst and impedes the dimerization of the singly reduced Mn complex.



**Fig. 9** TON of HCOO<sup>-</sup> as a function of reaction time over UiO-67-Mn(bpy)(CO)<sub>3</sub>Br (red), Mn(bpy)(CO)<sub>3</sub>Br (green), Mn(bpydc) (CO)<sub>3</sub>Br (blue), UiO-67-bpydc (black), no added Mn complex or MOF (only Ru<sup>2+</sup>, brown), and UiO-67-Mn(bpy)(CO)<sub>3</sub>Br without added Ru<sup>2+</sup> (gray) (Reproduced with permission from Ref. [58]. Copyright 2015, American Chemical Society)

### 3.2 MOF composites incorporated with semiconductors

Coupling MOFs with semiconductors has been shown to be another approach to reducing the recombination rate of the photo-generated charge carries and consequently enhancing the photocatalytic performance. Several types of semiconductors such as TiO<sub>2</sub>, CdS and graphitic  $C_3N_4$ have been embedded into MOFs to form heterogeneous structures which retain the properties of both the semiconductors and MOFs that are beneficial to CO<sub>2</sub> photocatalytic reactions.

### 3.2.1 MOF-TiO<sub>2</sub> composites

Several studies reported the development of  $ZIF-8/TiO_2$  composites for  $CO_2$  photoreduction. Zhang and coworkers [124] integrated ZIF-8 into the  $TiO_2$  film grid and

conducted CO<sub>2</sub> photocatalytic reactions in H<sub>2</sub>O as an electron donor without the use of a sacrificial agent under UV irradiation for 5 h. The amount of ZIF-8 in ZIF-8/TiO<sub>2</sub> composite was varied by repeating the ZIF-8 growth step on the TiO<sub>2</sub> film from one to three times, which are denoted as TiMOF-1, TiMOF-2, and TiMOF-3, respectively. TiMOF-3 with the highest amount of ZIF-8 had the highest CO<sub>2</sub> adsorption uptake, followed by TiMOF-2, TiMOF-1, and TiO<sub>2</sub>. TiMOF-2 had the best performance with a CO yield of 0.53  $\mu$ mol/(g  $\cdot$  h) and a CH<sub>4</sub> yield of 0.18  $\mu$ mol/(g·h), which was 38% and 157% higher than that observed over pure TiO<sub>2</sub> film under the same condition. TiMOF-2 outperformed TiMOF-3 which had the highest  $CO_2$  adsorption capacity due to the fact that the large amount of ZIF-8 in TiMOF-3 covered the TiO2 film, impeding the photo excitation process of TiO<sub>2</sub>. It is proposed that both TiO<sub>2</sub> and ZIF-8 can be activated to generate photo-induced charge carries under UV irradiation, while  $TiO_2$  is more effective in the photoexcitation process than ZIF-8 because of its higher photoactivity and narrower band gap (-0.45 eV vs. -0.5 eV for ZIF-8). Electrons can also transfer from TiO<sub>2</sub> to ZIF-8 and be involved in the photoreduction process over ZIF-8.

Cardoso and coworkers [125] developed a MOF-based Ti/TiO<sub>2</sub> composite photocatalyst by growing ZIF-8 thin films on Ti/TiO<sub>2</sub> nanotube (NT) electrodes using a layerby-layer process. Spectroscopic and voltammetric assays revealed that the CO<sub>2</sub> adsorbed on ZIF-8 formed stable carbamates. The photoelectrocatalytic reduction of CO<sub>2</sub> over Ti/TiO<sub>2</sub>NT-ZIF-8 electrodes was performed in Na<sub>2</sub>SO<sub>4</sub> (pH 4.5) saturated with CO<sub>2</sub> at a constant potential of + 0.1 V under UV-visible light irradiation. 10 mmol/L of ethanol and 0.7 mmol/L of methanol were produced in 3 h, which increased around 20 and 430 times, respectively, compared to the values observed over Ti/TiO<sub>2</sub>NT due to the low CO<sub>2</sub> adsorption capacity of Ti<sup>4+</sup> species in the absence of ZIF-8.

Co-ZIF-9/TiO<sub>2</sub> composites with different mass ratios of Co-ZIF-9 (named as  $ZIF_x/T$ ; where x represents the mass ratios of Co-ZIF-9 in the composite, which equals 0.01, 0.03, 0.10, 0.20, 0.30, 0.40, and 0.60) were synthesized via an *in situ* synthetic method by Ye and coworkers for CO<sub>2</sub> photoreduction [54]. Of the  $ZIF_{x}/T$  composites,  $ZIF_{0.03}/T$ had the best photocatalytic performance with a CO yield of 8.79  $\mu$ mol, CH<sub>4</sub> of 0.99  $\mu$ mol and H<sub>2</sub> of 1.30  $\mu$ mol under UV-visible light irradiation for 10 h, which was higher than that of the pure TiO<sub>2</sub> ( $3.58 \mu$ mol of CO,  $0.60 \mu$ mol of CH<sub>4</sub> and 0.63  $\mu$ mol of H<sub>2</sub>) and Co-ZIF-9 (no CO, CH<sub>4</sub> or H<sub>2</sub> was detected).  $ZIF_{0.03}/T$  also had a better photocatalytic performance than the physical mixture of TiO<sub>2</sub> and Co-ZIF-9 at the same mass ratio of 0.03:0.97 (where 3.86 µmol of CO, 0.42 µmol of CH<sub>4</sub>, and 0.56 µmol of  $H_2$  were produced) due to the better charge separation. It was found that when the mass ratios of Co-ZIF-9 was higher than 0.1, the photocatalytic activity decreased with increasing the Co-ZIF-9 content in  $ZIF_{x}/T$ , which might be

attributed to the heavier charge recombination.

Pipelzadeh et al. [140] reported the CO<sub>2</sub> photoreduction to CH<sub>4</sub> and CO over a ZIF-8/TiO<sub>2</sub> composite with coreshell structure in a photoreactor equipped with simulated sunlight at a constant pressure (CP, 5 bar) and an intentionally controlled pressure swing (PS) 50 mL/min (PS-50) and 100 mL/min (PS-100). A high CO yield was achieved in the PS mode at a production rate of 13.2 µmol/(g·h) (PS-50, 80% increase than CP-50 operation) and 15.6 µmol/(g·h) (PS-100, 30% increase than CP-100). The PS mode had a better promotion effect on CO production than CH<sub>4</sub>. Continuous alteration of the reactants and product adsorption/desorption over the photocatalyst in the PS mode was beneficial to the regeneration of Ti<sup>3+</sup> active sites, which contributed to the enhancement of photoreduction activity [17]. In addition, a higher gas flow rate facilitated CO removal to avoid catalyst poisoning. The calcination of ZIF-8/TiO<sub>2</sub> composite at 300°C further increased the yield of CO with 45.16  $\mu$ mol/(g·h) under PS-100 condition, which was higher than that observed in the CP-100 mode  $(33.46 \text{ }\mu\text{mol}/(g \cdot h))$  because of the higher structural stability of the ZIF-8/TiO<sub>2</sub> composite.

Composite photocatalysts composed of Cu-BTC (also named as HKUST-1, BTC = benzene-1,3,5-tricarboxylate) and TiO<sub>2</sub> were also developed for CO<sub>2</sub> photocatalytic reduction. Ye and coworkers [126] synthesized a Cu-BTC/ TiO<sub>2</sub> composite with a core-shell structure (see morphologies in Fig. 10) and evaluated the CO<sub>2</sub> photocatalytic performance. Under UV irradiation for 4 h, the production rate of CH<sub>4</sub> and H<sub>2</sub> from CO<sub>2</sub> over the bare TiO<sub>2</sub> reached 0.52 and 2.29  $\mu$ mol/( $g_{TiO_2}$ ·h), respectively, whereas the formation rate of CH<sub>4</sub> over the Cu-BTC/TiO<sub>2</sub> composite reached 2.64  $\mu$ mol/( $g_{TiO_2}$ ·h) with no H<sub>2</sub> detected. No product was produced over Cu-BTC, because its conjugated structure did not favor charge separation. This indicates that the CH<sub>4</sub> yield and the selectivity of CH<sub>4</sub> to H<sub>2</sub> over Cu-BTC/TiO<sub>2</sub> composite are significantly improved compared to the bare TiO2 and Cu-BTC in photocatalytic reduction. Under UV irradiation, the TiO<sub>2</sub> in Cu-BTC/TiO<sub>2</sub> composite is photoexcited to generate

charge pairs and the electrons can be effectively transferred to Cu-BTC, as demonstrated by the ultrafast spectroscopy. This facilitates the charge separation in TiO<sub>2</sub> and supplies active electrons to CO<sub>2</sub> molecules adsorbed on Cu-BTC, leading to an enhancement in photocatalytic activity of Cu-BTC/TiO<sub>2</sub> composite. Theoretical simulations demonstrate that the activation-energy barrier for CO<sub>2</sub> on the Cu sites in Cu-BTC will be lowered upon receiving the photo-excited electrons from TiO<sub>2</sub>, enabling the CO<sub>2</sub> reduction occurring on the Cu sites of Cu-BTC and the enhanced selectivity of  $CH_4$  to  $H_2$  production. Lately, Wang and coworkers [127] synthesized Cu-BTC/TiO2 composites in microdroplets via an aerosol route. Similarly, Cu-BTC/TiO<sub>2</sub> composites had a higher photocatalytic performance than the pure  $TiO_2$ and Cu-BTC. The yield of CO from CO<sub>2</sub> conversion over Cu-BTC/TiO<sub>2</sub> composites increased as a function of the molar ratio of Cu-BTC to TiO<sub>2</sub> ranging from 0 (i.e., bare  $TiO_2$ ) to 3.33 (see Fig. 11), where the production rate of CO over 3.33Cu-BTC/TiO<sub>2</sub> increased to 256.35 µmol/  $(g_{TiO_2} \cdot h)$  as compared to the bare TiO<sub>2</sub> with a CO formation rate of 11.48 µmol/(g<sub>TiO2</sub> · h). As demonstrated by the *in situ* diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) analysis, the enhancement in the photoreduction performance of the Cu-BTC/TiO2 composites may have been caused by the improved adsorption of reactants on the catalyst.

In addition to ZIF and Cu-based MOFs, TiO<sub>2</sub> was also incorporated into other MOF structures to form MOF-TiO<sub>2</sub> composites for CO<sub>2</sub> photoreduction. Li and coworkers [128] combined TiO<sub>2</sub> with CPO-27-Mg (also named as Mg<sub>2</sub>(DOBDC), DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate) to produce a CPO-27-Mg/TiO<sub>2</sub> composite via a hydrothermal self-assembly method. There exists a high concentration of open alkaline metal sites (Mg<sup>2+</sup>) in CPO-27-Mg structure, endowing the high CO<sub>2</sub> adsorption capacity of CPO-27-Mg. Under UV irradiation for 10 h, 40.9 µmol/g of CO and 23.5 µmol/g of CH<sub>4</sub> were produced over CPO-27-Mg/TiO<sub>2</sub>, which were higher than those observed over pure TiO<sub>2</sub> (22.5 µmol/g of CO and 13.7 µmol/g of CH<sub>4</sub>). The enhanced performance of CPO-27-Mg/TiO<sub>2</sub> composite on CO<sub>2</sub> photoreduction is



#### Fig. 10 Core-shell structures of Cu(BTC)/TiO<sub>2</sub>

(a) Structural illustration; (b) transmission electron microscope (TEM); (c) SEM images of Cu(BTC)/TiO<sub>2</sub> core-shell structures (Reproduced with permission from Ref. [126]. Copyright 2014, Wiley)



**Fig. 11** CO<sub>2</sub> photoreduction analysis of TiO<sub>2</sub> and HKUST-1/TiO<sub>2</sub> composites (CO yield over the HKUST-1/TiO<sub>2</sub> composites and pure TiO<sub>2</sub>). Inset image: CO yield peak time of the HKUST-1/TiO<sub>2</sub> composites and pure TiO<sub>2</sub> (Reproduced with permission from Ref. [127]. Copyright 2017, American Chemical Society)

attributed to its high CO<sub>2</sub> adsorption capacity and the existence of open Mg<sup>2+</sup> metal sites. The CO<sub>2</sub> photoreduction over a physical mixture of TiO<sub>2</sub> and CPO-27-Mg (the ratio of TiO<sub>2</sub> to CPO-27-Mg was 6:4.) was also performed under the similar condition, and 8.5 µmol/g of H<sub>2</sub>, 18.9 µmol/g of CO, and 7.1 µmol/g of CH<sub>4</sub> were produced, which were lower than those produced over the CPO-27-Mg/TiO<sub>2</sub> composite. This demonstrates the indispensable effect of the strong interaction between CPO-27-Mg and  $TiO_2$  in CPO-27-Mg/TiO\_2 composite for the CO<sub>2</sub> photoreduction. TiO<sub>2</sub> nanosheets were coupled with NH<sub>2</sub>-UiO-66 using an *in situ* growth strategy by Petit and coworkers [129]. The content of NH<sub>2</sub>-UiO-66 in the composite was varied from 19 wt% to 37 wt%. NH2-UiO-66/TiO2 had a better performance in photo reducing CO<sub>2</sub> to CO than their single moiety. This improvement is a result of the enhanced abundance of long-lived charge carriers and high CO<sub>2</sub> adsorption capacity in NH<sub>2</sub>-UiO-66/TiO<sub>2</sub> composites.

### 3.2.2 MOF-CdS composites

CdS semiconductor has been widely used for  $CO_2$  photoreduction as a photocatalyst [141–143]. Wang et al. [130] incorporated CdS into Co-ZIF-9 and the as-obtained Co-ZIF-9/CdS composite had a good photocatalytic activity toward  $CO_2$  conversion to CO under visible light irradiation.  $CO_2$  photoreduction was performed in MeCN and H<sub>2</sub>O solvent with TEOA as a sacrificial agent and bipyridine (bpy) as an assistant for electron transfer. After visible light irradiation for 1 h, 50.4 µmol of CO and 11.1 µmol of H<sub>2</sub> were produced over Co-ZIF-9/CdS composite, which outperformed its counterparts with lower

yields of CO and H<sub>2</sub> and pure CdS semiconductor (0.5  $\mu$ mol of CO and 1.6  $\mu$ mol of H<sub>2</sub>) under the same condition (as shown in Table 3). The photocatalytic mechanism was proposed as follows: under visible light irradiation, the CdS semiconductor was excited and charge carriers were generated. The photo-generated electrons transferred to Co-ZIF-9 and reduced the CO<sub>2</sub> molecules adsorbed on Co-ZIF-9 to CO. Meanwhile the protons existed in the reaction system were also reduced to H<sub>2</sub> by the excited electrons. Lately, Su et al. [55] prepared a series of UiO-66-NH<sub>2</sub>/Cd<sub>0.2</sub>Zn<sub>0.8</sub>S composites with different UiO-66-NH<sub>2</sub> contents using a solvothermal method. CO<sub>2</sub> photoreduction was performed over UiO-66-NH<sub>2</sub>/ Cd<sub>0.2</sub>Zn<sub>0.8</sub>S composites under visible light irradiation, which all had an enhanced photocatalytic activity in comparison to their single components. The UiO-66-NH<sub>2</sub>/ Cd<sub>0.2</sub>Zn<sub>0.8</sub>S composite with a UiO-66-NH<sub>2</sub> content of 20 wt% had the best photocatalytic performance with a H<sub>2</sub> production rate of 5846.5 µmol/(g·h) and a CH<sub>3</sub>OH production rate of 6.8  $\mu$ mol/(g·h). The efficient charge separation and transfer between Cd<sub>0.2</sub>Zn<sub>0.8</sub>S and UiO-66-NH<sub>2</sub> contributed to the enhanced photocatalytic activity of UiO-66-NH<sub>2</sub>/Cd<sub>0.2</sub>Zn<sub>0.8</sub>S composites.

### 3.2.3 MOF-graphitic C<sub>3</sub>N<sub>4</sub> composites

Graphitic carbon nitrides  $(g-C_3N_4)$  with different morphologies and structures have been integrated with MOFs to improve the CO<sub>2</sub> photoreduction activity. Wang and coworkers [131] coupled mesoporous g-C<sub>3</sub>N<sub>4</sub> with Co-ZIF-9, which acted as a light harvester and co-catalyst, respectively, to fabricate a Co-ZIF-9/g-C<sub>3</sub>N<sub>4</sub> composite. The Co-ZIF-9/g-C<sub>3</sub>N<sub>4</sub> composite efficiently catalyzed CO<sub>2</sub> to CO and H<sub>2</sub> under visible light irradiation. 20.8 µmol of CO and 3.3 µmol of H<sub>2</sub> were obtained over the Co-ZIF-9/  $g-C_3N_4$  composite in 2 h, whereas no product was detected over the pristine Co-ZIF-9 and g-C<sub>3</sub>N<sub>4</sub>. Liu and coworkers [56] developed a series of ZIF-8/g-C<sub>3</sub>N<sub>4</sub> composites by growing different contents of ZIF-8 nanoclusters on the surface of g-C<sub>3</sub>N<sub>4</sub> nanotubes. The ZIF-8/g-C<sub>3</sub>N<sub>4</sub> composites had an increased CO<sub>2</sub> adsorption capacity than g- $C_3N_4$  nanotubes without sacrificing the light absorption capacity owing to the incorporation of ZIF-8 nanoclusters. Because of the high CO<sub>2</sub> capture capacity of ZIF-8 and the promoted charge separation efficiency from the g-C<sub>3</sub>N<sub>4</sub> nanotubes, the ZIF-8/g-C<sub>3</sub>N<sub>4</sub> composites had an enhanced photocatalytic performance on CO<sub>2</sub> reduction, where the highest production rate of methanol reached 0.75  $\mu$ mol/(g·h) over the ZIF-8/g-C<sub>3</sub>N<sub>4</sub> composite in which the mass ratio of g-C<sub>3</sub>N<sub>4</sub> nanotubes to ZIF-8 was 8 under light irradiation for 1 h. Under similar conditions, g-C<sub>3</sub>N<sub>4</sub> nanotubes and bulk g-C<sub>3</sub>N<sub>4</sub> had a production rate of methanol of 0.49 and 0.24  $\mu$ mol/(g·h), respectively, whereas no methanol was produced over the pure ZIF-8 nanocrystals. In addition, g-C<sub>3</sub>N<sub>4</sub> nanosheets were combined with UiO-66 [132] and BIF-20 (a zeolite-like porous boron imidazolate framework) [133] MOFs to form MOF/  $g-C_3N_4$  composites, which all had an enhanced performance on CO<sub>2</sub> photocatalytic reduction.

In addition to TiO2, CdS and C3N4, another type of semiconductor was also incorporated into MOFs to generate a composite photocatalyst for CO<sub>2</sub> photocatalytic reduction. Wang and coworkers [134] developed a ZIF-8/ Zn<sub>2</sub>GeO<sub>4</sub> composite by growing ZIF-8 nanoparticles on Zn<sub>2</sub>GeO<sub>4</sub> nanorods. The ZIF-8/Zn<sub>2</sub>GeO<sub>4</sub> composite inherited both the high CO<sub>2</sub> adsorption capacity of ZIF-8 nanoparticles and the high crystallinity of Zn<sub>2</sub>GeO<sub>4</sub> nanorods. The ZIF-8/Zn<sub>2</sub>GeO<sub>4</sub> composite with 25 wt% ZIF-8 had a  $CO_2$  adsorption capacity of 15.5 cm<sup>3</sup>/g, which was higher than the pure  $Zn_2GeO_4$  nanorods (4.9 cm<sup>3</sup>/g) due to the high CO<sub>2</sub> adsorption ability of ZIF-8. After 11 h of light irradiation in Na<sub>2</sub>SO<sub>3</sub>, the production of methanol at a rate of 0.22 µmol/(g·h) over the ZIF-8(25wt%)/ Zn<sub>2</sub>GeO<sub>4</sub> composite was observed. The yield of methanol over the ZIF-8(25 wt%)/Zn<sub>2</sub>GeO<sub>4</sub> composite had a 62%increase in comparison to the pure Zn<sub>2</sub>GeO<sub>4</sub> nanorods under light irradiation for 10 h. The enhanced CO<sub>2</sub> photoreduction performance of ZIF-8/Zn<sub>2</sub>GeO<sub>4</sub> composite may have been resulted from the high CO<sub>2</sub> adsorption capacity of ZIF-8 and the higher light response.

#### 3.3 MOF composites incorporated with metals

Because of their high Fermi energy levels, noble metal nanoparticles can effectively separate photo-generated charge pairs of photocatalysts [144,145]. Therefore, another approach to promoting the  $CO_2$  photocatalytic reduction is to dope noble metal nanoparticles into MOF structures to decrease the recombination rate of the photogenerated electrons and holes. Li and coworkers [135] synthesized M-doped NH<sub>2</sub>-MIL-125(Ti) (M = Pt and Au) and conducted CO<sub>2</sub> photocatalytic reaction in saturated CO<sub>2</sub> with TEOA as a sacrificial agent under visible light irradiation. Both H<sub>2</sub> and HCOO<sup>-</sup> were produced over M/ NH<sub>2</sub>-MIL-125(Ti), while no H<sub>2</sub> but only HCOO<sup>-</sup> was produced over bare NH<sub>2</sub>-MIL-125(Ti). The reason for this is that the electron-trapping effect of noble metals promotes the hydrogen evolution. In addition, it is noted that Pt and Au had different photocatalytic performances on the production of HCOO<sup>-</sup>. Compared to bare NH<sub>2</sub>-MIL-125(Ti) (yield of HCOO<sup>-</sup>: 10.75 µmol), Pt/NH<sub>2</sub>-MIL-125(Ti) had a higher production yield of HCOO (12.96 µmol), while Au/NH<sub>2</sub>-MIL-125(Ti) had a lower production of HCOO<sup>-</sup> (9.06 µmol) under visible light irradiation for 8 h. As demonstrated by electron spin resonance (ESR) studies and density functional theory (DFT) calculations, hydrogen spillover from Pt to the bridging oxygen linked to Ti atoms occurred in Pt/NH2-MIL-125(Ti), leading to the Ti<sup>3+</sup> formation and boosting the hydrogen-assisted CO<sub>2</sub> reduction to HCOO<sup>-</sup>. In contrast, it was difficult to achieve the hydrogen spillover from Au to the NH<sub>2</sub>-MIL-125(Ti) framework in Au/NH<sub>2</sub>-MIL-125(Ti), and thus resulting in a lower HCOO<sup>-</sup> formation over Au/NH<sub>2</sub>-MIL-125(Ti). Fu et al. [136] doped different contents of Co (from 1 to 3 wt%) into NH<sub>2</sub>-MIL-125(Ti) and produced Co/NH<sub>2</sub>-MIL-125(Ti) composites for CO<sub>2</sub> photoreduction under visible light irradiation. 1 wt% Co/NH<sub>2</sub>-MIL-125(Ti) had the best performance on CO<sub>2</sub> photoreduction with an HCOO<sup>-</sup> formation of 384.2 µmol in 10 h, which was 2-fold higher than that observed over pure NH<sub>2</sub>-MIL-125(Ti) (162.8 µmol) due to the enhanced visible-light harvesting and electron transfer stemmed from the addition of Co.

Yaghi and coworkers [137] functionalized UiO-67 with Re complexes,  $Re^{I}(CO)_{3}(5,5'-dcbpy)Cl$  photosensitizer, of various densities ( $\text{Re}_n$ -MOF, n = 0, 1, 2, 3, 5, 11, 16, and 24 complexes per unit cell) and found that the photocatalytic activity of the MOF system can be controlled by controlling the density of Re complexes in the framework, in which Re<sub>3</sub>-MOF had the best performance on CO<sub>2</sub>-to-CO conversion. The photocatalytic activity was further enhanced by coating a 16 nm layer of Re3-MOF onto Ag nanocubes (Ag $\subseteq$ Re<sub>3</sub>-MOF, see Fig. 12), where a 7-fold improvement of CO<sub>2</sub>-to-CO reduction compared to pure Re<sub>3</sub>-MOF under visible light irradiation was achieved. Both Re complexes and Ag nanocubes contributed to the  $CO_2$  photocatalytic activity enhancement of Ag  $\subseteq$  Re<sub>3</sub>-MOF. Because the quadrupolar localized surface plasmon resonance (LSPR) scattering peak ( $\lambda_{max} \sim 480$  nm) of Ag nanocube overlapped with the absorption range of  $Re^{I}(CO)_{3}(5,5'-dcbpy)Cl$  (400 nm <  $\lambda$  < 550 nm) in the visible region [146,147] and Ag⊂Re<sub>3</sub>-MOF structure inherited the LSPR features of Ag cores, the photoactive Re metal sites within MOF shell were spatially localized into a strong electromagnetic field induced by LSPR of the Ag nanocubes for photocatalytic enhancement.

#### 3.4 MOF composites incorporated with carbon materials

Another important strategy to develop active photocatalysts for  $CO_2$  photoreduction is the incorporation of carbon materials such as graphene and its derivatives into MOFs. Graphene can act as a photosensitizer to extend the light adsorption region from the UV to the visible light region. Moreover, the excellent conductivity of graphene can facilitate the rapid transfer of the photo-generated electrons and suppress the electron-hole recombination, and subsequently boost the photocatalytic activity.

Li and coworkers [138] synthesized UiO-66-NH<sub>2</sub>/ graphene composites via microwave-assisted *in situ* growth of different amounts (1–3 wt%) of UiO-66-NH<sub>2</sub> nanocrystals onto graphene. As compared to the pure UiO-66-NH<sub>2</sub> (3.1 µmol of HCOO<sup>-</sup>, 0.11 µmol of CH<sub>4</sub>, and 16.9 µmol of H<sub>2</sub> were produced.) and the UiO-66-NH<sub>2</sub>/ graphene synthesized via a traditional hydrothermal route (16.1 µmol of HCOO<sup>-</sup> and 20.4 µmol of H<sub>2</sub> were produced.), the as-obtained UiO-66-NH<sub>2</sub>/graphene com-



Fig. 12 Structures of  $\text{Re}_n$ -MOF and  $\text{Ag} \subseteq \text{Re}_n$ -MOF for plasmon-enhanced photocatalytic  $\text{CO}_2$  conversion (a) Structure of  $\text{Re}_n$ -MOF (C: black; O: red; Zr: blue polyhedra; Re: yellow; Cl: green; H atoms are omitted for clarity); (b)  $\text{Re}_n$ -MOF coated on a Ag nanocube for  $\text{CO}_2$  photoreduction enhancement (Reproduced with permission from Ref. [137]. Copyright 2017, American Chemical Society)

posites had a better performance on  $CO_2$  photoreduction activity and selectivity under visible light irradiation. Of the UiO-66-NH<sub>2</sub>/graphene composites as prepared, 2 wt% UiO-66-NH<sub>2</sub>/graphene composite had the best performance, where 33.5 µmol of HCOO<sup>-</sup>, 0.9 µmol of CH<sub>4</sub> and 13.2 µmol of H<sub>2</sub> were produced in 4 h. The performance enhancement is attributed to both the fine particle size and high dispersion of UiO-66-NH<sub>2</sub> nanocrystals, which enables more light trapping to generate charge pairs and shortens the electron transfer pathway to facilitate electron transfer. Additionally, the strong UiO-66-NH<sub>2</sub>/graphene interaction can also effectively accelerate electron transfer efficiency to enhance photocatalytic activity for CO<sub>2</sub> reduction.

Do and coworkers [139] incorporated different contents of amine-functionalized reduced graphene oxide (NH<sub>2</sub>rGO) (5–25 wt%) into a TCPP-based MOF (Al/PMOF) to form Al-PMOF/NH<sub>2</sub>-rGO composites as photocatalysts for CO<sub>2</sub> reduction. Al-PMOF/NH<sub>2</sub>-rGO composites had an enhanced photocatalytic activity for CO<sub>2</sub> reduction, where the HCOO<sup>-</sup> formation rate reached 685.6  $\mu$ mol/(g·h) over Al-PMOF/5 wt% NH<sub>2</sub>-rGO under visible light irradiation in 6 h, which was much higher than the HCOO<sup>-</sup> production rate observed over pure Al-PMOF (165.3  $\mu$ mol/(g·h)). The photocatalytic mechanism is proposed as follows: upon visible light irradiation, TCPP is responsible for light harvesting and is excited to produce photo-generated electron-hole pairs, and the electrons are transferred from TCPP to graphene which acts as an electron acceptor. The electrons transferred from graphene reduce the adsorbed  $CO_2$  to  $HCOO^-$  in the presence of TEOA that serves as a hydrogen source.

Most recently, MOF with a special microstructure in CO<sub>2</sub> photoreduction was reported. Lin and coworkers [148] prepared Ni-based MOF (Ni<sub>2</sub>(OH)<sub>2</sub>BDC) monolayers (Ni MOLs) and examined the performance for photoreduction of CO<sub>2</sub> under visible light irradiation with [Ru(bpy)<sub>3</sub>]Cl<sub>2</sub> 6H<sub>2</sub>O as a photosensitizer and TEOA as an electron donor. After 2 h reaction in pure CO<sub>2</sub>, Ni MOLs had a CO production rate of 12.5 µmol/h and a H<sub>2</sub> production rate of 0.28 µmol/h, whereas bulk Ni MOFs had a lower CO production rate of 7.23 µmol/h. In diluted CO<sub>2</sub>, Ni MOLs had a CO selectivity of 96.8 %, which outperformed most of the reported systems in diluted CO<sub>2</sub>. It was proposed that the strong affinity of Ni MOLs to CO<sub>2</sub> molecules enabled their high CO<sub>2</sub> adsorption ability and stabilized the initial Ni-CO2 adducts, thus promoting CO2to-CO conversion. In addition, weak affinity of Ni MOLs to H<sub>2</sub>O impeded the transfer of protons, thereby reducing the H<sub>2</sub> formation.

# 4 Conclusions and outlook

In recent years, MOFs have attracted great attention and showed much potential as photocatalysts for  $CO_2$  reduction because of their super-high surface areas, tunable structures, and high  $CO_2$  adsorption capacity. This review summarizes the recent research progresses in the development of MOFs and MOF-based composite photocatalysts for the photocatalytic reduction of CO<sub>2</sub>. Several strategies in improving light harvesting, CO<sub>2</sub> adsorption and charge separation have been discussed, which provides guidelines for rational design of MOF-based photocatalysts with enhanced performance on CO2 reduction under visible light irradiation. Although great progress has been made in the development of MOF-based photocatalysts for CO2 reduction, there still exist some challenges and large potential need to be explored. For instance, (1) to date several thousands of MOFs with different structures have been developed, however, only several types of MOFs such as ZIFs, UiO- and MIL-based MOFs are under exploration as photocatalysts for CO<sub>2</sub> reduction. More efforts need to be made in investigation of many other MOF systems with active catalytic centers, which may be promising for photocatalysis. 2 Most MOFs have a poor stability in aqueous solution and suffer structural collapse, which limit their practical applications in catalysis processes where water is involved. Therefore, it is imperative to develop novel MOF photocatalysts which have an excellent chemical stability in aqueous solution and meanwhile retain the photocatalytic functionality. ③ The current research achievements in photocatalytic reduction of CO<sub>2</sub> over MOF-based photocatalysts have not yet met the requirement for large-scale industrial applications, therefore, exploration in further improvement of  $CO_2$  photoreduction is required. So far, many novel materials such as two-dimensional (2D) nanomaterials like graphene and 2D semiconductors have been developed; integrating these novel nanomaterials into MOF structures may be considered as a promising strategy to enhance the photocatalytic performance of MOFs. It is believed that with the rapid development progress of MOF materials and other novel photocatalytic materials, MOF-based photocatalysts will have even greater potential to fulfill the requirements for practical applications in heterogeneous photocatalysis in the future.

**Acknowledgements** This work was supported by a startup fund from the University of Alaska Fairbanks.

# References

- Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000, 406 (6797): 406695
- Quadrelli R, Peterson S. The energy-climate challenge: recent trends in CO<sub>2</sub> emissions from fuel combustion. Energy Policy, 2007, 35(11): 5938–5952
- Song C. CO<sub>2</sub> conversion and utilization: an overview. In: Song C, eds. CO<sub>2</sub> Conversion and Utilization. Washington, DC: ACS Symposium Series, 2002, 809, 2–30
- 4. Herzog H J, Drake E M. Carbon dioxide recovery and disposal

from large energy systems. Annual Review of Energy and the Environment, 1996, 21(1): 145–166

- Muradov N. Industrial Utilization of CO<sub>2</sub>: A Win–Win Solution. New York: Springer New York, 2014, 325–383
- Rafiee A, Rajab Khalilpour K, Milani D, Panahi M. Trends in CO<sub>2</sub> conversion and utilization: a review from process systems perspective. Journal of Environmental Chemical Engineering, 2018, 6(5): 5771–5794
- Wang B, Chen W, Song Y, Li G, Wei W, Fang J, Sun Y. Recent progress in the photocatalytic reduction of aqueous carbon dioxide. Catalysis Today, 2018, 311: 23–39
- Yu Y, Zheng W, Cao Y. TiO<sub>2</sub>–Pd/C composited photocatalyst with improved photocatalytic activity for photoreduction of CO<sub>2</sub> into CH<sub>4</sub>. New Journal of Chemistry, 2017, 41(8): 3204–3210
- Sneddon G, Greenaway A, Yiu H H P. The potential applications of nanoporous materials for the adsorption, separation, and catalytic conversion of carbon dioxide. Advanced Energy Materials, 2014, 4(10): 1301873
- North M, Pasquale R, Young C. Synthesis of cyclic carbonates from epoxides and CO<sub>2</sub>. Green Chemistry, 2010, 12(9): 1514– 1539
- Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C. A short review of recent advances in CO<sub>2</sub> hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651– 7669
- Raciti D, Wang C. Recent advances in CO<sub>2</sub> reduction electrocatalysis on copper. ACS Energy Letters, 2018, 3(7): 1545–1556
- Tahir M, Amin N S. Advances in visible light responsive titanium oxide-based photocatalysts for CO<sub>2</sub> conversion to hydrocarbon fuels. Energy Conversion and Management, 2013, 76: 194–214
- Matsubara Y, Grills D C, Kuwahara Y. Thermodynamic aspects of electrocatalytic CO<sub>2</sub> reduction in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catalysis, 2015, 5(11): 6440– 6452
- Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 23837
- Wang M, Ioccozia J, Sun L, Lin C, Lin Z. Inorganic-modified semiconductor TiO<sub>2</sub> nanotube arrays for photocatalysis. Energy & Environmental Science, 2014, 7(7): 2182–2202
- Bao N, Shen L, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chemistry of Materials, 2008, 20(1): 110–117
- Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renewable & Sustainable Energy Reviews, 2018, 81: 536–551
- Lee G J, Wu J J. Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—a review. Powder Technology, 2017, 318: 8–22
- Mishra M, Chun D M. α-Fe<sub>2</sub>O<sub>3</sub> as a photocatalytic material: a review. Applied Catalysis A, General, 2015, 498: 126–141
- Wen J, Xie J, Chen X, Li X. A review on g-C<sub>3</sub>N<sub>4</sub>-based photocatalysts. Applied Surface Science, 2017, 391: 72–123
- 22. Luo L, Li Y, Hou J, Yang Y. Visible photocatalysis and photostability of Ag<sub>3</sub>PO<sub>4</sub> photocatalyst. Applied Surface Science,

2014, 319: 332-338

- Dong C, Lian C, Hu S, Deng Z, Gong J, Li M, Liu H, Xing M, Zhang J. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nature Communications, 2018, 9(1): 1252
- 24. Xing M, Zhou Y, Dong C, Cai L, Zeng L, Shen B, Pan L, Dong C, Chai Y, Zhang J, Yin Y. Modulation of the reduction potential of TiO<sub>2-x</sub> by fluorination for efficient and selective CH<sub>4</sub> generation from CO<sub>2</sub> photoreduction. Nano Letters, 2018, 18(6): 3384–3390
- Zhang H, Liu G, Shi L, Liu H, Wang T, Ye J. Engineering coordination polymers for photocatalysis. Nano Energy, 2016, 22: 149–168
- Meissner D, Memming R, Kastening B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. Journal of Physical Chemistry, 1988, 92(12): 3476–3483
- Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study. Journal of Physical Chemistry, 1987, 91(14): 3789– 3798
- Zhang L, Hu Y H. Desorption of dimethylformamide from Zn<sub>4</sub>O (C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>)<sub>3</sub> framework. Applied Surface Science, 2011, 257(8): 3392–3398
- Hu Y H, Zhang L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Physical Review. B, 2010, 81(17): 174103
- Zhang L, Hu Y H. A systematic investigation of decomposition of nano Zn<sub>4</sub>O(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>)<sub>3</sub> metal–organic framework. Journal of Physical Chemistry C, 2010, 114(6): 2566–2572
- Zhang L, Hu Y H. Strong effects of higher-valent cations on the structure of the zeolitic Zn(2-methylimidazole)<sub>2</sub> framework (ZIF-8). Journal of Physical Chemistry C, 2011, 115(16): 7967–7971
- Zhang L, Hu Y H. Structure distortion of Zn<sub>4</sub>O<sub>13</sub>C<sub>24</sub>H<sub>12</sub> framework (MOF-5). Materials Science and Engineering B, 2011, 176 (7): 573–578
- Zhang L, Hu Y H. Observation of ZnO nanoparticles outside pores of nano Zn<sub>4</sub>O(C<sub>8</sub>H<sub>4</sub>O<sub>4</sub>)<sub>3</sub> metal–organic framework. Physics Letters [Part A], 2011, 375(13): 1514–1517
- Loera-Serna S, Zarate-Rubio J, Medina-Velazquez D Y, Zhang L, Ortiz E. Encapsulation of urea and caffeine in Cu<sub>3</sub>(BTC)<sub>2</sub> metal– organic framework. Surface Innovations, 2016, 4(2): 76–87
- Hu Y H, Zhang L. Hydrogen storage in metal–organic frameworks. Advanced Materials, 2010, 22(20): E117–E130
- Zhang T, Lin W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43(16): 5982–5993
- Wu M X, Yang Y W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Advanced Materials, 2017, 29(23): 1606134
- Chowdhury T, Zhang L, Zhang J, Aggarwal S. Removal of arsenic (III) from aqueous solution using metal organic frameworkgraphene oxide nanocomposite. Nanomaterials (Basel, Switzerland), 2018, 8(12): 1062
- Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal–organic framework materials as chemical sensors. Chemical Reviews, 2012, 112(2): 1105–1125
- 40. Wang Y, Huang N Y, Shen J Q, Liao P Q, Chen X M, Zhang J P.

Hydroxide ligands cooperate with catalytic centers in metal– organic frameworks for efficient photocatalytic CO<sub>2</sub> reduction. Journal of the American Chemical Society, 2018, 140(1): 38–41

- He J, Zhang Y, He J, Zeng X, Hou X, Long Z. Enhancement of photoredox catalytic properties of porphyrinic metal–organic frameworks based on titanium incorporation via post-synthetic modification. Chemical Communications, 2018, 54(62): 8610– 8613
- 42. Horiuchi Y, Toyao T, Saito M, Mochizuki K, Iwata M, Higashimura H, Anpo M, Matsuoka M. Visible-light-promoted photocatalytic hydrogen production by using an amino-functionalized Ti(IV) metal–organic framework. Journal of Physical Chemistry C, 2012, 116(39): 20848–20853
- Maina J W, Pozo-Gonzalo C, Kong L, Schütz J, Hill M, Dumée L F. Metal organic framework based catalysts for CO<sub>2</sub> conversion. Materials Horizons, 2017, 4(3): 345–361
- Nasalevich M A, Goesten M G, Savenije T J, Kapteijn F, Gascon J. Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chemical Communications, 2013, 49(90): 10575–10577
- Jiang D, Mallat T, Krumeich F, Baiker A. Copper-based metalorganic framework for the facile ring-opening of epoxides. Journal of Catalysis, 2008, 257(2): 390–395
- 46. Hasegawa S, Horike S, Matsuda R, Furukawa S, Mochizuki K, Kinoshita Y, Kitagawa S. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. Journal of the American Chemical Society, 2007, 129(9): 2607–2614
- Wang J L, Wang C, Lin W. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catalysis, 2012, 2(12): 2630– 2640
- 48. Llabrés i Xamena F X, Casanova O, Galiasso Tailleur R, Garcia H, Corma A. Metal organic frameworks (MOFs) as catalysts: a combination of Cu<sup>2+</sup> and Co<sup>2+</sup> MOFs as an efficient catalyst for tetralin oxidation. Journal of Catalysis, 2008, 255(2): 220–227
- Llabrés i Xamena F X, Corma A, Garcia H. Applications for metal–organic frameworks (MOFs) as quantum dot semiconductors. Journal of Physical Chemistry C, 2007, 111(1): 80–85
- Gao J, Miao J, Li P Z, Teng W Y, Yang L, Zhao Y, Liu B, Zhang Q. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chemical Communications, 2014, 50(29): 3786– 3788
- 51. Shen L, Liang S, Wu W, Liang R, Wu L. CdS-decorated UiO-66 (NH<sub>2</sub>) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. Journal of Materials Chemistry. A, 2013, 1(37): 11473–11482
- 52. Ryu U J, Kim S J, Lim H K, Kim H, Choi K M, Kang J K. Synergistic interaction of Re complex and amine functionalized multiple ligands in metal-organic frameworks for conversion of carbon dioxide. Scientific Reports, 2017, 7(1): 612
- 53. Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. An aminefunctionalized titanium metal–organic framework photocatalyst with visible-light-induced activity for CO<sub>2</sub> reduction. Angewandte Chemie International Edition, 2012, 51(14): 3364–3367
- 54. Yan S, Ouyang S, Xu H, Zhao M, Zhang X, Ye J. Co-ZIF-9/TiO<sub>2</sub>

nanostructure for superior  $CO_2$  photoreduction activity. Journal of Materials Chemistry. A, 2016, 4(39): 15126–15133

- 55. Su Y, Zhang Z, Liu H, Wang Y. Cd<sub>0.2</sub>Zn<sub>0.8</sub>S@UiO-66–NH<sub>2</sub> nanocomposites as efficient and stable visible-light-driven photocatalyst for H<sub>2</sub> evolution and CO<sub>2</sub> reduction. Applied Catalysis B: Environmental, 2017, 200: 448–457
- 56. Liu S, Chen F, Li S, Peng X, Xiong Y. Enhanced photocatalytic conversion of greenhouse gas CO<sub>2</sub> into solar fuels over g-C<sub>3</sub>N<sub>4</sub> nanotubes with decorated transparent ZIF-8 nanoclusters. Applied Catalysis B: Environmental, 2017, 211: 1–10
- Wang S, Yao W, Lin J, Ding Z, Wang X. Cobalt imidazolate metal– organic frameworks photosplit CO<sub>2</sub> under mild reaction conditions. Angewandte Chemie International Edition, 2014, 53(4): 1034–1038
- Fei H, Sampson M D, Lee Y, Kubiak C P, Cohen S M. Photocatalytic CO<sub>2</sub> reduction to formate using a Mn(I) molecular catalyst in a robust metal–organic framework. Inorganic Chemistry, 2015, 54(14): 6821–6828
- Qin J, Wang S, Wang X. Visible-light reduction CO<sub>2</sub> with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst. Applied Catalysis B: Environmental, 2017, 209: 476– 482
- Huang Y B, Liang J, Wang X S, Cao R. Multifunctional metal– organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46(1): 126–157
- Wang S, Wang X. Multifunctional metal–organic frameworks for photocatalysis. Small, 2015, 11(26): 3097–3112
- Yu X, Wang L, Cohen S M. Photocatalytic metal–organic frameworks for organic transformations. CrystEngComm, 2017, 19(29): 4126–4136
- Navarro Amador R, Carboni M, Meyer D. Photosensitive titanium and zirconium metal organic frameworks: current research and future possibilities. Materials Letters, 2016, 166: 327–338
- Liang Z, Qu C, Guo W, Zou R, Xu Q. Pristine metal–organic frameworks and their composites for energy storage and conversion. Advanced Materials, 2018, 30(37): 1702891
- Sun D, Li Z. Robust Ti- and Zr-based metal-organic frameworks for photocatalysis. Chinese Journal of Chemistry, 2017, 35(2): 135–147
- Shen L, Liang R, Wu L. Strategies for engineering metal-organic frameworks as efficient photocatalysts. Chinese Journal of Catalysis, 2015, 36(12): 2071–2088
- Zhu J, Li P Z, Guo W, Zhao Y, Zou R. Titanium-based metalorganic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 2018, 359: 80–101
- Santaclara J G, Kapteijn F, Gascon J, van der Veen M A. Understanding metal–organic frameworks for photocatalytic solar fuel production. CrystEngComm, 2017, 19(29): 4118–4125
- Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. Metal– organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm, 2014, 16(23): 4919–4926
- Song F, Li W, Sun Y. Metal–organic frameworks and their derivatives for photocatalytic water splitting. Inorganics, 2017, 5 (3): 40
- 71. Wang W, Xu X, Zhou W, Shao Z. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic

water splitting. Advancement of Science, 2017, 4(4): 1600371

- Yan Y, He T, Zhao B, Qi K, Liu H, Xia B Y. Metal/covalent– organic frameworks-based electrocatalysts for water splitting. Journal of Materials Chemistry. A, 2018, 6(33): 15905–15926
- Meyer K, Ranocchiari M, van Bokhoven J A. Metal organic frameworks for photo-catalytic water splitting. Energy & Environmental Science, 2015, 8(7): 1923–1937
- 74. Pi Y, Li X, Xia Q, Wu J, Li Y, Xiao J, Li Z. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 2018, 337: 351–371
- Wu Z, Yuan X, Zhang J, Wang H, Jiang L, Zeng G. Photocatalytic decontamination of wastewater containing organic dyes by metal– organic frameworks and their derivatives. ChemCatChem, 2017, 9 (1): 41–64
- Wang C C, Li J R, Lv X L, Zhang Y Q, Guo G. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867
- 77. Jiang D, Xu P, Wang H, Zeng G, Huang D, Chen M, Lai C, Zhang C, Wan J, Xue W. Strategies to improve metal organic frameworks photocatalyst's performance for degradation of organic pollutants. Coordination Chemistry Reviews, 2018, 376: 449–466
- Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 2018, 47(22): 8134–8172
- Zhu B, Zou R, Xu Q. Metal–organic framework based catalysts for hydrogen evolution. Advanced Energy Materials, 2018, 8(24): 1801193
- Fang Y, Ma Y, Zheng M, Yang P, Asiri A M, Wang X. Metal– organic frameworks for solar energy conversion by photoredox catalysis. Coordination Chemistry Reviews, 2018, 373: 83–115
- Chen Y, Wang D, Deng X, Li Z. Metal–organic frameworks (MOFs) for photocatalytic CO<sub>2</sub> reduction. Catalysis Science & Technology, 2017, 7(21): 4893–4904
- Li Y, Xu H, Ouyang S, Ye J. Metal–organic frameworks for photocatalysis. Physical Chemistry Chemical Physics, 2016, 18 (11): 7563–7572
- Li R, Zhang W, Zhou K. Metal–organic-framework-based catalysts for photoreduction of CO<sub>2</sub>. Advanced Materials, 2018, 30(35): 1705512
- Wang C C, Zhang Y Q, Li J, Wang P. Photocatalytic CO<sub>2</sub> reduction in metal–organic frameworks: a mini review. Journal of Molecular Structure, 2015, 1083: 127–136
- Qiu J, Zhang X, Feng Y, Zhang X, Wang H, Yao J. Modified metalorganic frameworks as photocatalysts. Applied Catalysis B: Environmental, 2018, 231: 317–342
- 86. Gascon J, Hernández-Alonso M D, Almeida A R, van Klink G P M, Kapteijn F, Mul G. Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. ChemSusChem, 2008, 1 (12): 981–983
- Barkhordarian A A, Kepert C J. Two new porous UiO-66-type zirconium frameworks: open aromatic N-donor sites and their postsynthetic methylation and metallation. Journal of Materials Chemistry. A, 2017, 5(11): 5612–5618
- 88. Hendon C H, Tiana D, Fontecave M, Sanchez C, D'arras L,

Sassoye C, Rozes L, Mellot-Draznieks C, Walsh A. Engineering the optical response of the Titanium-MIL-125 metal–organic framework through ligand functionalization. Journal of the American Chemical Society, 2013, 135(30): 10942–10945

- 89. Pham H Q, Mai T, Pham-Tran N N, Kawazoe Y, Mizuseki H, Nguyen-Manh D. Engineering of band gap in metal–organic frameworks by functionalizing organic linker: a systematic density functional theory investigation. Journal of Physical Chemistry C, 2014, 118(9): 4567–4577
- Yang H, He X W, Wang F, Kang Y, Zhang J. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 2012, 22(41): 21849–21851
- 91. Yang L M, Fang G Y, Ma J, Pushpa R, Ganz E. Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18(47): 32319–32330
- 92. Nguyen H L, Vu T T, Le D, Doan T L H, Nguyen V Q, Phan N T S. A Titanium–organic framework: engineering of the band-gap energy for photocatalytic property enhancement. ACS Catalysis, 2017, 7(1): 338–342
- 93. Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Studies on photocatalytic CO<sub>2</sub> reduction over NH<sub>2</sub>-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal–organic frameworks. Chemistry–A European Journal, 2013, 19(42): 14279–14285
- 94. Lee Y, Kim S, Kang J K, Cohen S M. Photocatalytic CO<sub>2</sub> reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chemical Communications, 2015, 51(26): 5735–5738
- Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO<sub>2</sub> reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catalysis, 2014, 4(12): 4254–4260
- Sun D, Liu W, Qiu M, Zhang Y, Li Z. Introduction of a mediator for enhancing photocatalytic performance via post-synthetic metal exchange in metal–organic frameworks (MOFs). Chemical Communications, 2015, 51(11): 2056–2059
- 97. Liu J, Fan Y Z, Li X, Wei Z, Xu Y W, Zhang L, Su C Y. A porous rhodium(III)-porphyrin metal-organic framework as an efficient and selective photocatalyst for CO<sub>2</sub> reduction. Applied Catalysis B: Environmental, 2018, 231: 173–181
- Sadeghi N, Sharifnia S, Sheikh Arabi M.A porphyrin-based metal organic framework for high rate photoreduction of CO<sub>2</sub> to CH<sub>4</sub> in gas phase. Journal of CO<sub>2</sub> Utilization, 2016, 16: 450–457
- 99. Liu Y, Yang Y, Sun Q, Wang Z, Huang B, Dai Y, Qin X, Zhang X. Chemical adsorption enhanced CO<sub>2</sub> capture and photoreduction over a copper porphyrin based metal organic framework. ACS Applied Materials & Interfaces, 2013, 5(15): 7654–7658
- 100. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal– organic framework. Angewandte Chemie International Edition, 2016, 55(46): 14310–14314
- 101. Xu H Q, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu S H, Jiang H L. Visible-light photoreduction of CO<sub>2</sub> in a metal–organic frame-

work: boosting electron-hole separation via electron trap states. Journal of the American Chemical Society, 2015, 137(42): 13440-13443

- 102. Yan Z H, Du M H, Liu J, Jin S, Wang C, Zhuang G L, Kong X J, Long L S, Zheng L S. Photo-generated dinuclear {Eu(II)}<sub>2</sub> active sites for selective CO<sub>2</sub> reduction in a photosensitizing metalorganic framework. Nature Communications, 2018, 9(1): 3353
- 103. Wang C, Xie Z, deKrafft K E, Lin W. Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society, 2011, 133(34): 13445–13454
- 104. Huang R, Peng Y, Wang C, Shi Z, Lin W. A rheniumfunctionalized metal–organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. European Journal of Inorganic Chemistry, 2016, 2016(27): 4358–4362
- 105. Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M. Photocatalytic carbon dioxide reduction with rhodium-based catalysts in solution and heterogenized within metal–organic frameworks. ChemSusChem, 2015, 8(4): 603–608
- 106. Sun D, Gao Y, Fu J, Zeng X, Chen Z, Li Z. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO<sub>2</sub> reduction under visible light. Chemical Communications, 2015, 51(13): 2645–2648
- 107. Li L, Zhang S, Xu L, Wang J, Shi L X, Chen Z N, Hong M, Luo J. Effective visible-light driven CO<sub>2</sub> photoreduction via a promising bifunctional iridium coordination polymer. Chemical Science (Cambridge), 2014, 5(10): 3808–3813
- Zhang S, Li L, Zhao S, Sun Z, Hong M, Luo J. Hierarchical metal– organic framework nanoflowers for effective CO<sub>2</sub> transformation driven by visible light. Journal of Materials Chemistry. A, 2015, 3 (30): 15764–15768
- 109. Zhang S, Li L, Zhao S, Sun Z, Luo J. Construction of interpenetrated ruthenium metal–organic frameworks as stable photocatalysts for CO<sub>2</sub> reduction. Inorganic Chemistry, 2015, 54 (17): 8375–8379
- Lee Y, Kim S, Fei H, Kang J K, Cohen S M. Photocatalytic CO<sub>2</sub> reduction using visible light by metal-monocatecholato species in a metal–organic framework. Chemical Communications, 2015, 51 (92): 16549–16552
- 111. Chen D, Xing H, Wang C, Su Z. Highly efficient visible-lightdriven CO<sub>2</sub> reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes. Journal of Materials Chemistry. A, 2016, 4(7): 2657–2662
- 112. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals. Chemistry–A European Journal, 2011, 17(24): 6643–6651
- 113. Gomes Silva C, Luz I, Llabrés i Xamena F X, Corma A, García H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry– A European Journal, 2010, 16(36): 11133–11138
- 114. Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the

American Chemical Society, 2008, 130(42): 13850-13851

- 115. Mondloch J E, Katz M J, Planas N, Semrouni D, Gagliardi L, Hupp J T, Farha O K. Are Zr<sub>6</sub>-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse. Chemical Communications, 2014, 50(64): 8944–8946
- 116. Wang C C, Du X D, Li J, Guo X X, Wang P, Zhang J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Applied Catalysis B: Environmental, 2016, 193: 198– 216
- 117. Dean J A. Lange's handbook of chemistry. Materials and Manufacturing Processes, 1990, 5(4): 687–688
- 118. Laurier K G M, Vermoortele F, Ameloot R, De Vos D E, Hofkens J, Roeffaers M B J. Iron(III)-based metal–organic frameworks as visible light photocatalysts. Journal of the American Chemical Society, 2013, 135(39): 14488–14491
- Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO<sub>2</sub> capture. Crystal Growth & Design, 2010, 10(7): 2839–2841
- 120. Torrisi A, Mellot-Draznieks C, Bell R G. Impact of ligands on CO<sub>2</sub> adsorption in metal-organic frameworks: first principles study of the interaction of CO<sub>2</sub> with functionalized benzenes. II. Effect of polar and acidic substituents. Journal of Chemical Physics, 2010, 132(4): 044705
- 121. Tamaki Y, Morimoto T, Koike K, Ishitani O. Photocatalytic CO<sub>2</sub> reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): 15673–15678
- 122. Sato S, Morikawa T, Kajino T, Ishitani O. A highly efficient mononuclear iridium complex photocatalyst for CO<sub>2</sub> reduction under visible light. Angewandte Chemie International Edition, 2013, 52(3): 988–992
- 123. Kuramochi Y, Kamiya M, Ishida H. Photocatalytic CO<sub>2</sub> reduction in *N*,*N*-dimethylacetamide/water as an alternative solvent system. Inorganic Chemistry, 2014, 53(7): 3326–3332
- 124. Huang Z, Dong P, Zhang Y, Nie X, Wang X, Zhang X.A ZIF-8 decorated TiO<sub>2</sub> grid-like film with high CO<sub>2</sub> adsorption for CO<sub>2</sub> photoreduction. Journal of CO<sub>2</sub> Utilization, 2018, 24, 369– 375
- 125. Cardoso J C, Stulp S, de Brito J F, Flor J B S, Frem R C G, Zanoni M V B. MOFs based on ZIF-8 deposited on TiO<sub>2</sub> nanotubes increase the surface adsorption of CO<sub>2</sub> and its photoelectrocatalytic reduction to alcohols in aqueous media. Applied Catalysis B: Environmental, 2018, 225: 563–573
- 126. Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang H L, Jiang J, Zhang Q, Xie Y, Xiong Y. Integration of an inorganic semiconductor with a metal–organic framework: a platform for enhanced gaseous photocatalytic reactions. Advanced Materials, 2014, 26(28): 4783–4788
- 127. He X, Gan Z, Fisenko S, Wang D, El-Kaderi H M, Wang W N. Rapid formation of metal–organic frameworks (MOFs) based nanocomposites in microdroplets and their applications for CO<sub>2</sub> photoreduction. ACS Applied Materials & Interfaces, 2017, 9(11): 9688–9698
- 128. Wang M, Wang D, Li Z. Self-assembly of CPO-27-Mg/TiO<sub>2</sub> nanocomposite with enhanced performance for photocatalytic CO<sub>2</sub>

reduction. Applied Catalysis B: Environmental, 2016, 183: 47-52

- 129. Crake A, Christoforidis K C, Kafizas A, Zafeiratos S, Petit C. CO<sub>2</sub> capture and photocatalytic reduction using bifunctional TiO<sub>2</sub>/MOF nanocomposites under UV–vis irradiation. Applied Catalysis B: Environmental, 2017, 210: 131–140
- Wang S, Wang X. Photocatalytic CO<sub>2</sub> reduction by CdS promoted with a zeolitic imidazolate framework. Applied Catalysis B: Environmental, 2015, 162: 494–500
- 131. Wang S, Lin J, Wang X. Semiconductor–redox catalysis promoted by metal–organic frameworks for CO<sub>2</sub> reduction. Physical Chemistry Chemical Physics, 2014, 16(28): 14656–14660
- 132. Shi L, Wang T, Zhang H, Chang K, Ye J. Electrostatic selfassembly of nanosized carbon nitride nanosheet onto a zirconium metal–organic framework for enhanced photocatalytic CO<sub>2</sub> reduction. Advanced Functional Materials, 2015, 25(33): 5360– 5367
- 133. Xu G, Zhang H, Wei J, Zhang H X, Wu X, Li Y, Li C, Zhang J, Ye J. Integrating the g-C<sub>3</sub>N<sub>4</sub> Nanosheet with B–H bonding decorated metal–organic framework for CO<sub>2</sub> activation and photoreduction. ACS Nano, 2018, 12(6): 5333–5340
- 134. Liu Q, Low Z X, Li L, Razmjou A, Wang K, Yao J, Wang H. ZIF-8/ Zn<sub>2</sub>GeO<sub>4</sub> nanorods with an enhanced CO<sub>2</sub> adsorption property in an aqueous medium for photocatalytic synthesis of liquid fuel. Journal of Materials Chemistry. A, 2013, 1(38): 11563–11569
- 135. Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z. Noble metals can have different effects on photocatalysis over metal– organic frameworks (MOFs): a case study on M/NH<sub>2</sub>-MIL-125(Ti) (M = Pt and Au). Chemistry–A European Journal, 2014, 20(16): 4780–4788
- 136. Fu Y, Yang H, Du R, Tu G, Xu C, Zhang F, Fan M, Zhu W. Enhanced photocatalytic CO<sub>2</sub> reduction over Co-doped NH<sub>2</sub>-MIL-125(Ti) under visible light. RSC Advances, 2017, 7(68): 42819– 42825
- 137. Choi K M, Kim D, Rungtaweevoranit B, Trickett C A, Barmanbek J T D, Alshammari A S, Yang P, Yaghi O M. Plasmon-enhanced photocatalytic CO<sub>2</sub> conversion within metal–organic frameworks under visible light. Journal of the American Chemical Society, 2017, 139(1): 356–362
- Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66–NH<sub>2</sub> anchored on graphene with high activity for photocatalytic reduction of CO<sub>2</sub>. Applied Catalysis B: Environmental, 2018, 228: 47–53
- Sadeghi N, Sharifnia S, Do T O. Enhanced CO<sub>2</sub> photoreduction by a graphene–porphyrin metal–organic framework under visible light irradiation. Journal of Materials Chemistry. A, 2018, 6(37): 18031–18035
- 140. Pipelzadeh E, Rudolph V, Hanson G, Noble C, Wang L. Photoreduction of CO<sub>2</sub> on ZIF-8/TiO<sub>2</sub> nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017, 218: 672–678
- 141. Chaudhary Y S, Woolerton T W, Allen C S, Warner J H, Pierce E, Ragsdale S W, Armstrong F A. Visible light-driven CO<sub>2</sub> reduction by enzyme coupled CdS nanocrystals. Chemical Communications, 2012, 48(1): 58–60
- Liu B J, Torimoto T, Yoneyama H. Photocatalytic reduction of CO<sub>2</sub> using surface-modified CdS photocatalysts in organic solvents.

Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113(1): 93–97

- 143. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S, Okada T, Kobayashi H. Effect of surface structures on photocatalytic CO<sub>2</sub> reduction using quantized CdS nanocrystallites. Journal of Physical Chemistry B, 1997, 101(41): 8270–8278
- 144. Nguyen N T, Altomare M, Yoo J, Schmuki P. Efficient photocatalytic H<sub>2</sub> evolution: controlled dewetting–dealloying to fabricate site-selective high-activity nanoporous Au particles on highly ordered TiO<sub>2</sub> nanotube arrays. Advanced Materials, 2015, 27(20): 3208–3215
- 145. Bouhadoun S, Guillard C, Dapozze F, Singh S, Amans D, Bouclé J, Herlin-Boime N. One step synthesis of N-doped and Au-loaded TiO<sub>2</sub> nanoparticles by laser pyrolysis: application in photocata-

lysis. Applied Catalysis B: Environmental, 2015, 174–175: 367–375

- 146. Wu H J, Henzie J, Lin W C, Rhodes C, Li Z, Sartorel E, Thorner J, Yang P, Groves J T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nature Methods, 2012, 9(12): 91189
- 147. Tao A, Sinsermsuksakul P, Yang P. Polyhedral silver nanocrystals with distinct scattering signatures. Angewandte Chemie International Edition, 2006, 45(28): 4597–4601
- 148. Han B, Ou X, Deng Z, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Nickel metal–organic framework monolayers for photoreduction of diluted CO<sub>2</sub>: metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811– 16815