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Abstract In the present scenario, the utilities are
focusing on smart grid technologies to achieve reliable
and profitable grid operation. Demand side management
(DSM) is one of such smart grid technologies which
motivate end users to actively participate in the electricity
market by providing incentives. Consumers are expected
to respond (demand response (DR)) in various ways to
attain these benefits. Nowadays, residential consumers are
interested in energy storage devices such as battery to
reduce power consumption from the utility during peak
intervals. In this paper, the use of a smart residential energy
management system (SREMS) is demonstrated at the
consumer premises to reduce the total electricity bill by
optimally time scheduling the operation of household
appliances. Further, the SREMS effectively utilizes the
battery by scheduling the mode of operation of the battery
(charging/floating/discharging) and the amount of power
exchange from the battery while considering the variations
in consumer demand and utility parameters such as
electricity price and consumer consumption limit (CCL).
The SREMS framework is implemented in Matlab and the
case study results show significant yields for the end user.

Keywords smart grid, demand side management (DSM),
demand response (DR), smart building, smart appliances,
energy storage

1 Introduction

Recent advancements in the power sector lead the utilities
to operate the grid in an efficient, reliable, and safe manner.
Further, the adoption of information technology, commu-

nication technology, cyber security systems, and internet of
things for the betterment of power grid operations, has
introduced a new paradigm called smart grid [1]. Different
sectors of power system such as generation, transmission,
and distribution are being simultaneously updated with the
above mentioned technologies to build a smart grid
environment. For instance, installation of distributed
generation units instead of a centralized one, incorporation
of wide area monitoring and control by optimally placing
the phasor measurement units in transmission systems, and
motivating the end user to take part in the day to day
activities of the energy society are a few attempts to
achieving a smart grid. Demand side management (DSM)
[2] is one of such smart grid activities in which the utility
maintains the demand supply balance by directing
consumers to change their electricity demand [3]. Further,
consumers are encouraged by the utilities to actively
participate in the electricity market in order to reduce their
electricity bill and avail more benefits from the utility by
time scheduling their energy consumption pattern [4]. As a
part of DSM programs, the utilities are following various
pricing schemes [5] such as two-way tariff (variable price
only between peak and non-peak intervals), day ahead
pricing, and real time pricing (RTP). In the RTP scheme,
the utility announces the electricity price of a particular
pricing interval just before that interval begins [6]. On the
other hand, few utilities are imposing a time varying
consumer consumption limit (CCL) [7] to improve the
peak to the average ratio of the system. The consumer is
penalized if he/she consumes beyond the predefined CCL
of the utility. The alterations carried out by consumers in
their consumption pattern as a response to the DSM
programs proposed by the utility is termed as demand
response (DR) [8]. In DR programs, consumers adjust their
demand pattern considering the variations in electricity
price and/or CCL so as to reduce the electricity bill and
avail more incentives from the utility. The importance and
benefits of the DR are discussed in Ref. [9].
Nowadays the utilities prefer to follow the RTP scheme

along with the variable CCL in order to obtain more
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economical profit and better reliability in grid operation. In
this scheme, the utilities fix a high electricity price and less
CCL during peak intervals compared to the non-peak
intervals. Hence, residential consumers schedule most of
their loads during non-peak intervals without/with com-
promising their comfort in order to reduce their total
electricity bill. As a consequence, the residential con-
sumers are finding an alternate to support their essential
demands during peak intervals through energy storage
devices. Among various energy storage techniques, battery
banks are mostly preferred by residential consumers [10]
because of their operational easiness and economic
benefits. If charging and discharging operation of battery
banks are properly time scheduled, consumers may enjoy a
significant reduction in electricity bill without deteriorating
the life of battery [11]. This necessitates the use of an
energy management system in the residential building with
smart home appliances and battery banks.
The impact of smart household appliances and variable

energy price on reduction in electricity bill are discussed in
Refs. [12–14]. A home energy management system is
proposed by Pipattanasomporn et al. to manage the total
power consumption below a predefined demand level [15].
In the model proposed, the loads are scheduled as per the
user predefined priority and power consumption limit. A
mixed integer nonlinear optimization model is developed
in Ref. [16] to minimize the total electricity bill in the time-
of-use electricity tariff environment. The benefits of battery
energy storage are briefly discussed in Ref. [17]. Purvins
et al. have discussed the key role of battery management
systems in household demand smoothening [18]. The
modeling of battery for residential peak demand shaving is
presented in Ref. [19]. Further, the authors have tested their
model with different residential buildings and the results
expressed considerable percentage reduction in peak
demand in all cases. Setlhaolo [10] has developed a
mixed integer nonlinear programming based optimization
model which schedules household appliances along with
the battery in order to attain the reduction in electricity bill
and peak demand shaving under time of use electricity
tariff. Saravanan [20] has proposed a game theoretic
energy schedule method to reduce the peak to average
power ratio by optimizing the user’s energy schedules. The
author has expressed that the method proposed is beneficial
for both users and power companies. Muratori and Rizzoni
[21] have proposed a dynamic energy management
framework. In the model proposed, the residential demand
is estimated by a novel bottom-up approach and the
optimal schedule of all controllable appliances minimizes
the consumer electricity related expenditures. An advanced
battery management system presented in Ref. [22] is
capable of monitoring the voltage, current, power, energy,
and state of charge (SOC) for each battery in the array. A
new smart energy management algorithm is proposed in
Ref. [23] for the hybrid energy storage system (HESS).
The HESS contains battery and ultra-capacitor energy

storage units. Experimental result shows that the algorithm
proposed reduces the operational costs of the energy
storage system and increases the system efficiency.
In all the above references discussed, scheduling is

performed only for deferrable loads (DLs). However, the
operational dynamics of non-deferrable loads (NDLs) will
have a major impact on electricity bill, which is not
discussed extensively. Further, the consumer behavior on
the operation of the DLs is taken as either the time of using
probability or from the usage history, which may pose
additional operational challenges when the user alters his/
her life style. Few authors have included battery as an
energy storage device along with the energy management
model. However, the optimal scheduling of battery while
considering the dynamics of consumer behavior and utility
operation is not widely addressed.
It is expected that the optimal scheduling of the DLs

along with the battery and due consideration of the
operational dynamics of the NDLs shall keep the total
demand under CCL, which will save the consumer from
penalization. In addition to the optimal scheduling of mode
of operation of battery (charging/floating/discharging), if
the amount of power exchange in the battery is optimally
scheduled, the savings in electricity bill will increase along
with the better utilization of the battery. Further, the
comfort of the user will be enhanced by acquiring the real
time update of the required operational changes of the
household loads while scheduling. To attain these goals, a
smart residential energy management system (SREMS) is
proposed and demonstrated in this paper.
The SREMS proposed assumes that the residence is

equipped with household appliances having smart and
communication features, battery banks, and a utility
interfaced smart meter. The smart meter provides a real
time update of the utility dynamics such as variations in
electricity price and CCL to the SREMS. The aim of this
paper is to develop a real time scheduling algorithm for the
DLs and the battery units to increase the savings in
electricity bill while considering the operational dynamics
of the NDLs, consumer comfort, and utility operational
behavior such as variations in electricity price and CCL.
The major contribution of this paper are listed as follows:
① the development of scheduling algorithm for the DLs
and the battery units to minimize the electricity bill while
considering the operational dynamics of the NDLs, the
desire and comfort of the user, the operational constraints
of the DLs and the battery, the variation in electricity price
of the utility, and the operational limit proposed by the
utility; and② the SOC analysis for showcasing the savings
from investment cost of battery.

2 Architecture of the system proposed

Presently, residential buildings are filled with different
kinds of electrical appliances to increase the comfort of
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consumers and to complete their tasks in easy and efficient
way. On the basis of operating nature and power
consumption pattern, residential loads are categorized
into three types, namely, essential non-deferrable loads
(ENDLs), interruptible non-deferrable loads (INDLs), and
DLs.
ENDLs are critical loads which are expected to respond

immediately whenever the user needs them. Continuous
loads such as building security systems; essential loads
such as lighting, fan, personal computer, its accessories
and mobile/laptop charging; entertainment loads such as
television, DVD player, speaker and home decorates; and
kitchen loads such as cooking stove, mixer and toaster are
classified as this category. Since the time of operation of
these loads in a day is solely dependent on the need and
availability of consumers, the time scheduling of these
loads may hinder the well-being of users. Hence, the
SREMS does not control the operation of the ENDLs.
However, the SREMS considers the total demand of all the
ENDLs for effective scheduling of other types of loads.
Further, the SREMS delivers an alert message whenever
the total demand of the ENDLs exceeds the pre-defined
limit set by the user.
The second category, the INDLs are thermostatic loads.

These loads should maintain the operating temperature at
the consumer set value and within the manufacturer
defined tolerance limit. Cooling loads such as air
conditioner (AC), air cooler, and refrigerator; heating
loads such as water heater and space heater fall into this
category. The power consumption pattern of these loads is

merely dependent upon the consumer availability and
seasonal variations. The DLs are non-critical loads which
can be flexibly operated anywhere in the predefined time
span to complete the task. Considering the operating
nature, the DLs are further classified into preemptive
deferrable loads (PDLs) and non-preemptive deferrable
loads (NPDLs). The PDLs may be operated continuously
or discontinuously to complete the given task. The plug-in
hybrid electrical vehicle (PHEV), well pump and dish
washer are examples of the PDLs. The NPDL should be
operated without any interruption once it is started. The
cloth washer, cloth dryer, and grinder are examples of the
NPDLs.
As discussed in Section 1, residential consumers are

interested in energy storage devices (battery) to support the
power demand during peak intervals in order to reduce the
total electricity bill. The mode of operation of the battery
and the power exchange are optimally controlled by the
SREMS with due consideration of the operational
dynamics of household appliances and utility parameters
such as energy price variation and CCL. The block
diagram representation of the SREMS proposed is shown
in Fig. 1.
Since the operating nature of the ENDLs are merely

based on consumers’ interest, the SREMS considers all the
ENDLs as a single load whose power consumption is time
varying. The smart ENDLs module delivers the aggregate
demand of all the ENDLs to the SREMS processing unit at
regular intervals. Further, this module alerts the user
whenever the aggregate ENDLs demand exceeds the

Fig. 1 Architecture of proposed SREMS
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predefined limit.
Each INDL has a direct communication with the

SREMS through the smart INDLs module. This module
receives the information such as power rating for different
operating conditions (RUN/STANDBY), tolerance limit,
and operating information such as ON/OFF status, set
point temperature and operating temperature from each
INDL. Further, this module delivers the controlling signal
such as RUN/STANDBY to each INDL as instructed by
the SREMS processing unit. The smart DLs module
interconnects the SREMS with the DLs and updates the
information such as the time span of operation and the
power rating of the DLs. Further, this module delivers the
controlling command (ON/OFF) obtained from the
SREMS processing unit as a result of the optimal
scheduling algorithm to DLs.
The smart battery module collects the battery specifica-

tions such as Ah rating, maximum and minimum limits of
charging and discharging current through user interface.
Further, it computes the present SOC of the battery. This
information is transferred to the SREMS processing unit
for further processing. The SREMS dictates the mode of
operation of the battery and the amount of power exchange
to the battery converter through the smart battery module.
The battery converter controls the operation of the battery.
Residential consumers are interconnected with the utility

through smart meter which receives the utility updates
such as electricity price and CCL at regular intervals. This
information is delivered to the SREMS processing unit
through smart meter interface. The user interface module
helps the consumer to convey their requirements to the
SREMS. Further, this module displays the instantaneous
total power demand, energy consumption over a period of
time, electricity bill and history data such as maximum
demand, average demand and, demand variation in
previous days. The basic steps involved in the implemen-
tation of the proposed model are listed below.
Step 1: Ensure that the residential building is equipped

with the smart meter having a two-way communication
feature and connected to the utility.
Step 2: Collect the details of household appliances and

categorize them into the ENDLs, the INDLs, and the DLs
based on their operational characteristics.
Step 3: Ensure that all the INDLs and the DLs are smart

loads with communication features and have provision for
automatic controls as per the instruction received from the
SREMS.
Step 4: Ensure that all the ENDLs are directly inter-

connected with the smart ENDLs module and every INDL
and DL is individually connected with the smart INDLs
module and the smart DLs module respectively.
Step 5: Collect the battery parameters: maximum capa-

city, voltage, operating efficiency, SOC limitation, and
operating current limitation.
Step 6: Start and run the SREMS.

Step 7: Fix the user defined parameters such as the
amount of power reserved for the operation of the NDLs in
all intervals.
Step 8: Define the extended tolerance limit for the

INDLs if the user is more concerned about reduction in
electricity bill and less concerned about comfort. Other-
wise, set this limit to zero.
Step 9: New DLs can be added by updating the

operational information such as initialization interval and
dead time interval through the user interface module. In
addition to this information, the smart DLs deliver the
number of intervals required to complete the task and
preemptive status of the corresponding DL to the SREMS.
Step 10: The INDLs, the DLs, and the battery are

controlled/scheduled with the help of the smart INDLs
module, the smart DLs module, and the smart battery
module respectively as per the instruction received from
the SRMES.
Step 11: Update the changes if any such as changes in

dead time intervals and extended tolerance limit of the
INDLs through user interface module.
Step 12: Repeat Steps 7 to 11 until the user manually

interrupts the SREMS.

3 Modeling of residential components

In this paper, a residential building with several household
appliances along with the battery energy storage is
considered for study. For simplicity, the modeling of all
the household components is done for steady-state
performance analysis, whereas the initial switching
transients are not taken into account.

3.1 Modeling of ENDLs

As discussed in Section 2, the power consumption pattern
of the ENDLs varies as per the consumer’s interest.
Further, controlling the operation of these loads may
reduce the comfort of the user. Hence, the SREMS does not
have any control on these loads. However, the SREMS has
provision to give an alert message whenever the ENDLs
demand exceeds the predefined limit. This would help the
consumer to reduce the electricity bill by reducing the
power consumption.

3.2 Modeling of INDLs

The power consumption pattern of the INDL is totally
dependent upon the thermal dynamics of the surroundings.
Once the user initializes an INDL, it compares the present
room temperature with the consumer set temperature. For
cooling the INDL (heating INDL), if the room temperature
is above (below) the tolerance limit at a temperature set by
the user, it starts to consume the rated power until the
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operating temperature reaches the temperature set. If the
operating temperature is within tolerance limit, the INDL
continues the previous interval operation. This process is
repeated till the user manually disconnects the power
supply of the INDL.
Let us consider that a residential building has a set of

INDLs (ℂ) with user defined set of monitoring intervals
(ℚ). The status vector which expresses the operation
(RUN/STANDBY) of an INDL c ðc 2ℂ @ ½1,2,:::c,:::,C�Þ
in each interval q ðq 2ℚ @ ½1,2,:::Q�Þ is defined as

Oc¼ ½o1c ,o2c ,$$$,oqc ,$$$,oQc �,  8c 2 , (1)

where C is number of available INDLs and Q is the user
defined number of non-deferrable load (NDL) intervals in
a day,

Q ¼ 24$
60

ANDL

� �
:

Here, ANDL is the duration of a non-deferrable load interval
in minute. Considering different types of INDLs, if c is a
cooling load, the status (oqc) of c during the interval q can
be expressed as

oqc ¼

–1 if c is not yet initialized

0 if Hatq – 1c < Hstc

1 if Hatq – 1c > Hstc þ ΔHtlc

oq – 1c if Hstc £ Hatq – 1c £ Hstc þ ΔHtlc

8>>>>><
>>>>>:

: (2)

If c is a heating load, it can be expressed as

oqc ¼

–1 if c is not yet initialized

0 if Hatq – 1c > Hstc

1 if Hatq – 1c £ ΔHstc –ΔHtlc

oq – 1c if Hstc –ΔHtlc £ Hatq – 1c £ ΔHstc

8>>>>><
>>>>>:

, (3)

where Hstc and ΔHtlc are the user set point temperature and
maximum allowable tolerance limit of an INDL c
respectively. The actual temperature at the end of interval
q – 1 is represented as Hatq – 1c .

3.3 Modeling of DLs

The DLs are flexible to schedule and operate anywhere
within the pre-fixed time span. The user has provision to
fix the length of time span as per the required comfort and
desire. Let the building be equipped with set of DLs (D).
The status (ON/OFF) of DL d over a day is expressed by
the scheduling vector Ld which is defined as

Ld ¼ ½l1d ,l2d ,:::,lrd ,:::,lRd �, 8d 2 , (4)

where R is the total number of deferrable load intervals in a

day

R ¼ 24$
60

ADL

� �
:

Here, ADL is the duration of each deferrable load interval in
minute set by the consumer. Individual element of the
scheduling vector lrd describes the status of the DL d during
deferrable load interval r and is given as

lrd ¼
0 if load d is OFF

1 if load d is ON
, 

(
8d 2 ; r ¼ 1,2,:::,R: (5)

The SREMS receives the functional parameters of DLs
from the user from the user interface module or directly
from the DLs (if it has advanced communication features).
This information includes the load initialization interval
(αd) in which the SREMS can add the load d into the
scheduling process and dead time interval (σd) in which the
task of the corresponding load d should be completed. The
actual number of intervals required to complete the task
(τd) can be either set by the user or computed by the DL if it
possesses any artificial intelligence. For example, a smart
cloth washer computes the τd by considering the weight of
clothes put into it. In the same way, a well pump computes
τd by sensing the present water level in the water tank. The
necessary condition for the selection of the time span of
operation is expressed as

τd £ �d – αd, 8d 2 : (6)

As discussed in the architecture, some of the DLs
(NPDLs) should RUN continuously once they are started.
The SREMS distinguishes this kind of DL by considering
its preemptive status which is updated by the user. The
preemptive status of the deferrable load d is represented by
fd and its value is assigned as

fd ¼
0 for interrptive loads ðPDLsÞ
1 for non interruptive ðNPDLsÞ

(
: (7)

3.4 Modeling of battery

The controllable parameters while modeling the battery are
the mode of operation (charging/floating/discharging) and
the amount of power exchange. Further, the SREMS
considers the battery as DL while charging, whereas during
discharging it is considered to be an additional source. Let
U be assumed to be the set of battery scheduling intervals.
The operating vector which represents the mode of
operation of the battery (charging (Suc ), floating (Suf ) and

discharging (Sud )) in interval u ðu 2U@½1,2,:::,U �Þ, is
defined as

S ¼ ½S1,S2,$$$,Su,$$$,SU �, (8)

ℂ

D

D

D
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Su ¼ ½Suc ,Suf ,Sud �: (9)

The number of scheduling intervalU in a day is obtained

as U =24$
60

ABS

� �
: Here, the duration of battery scheduling

interval ABS is fixed by the user as suggested by the
manufacturer. Each element of the operating vector in
interval u is expressed as

Su ¼ ½Suc ,Suf ,Sud � ¼
½1,0,0� if charging

½0,1,0� if floating

½0,0,1� if discharging

8><
>: : (10)

During starting of each battery scheduling interval (u),
the available SOC of the battery (Xu) is obtained by using
Eq. (11) [24]

X u ¼ Capðu – 1ÞþζBat
Pu
S

VBus

� �
ABS

60

� �� �
$

1

Mcap

� �
,

(11)

where Cap(u – 1) is the battery capacity in Ah during
starting of interval u – 1, ζBat is the round trip efficiency of
the battery, VBus is the DC bus voltage in V, andMcap is the
maximum Ah capacity of the battery. The battery storage
power for interval u, Pu

S can be obtained using Eq. (12)

Pu
S ¼ ð1 – Suf ÞðSuc $Pu

SC – S
u
d$P

u
SDÞ, (12)

where the subscript S stands for battery storage, Pu
SC is the

battery storage charging power and Pu
SD is the battery

storage discharging power of the battery, the subscript SC
and SD stand for battery storage charging and battery
storage discharging, respectively.

4 Scheduling of different components

The objective of the SREMS proposed is to reduce the total
electricity bill to be paid to the utility without disturbing
the consumer’s comfort and desire. To achieve this, the
SREMS shifts the operation of the DLs from peak intervals
when the energy cost is high to non-peak or mid-peak
intervals when the energy cost is comparatively less.
Further, the SREMS maintains the total demand under
CCL to avoid excess payment. The full time horizon of the
SREMS is divided into different types of intervals, namely
the NDLs, the DLs, battery scheduling, and pricing
intervals. The duration of non-deferrable load interval
(ANDL) is decided by the users based on their own interest.
Generally, ANDL is preferred to have a short time duration
in order to appropriately consider the practical variations in
the demand pattern of the NDLs. The power demand by the
NDLs (ENDLs and INDLs) is assumed to be constant for a
given non-deferrable load interval q. The duration of
deferrable load intervals (ADL) is defined by the consumer
with due considerations to the operational constraints of

the DLs. The operation of the DLs is non-interruptible in
the given deferrable load interval (r) if the status of the DLs
is ON at the beginning of the interval.
The selection of the duration of the battery scheduling

interval (ABS) mainly depends upon the direction given by
the manufacturer on the continuous operation of battery.
During a particular battery scheduling interval (u), the
SREMS fixes the mode of operation of battery and the
amount of power exchange by it. Finally, the pricing
interval duration (AP) is fixed by the utility. The electricity
price remains constant during a pricing interval. From the
present and history data, the electricity price can be
predicted for the future intervals. Appreciable performance
of the SREMS would be anticipated when the duration of
various intervals satisfies

AP ³ ADL ³ ABS ³ ANDL: (13)

Since the operation of the ENDLs is merely dependent
upon the consumer availability, comfort and desire, the
SREMS cannot control these loads. However, the expected
total power required for the operation of all ENDLs during
the present and future intervals is considered in the
scheduling process to maintain the total demand under
CCL in every interval. Succinctly, the SREMS provides
the optimal values of decision variables oqc , lrd , S

u, Pu
SC, and

Pu
SD for all the intervals so as to reduce the electricity bill of

the consumer. The basic steps involved in the scheduling
of household components by SREMS are presented as a
flowchart in Fig. 2.

4.1 Scheduling of INDLs

As the INDLs are mainly luxurious loads, the time
scheduling of them would utterly affect the comfort of
the consumer. However, the SREMS can interrupt the
operation of these loads if the user is more concerned about
the electricity bill. To achieve this, the consumer has to
extend the tolerance limit defined by the manufacturer. If
the total demand exceeds the CCL, the SREMS can
interrupt the operation of the INDL till the present
operating temperature reaches the user defined extended
tolerance limit (ΔHelc). In the case that more numbers of
the INDLs are initialized simultaneously, the SREMS
controls them by considering the priority of each load. If c
is a cooling load, the priority of an INDL c in interval q, Fq

c

is determined as

Fq
c ¼ 0

if INDL c is not yet initialized

else if Hatq – 1c < Hstc

(

1 –ΔFq
c otherwise

8><
>: ,

(14)

ΔFq
c ¼ Hstc þ ΔHtlc þ ΔHelc –Hat

q
c

ΔHtlc þ ΔHelc
: (15)

If c is a heating load, it is determined as
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Fq
c ¼ 0

if INDL c is not yet initialized

else if Hatq – 1c > Hstc

(

1 –ΔFq
c otherwise

8><
>: ,

(16)

ΔFq
c ¼ Hatqc – ðHstc –ΔHtlc –ΔHelcÞ

ΔHtlc þ ΔHelc
: (17)

The SREMS decides to operate the INDLs having a
priority greater than or equal to 1. To satisfy the CCL

Fig. 2 Flowchart of proposed SREMS
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constraint, the rest of the INDLs are operated in the order
of high to low priority. However, the SREMS delays the
operation of low priority loads to subsequent intervals
when the total demand exceeds the CCL.

4.2 Scheduling of DLs

Since the operation of DLs is flexible with the utility
parameters (electricity price and CCL), the SREMS
optimally schedules the DLs to achieve reduction in the
total electricity bill. This scenario is modeled as an
optimization problem with the objective function as
minimization of the total electricity bill subjected to
various operational constraints. To account the real time
modifications, the SREMS does the scheduling process
between the present deferrable load interval and the
maximum dead time interval (rmd) of all initialized and
not completed DLs. Hence, the set of deferrable load
intervals which is used for the optimization process varies
dynamically in every interval. This dynamic set (I) with
the present operating interval (r) is expressed in

¼ ½r,r þ 1,:::,rmd�: (18)

The objective function of the optimization problem
proposed is given in

minðΣ
i
Ei
T$Γ

iÞ, 8i 2 , (19)

Ei
T ¼ Pi

ENDL þ Pi
NDL þ Pi

DL þ Pi
S

� �
$

ADL

60

� �
, (20)

where i is an element of the dynamic set I and the total
energy consumption during interval i is Ei

T and the utility
electricity price for interval i is Γ i. During optimization,
the SREMS reserves the expected power (Pi

ENDL and P
i
NDL)

for the operation of the NDLs (ENDLs and INDLs) in the
upcoming intervals. Pi

DL is the total power demand by DLs,
which includes the reserved power for the operation of the
NPDLs (which are started in previous intervals) and the
required power for the scheduled DLs in interval i, and Pi

S
is the scheduled battery power in interval i. The constraints
involved in the optimization process are expressed in the
subsequent subsections.

4.2.1 Load scheduling constraint

Any DL should be scheduled only during the user
predefined time span [αd,σd]. Therefore, if the deferrable
load interval r does not exist in the predefined time span,
the operating status of the DL d during interval r (lrd)
should be zero. This is a hard constraint and expressed as

lrd ¼ 0; r < αd ,   8d 2
lrd ¼ 0; r > �d , 8d 2 : (21)

4.2.2 Number of intervals constraint

As discussed in Section 2, the DLs are smart enough to find
the number of intervals required to complete the task
assigned. The SREMS should schedule the DLs only for
the number of intervals. This hard constraint is given in Eq.
(22).

X�d
j¼r

ljd ¼ γjd , 8d 2 , (22)

where γrd is the number of intervals needed to complete the
task from interval r.

4.2.3 Interruption constraint

The NPDLs should be operated continuously once they
begin their assigned task. This is formulated as a hard
constraint and given in Eq. (23):

Xφ – 1
2¼0

Π
αdþτdþ2 – 1

Q¼ αdþ2
lQd fd ¼ fd , (23)

φ ¼ �d – αd – τd þ 2: (24)

4.2.4 Consumer consumption constraint

To reduce the total electricity bill, the total demand of the
consumer at any interval r should be maintained within
CCL (Pr

CCL) assigned by the utility. Whenever the
consumer consumes beyond CCL, they are penalized
with a high cost by the utility. Hence, the SREMS should
consider the expected demand of the NDLs (ENDLs and
INDLs) for future intervals while scheduling the DLs.
Further, the SREMS should schedule the battery operation
in such a way that the battery supports the demand during
peak intervals. Always trying to keep the power demand
under CCL may occasionally affect the comfort of the
consumer. Hence, this constraint is considered as a soft
constraint which is expressed in Eq. (25).

Pr
ENDLs þ Pr

NDLs þ Pr
DLs þ Pr

S £ Pr
CCL

1

vrþ1 Prþ1
DLs þ Prþ1

S

� �
£Prþ1

CCL

M

1

vrmd
Prmd
DLs þ Prmd

S

� �
£Prmd

CCL

,

8>>>>>>>>>><
>>>>>>>>>>:

(25)

where vr is the user defined factor to reserve power for the
operation of NDLs in interval r. The expected demand of
the NDLs is either computed from the history of data or
directly obtained from the user. Either avoiding the

I

I

D
D

D
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consideration of expected demand of the NDLs for future
intervals or assuming the same expected demand for the
NDLs during all deferrable load intervals leads the
SREMS to scheduling all the DLs during non-peak or
mid peak intervals, which may violate the consumer
consumption constraint. Hence, the reservation factor is
introduced in the constraint. This factor varies in the range
of [0, 1].

4.2.5 Battery constraints

In each deferrable load interval, the SREMS has to
schedule the battery operation in any one of the following
modes: charging, discharging, and floating. This is
formulated as a hard constraint and given in Eq. (26).

Sr ¼ Src þ Srf þ Srd ¼ 1, (26)

where Sr is the scheduled operating vector which
represents the mode of operation of the battery (charging
Src, floating Srf and discharging Srd) in a deferrable load
interval r.
The variable parameters of the battery such as SOC,

charging power, and discharging power should be main-
tained in between their maximum and minimum limits for
preserving the life of the battery. These hard constraints are
formulated as

Xmin £ X r £ Xmax, (27)

PBCmin £ Pr
SC £ PBCmax, (28)

PBDmin £ Pr
SD £ PBDmax, (29)

where [Xmin, Xmax], [PBCmin, PBCmax] and [PBDmin,
PBDmax] are the minimum and maximum limits of the
battery SOC, charging power, and discharging power
respectively. The SOC of the battery at any deferrable load
interval r (Xr) is calculated at the starting of the
corresponding interval. Pr

SC and Pr
SD are the scheduled

charging and discharging power of the battery for interval r
respectively.
The optimization problem formulated with the objective

function (Eq. (19)) and subject to various hard and soft
constraints (Eqs. (21–29)) is solved using the genetic
algorithm (GA). The optimal parameters (lrd , S

r,Pr
SC, and

Pr
SD) which are obtained as the result of the optimization

problem proposed are used by the SREMS to achieve
reduction in total electricity bill. The steps involved in the
optimization process are briefed in Algorithm-1 (optimal
scheduling of DLs and battery using GA) as below.
Step 1: Start the optimization process with variables (lrd ,

Sr, Pr
SC and Pr

SD).
Step 2: Define the population size and maximum

number of iterations for the GA.
Step 3: Initialize the iteration count as 1.
Step 4: Randomly assign the initial population.

Step 5: Set the population count as 1.
Step 6: Compute the objective function and check for

constraint satisfaction.
Step 7: Pick the next population and repeat the previous

step until all population are considered.
Step 8: From the present iteration, formulate the

population set for the next iteration using GA operators
(crossover and mutation).
Step 9: Repeat Steps 5–8 till the iteration count reaches

the maximum value.
Step 10: Export the optimal schedule of the DLs and the

battery which satisfies all the constraints with the minimum
electricity bill.

4.3 Scheduling of battery

If the duration of battery scheduling and deferrable load
interval is the same, the battery follows the mode of
operation and the amount of power transfer dictated by the
scheduling algorithm. If the duration of these intervals is
different, rescheduling of the battery within a deferrable
load interval may increase the savings in the electricity bill.
This rescheduling should be done with due consideration
to the dynamics in the operation of the NDLs and utility
parameters because the power demanded by the NDLs are
not fixed for the entire deferrable load interval.
For example, during a particular deferrable load interval,

assume that the scheduling algorithm decides the mode of
operation of the battery as charging, but due to the increase
in the number of persons, the total demand by the NDLs
increases. In this situation, if the battery follows the
charging mode operation for the entire deferrable load
interval, the total demand of the consumer may exceed the
CCL and the total electricity bill may increase. Hence, the
mode of operation of the battery may be rescheduled.
However, rescheduling the battery operation in every non-
deferrable load interval badly affects the life of the battery.
To save the life of the battery, the SREMS reschedules the
battery operation only in every battery scheduling interval
u while considering the total demand Pu

E and the SOC
limitation.
Here, Pu

E is the total household demand excluding the
scheduled battery power exchange during interval u. As a
part of the flowchart depicting the functioning of the
SREMS proposed as presented in Fig. 2, the steps involved
in the rescheduling of the battery operation is given in
Fig. 3.

5 Case study

The framework proposed is validated through a case study
by analyzing the possible reduction in the electricity bill to
be paid to the utility by a residential consumer. A
residential building located at the National Institute of
Technology in Tiruchirappalli, India is considered for the
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case study.

5.1 Study environment

The details along with the power rating of the ENDLs,
INDLs and DLs in the residential building considered for
the case study are given in Tables 1, 2 and 3 respectively.
Further, the residential building is supported with an

energy storage device. It is assumed that the lead acid type
of the battery is used as the energy storage device. This
type of battery is commonly preferred by residential
consumers because of its operational advantages (rela-
tively low price, low investment cost, high availability,
reasonable performance, and long life cycle) [10]. The
battery parameters are listed in Table 4.
The duration of intervals are chosen in such a way that

the comfort of the user as well as the operational
constraints is not disturbed. The details of the duration of
intervals are tabulated in Table 5. To attain maximum
benefits, the necessary duration relationship (AP ≥ ADL ≥
ABS≥ ANDL) is maintained, while selecting the duration of

various intervals.
The utility defined CCL is presumed as 4 kW which is

Fig. 3 Rescheduling the battery operation

Table 1 ENDLs

S. No Load Power rating/kW

1 Fan 0.10

2 Fluorescent lamp 0.04

3 Compact fluorescent lamp (CFL) 0.02

4 Television (TV) 0.25

5 Mobile/laptop charging 0.05

Table 2 INDLs

S. No Load Power rating/kW

1 AC-1 1.5

2 Water heater 2.0

3 Refrigerator 0.5

4 AC-2 1.0
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anticipated to be constant for all pricing intervals (peak,
mid-peak, and non-peak intervals) in a day. The utility
penalization for consuming more than CCL is considered
to be 2.5 times of base payment. The optimization problem
involved in the SREMS scheduling process is solved by
using GA with a maximum iteration of 150 and a
population size of 100. The SREMS framework proposed
is developed in Matlab. References [25,26] reported
various energy cost prediction techniques for future
intervals. However, this particular study assumes that the
utility provides the electricity price for the present and
future intervals through the smart meter.

5.2 Results and discussion

The results of this case study are presented and compared
with the daily and annual electricity bill obtained without
the SREMS proposed and the energy storage device. It is
found that the SREMS reduces the electricity bill on the
day of simulation from 200.94 cents to 163.57 cents, which
results in a 18.32% reduction in daily electricity bill.
The maximum demand of the building for all deferrable

load intervals is obtained and exhibited in Fig. 4. It can be

observed that the SREMS maintains the demand within
CCL in almost all deferrable load intervals. The duration of
the total demand exceeding CCL in a day is reduced from
219 min to 95 min and the energy consumption with excess
payment is also reduced from 5.43 kWh to 0.86 kWh. For
better comparison, the variations in the average demand of
different categories of household components over the
duration of deferrable load interval in both the methods
(without and with SREMS) are demonstrated in Fig. 5.

To analyze the effectiveness of the SREMS proposed,
the simulation is further extended to a period of one year.
The duration of all intervals (ANDL, ABS, ADL, and AP) are
considered as one hour to show the results for better clarity.
The total electricity bill of the residential building
considered is reduced from $2336.84 to $1824.72, which
confirms that there is a 21.92% reduction in the annual
electricity bill. The hourly demand variation of different
categories of household loads for a particular week in
different climatic seasons (month of January, May and
September) without and with the SREMS are depicted in
Figs. 6(a) and 6(b) respectively. The set of the daily
electricity bill by all the components during different
months (January, May and September) without and with
the SREMS are plotted in Figs. 7(a) and 7(b) respectively.
The results obtained from this case study confirm that

the SREMS reduces the electricity bill by properly time
scheduling the DLs and the battery while considering the
dynamics in the operation of the NDLs and utility
parameters. The SREMS schedules the battery to a
charging mode whenever the electricity price is compara-
tively less (non-peak intervals). However, the battery is set
to be in a discharging mode when the price is high (peak
intervals). Succinctly, the SREMS maintains the total
household demand within CCL by properly adjusting the
battery power exchange during its different modes of

Table 3 DLs

S. No Load Power rating/kW Interruptive status

1 Cloth washer 0.8 1

2 Cloth dryer 2.7 1

3 Dish washer 2.1 0

4 Well pump 1.5 0

5 PHEV charging 2.3 0

6 Grinder 0.5 1

Table 4 Battery specifications

S. No Parameter Rating

1 Capacity 200 Ah

2 Voltage 12V

3 Charging efficiency 85%

4 Discharging efficiency 95%

5 SOC limit (30–90)%

6 Charging current limit (5–20)% of rated capacity

7 Discharging current limit (0–20)% of rated capacity

Table 5 Duration of intervals

S. No Interval Duration/min

1 Non-deferrable load 1

2 Battery scheduling 5

3 Deferrable load 15

4 Pricing 60

Fig. 4 Comparison of maximum demand
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Fig. 5 Comparison of averaged demand variation
(a) Without SREMS; (b) with SREMS

Fig. 6 Demand variation over a week in different months
(a) Without SREMS (consumer behavior); (b) with SREMS
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operations. To examine the performance of the SREMS
proposed with the battery, the simulation study is extended
to different battery capacities. The battery SOC is
considered to be in its minimum limit at the starting of
the study and the residential load pattern is assumed to be
the same for all the days under study. The battery SOC
variations for different battery ratings with CCL 2 kW and
4 kW are computed and presented in Figs. 8 and 9
respectively. From Figs. 8 and 9, it is very clearly observed
that the algorithm proposed leads to a similar charging and
discharging cycle for different ratings of the battery.
Further, the maximum depth of discharge observed is
around 25% only, which helps in preserving the battery
life.

6 Conclusions

In the present scenario, utilities are encouraging the
residential consumers to actively participate in the
electricity market through DSM programs. Consumers

are approaching various DR techniques in order to gain
more benefit from the utility. In this paper, a SREMS-based
DR technique is proposed for residential consumers to
reduce the total electricity bill by properly time scheduling
the DLs with due consideration to the operational
dynamics of the NDLs and the utility parameters such as
CCL and energy price. The mode of operation of the
battery and power exchange from the battery is also
effectively scheduled along with the DLs in order to
maintain the total demand within utility defined CCL so as
to avoid excess payment. The framework proposed is
validated with the test data obtained from a residential
building located on the campus of National Institute of
Technology in Tiruchirappalli, India. The results confirm
that the SREMS proposed considerably reduces the
electricity bill. Further the charging and discharging cycles
of the battery are effectively scheduled by the SREMS, for
preserving the battery life. The results obtained from the
SOC analysis while considering the different battery rating
and CCL prove the effectiveness of the SREMS proposed
in properly scheduling the battery.

Fig. 7 Components of energy cost per day in different months
(a) Without SREMS; (b) with SREMS
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Fig. 8 Battery SOC variation for different battery ratings at CCL = 2 kW
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Fig. 9 Battery SOC variation for different battery ratings at CCL = 4 kW
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