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Abstract There are various analyses for a solar system
with the dish-Stirling technology. One of those analyses is
the finite time thermodynamic analysis by which the total
power of the system can be obtained by calculating the
process time. In this study, the convection and radiation
heat transfer losses from collector surface, the conduction
heat transfer between hot and cold cylinders, and cold side
heat exchanger have been considered. During this
investigation, four objective functions have been opti-
mized simultaneously, including power, efficiency,
entropy, and economic factors. In addition to the four-
objective optimization, three-objective, two-objective, and
single-objective optimizations have been done on the dish-
Stirling model. The algorithm of multi-objective particle
swarm optimization (MOPSO) with post-expression of
preferences is used for multi-objective optimizations while
the branch and bound algorithm with pre-expression of
preferences is used for single-objective and multi-objective
optimizations. In the case of multi-objective optimizations
with post-expression of preferences, Pareto optimal front

are obtained, afterward by implementing the fuzzy,
LINMAP, and TOPSIS decision making algorithms, the
single optimum results can be achieved. The comparison
of the results shows the benefits of MOPSO in optimizing
dish Stirling finite time thermodynamic equations.

Keywords dish-Stirling, finite time model, branch and
bound algorithm, multi-objective particle swarm optimiza-
tion (MOPSO)

1 Introduction

The energy crisis and environmental concerns at the late
20th century drew the attention of worldwide societies to
fossil fuels replacements. One of the most important
replacements of fossil fuels is solar energy [1]. Dish-
Stirling systems by implementing solar energy in the
Stirling cycle are one of the most-known solar systems.
There are various analyses for a solar system with the dish-
Stirling technology. One of those analyses is the finite time
analysis. The finite time models were first attained by
Curzon and Ahlborn [2]. After about 20 years that this
model had been utilized, some researchers questioned the
applicability of the finite time models [3,4]. One of the
reasons of not trusting the finite time model is the
reversibility assumption that has been considered in this
model. Therefore, the results of the model have been
different from the experimental results. To improve this
error, a new parameter called the irreversibility factor was
developed. In some papers, including the research done by
Tlili [5], the benefits of this parameter was studied. In
another work conducted by Urieli et al., this parameter was
considered in the model [6–10].
There are many researches about Stirling engines and

their cycles. Wu et al. [11] considered the regenerator and
heat exchanger irreversibilities of Stirling engines. They
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also developed a correlation between the total output
power and the thermal efficiency. Petrescu et al. conducted
an analysis based on the first law of thermodynamics with
direct method and the finite speed model on a close cycle
and calculated the power and efficiency of the Stirling
engine [12]. Timoumi et al. [13] for the purpose of
increasing the efficiency of the Stirling engine, analyzed
the second order Stirling engine and some physical and
geometrical parameters in the engine efficiency. Cheng and
Yu [14] developed a numerical model for a Beta type
Stirling engine. They considered the non-isothermal
effects, the regenerator performance, and the heater
thermal resistance. They also predicted the periodic
changes in the pressure, volume, temperature, heat transfer,
and mass transfer rates of the system.
Ataer [15] studied a free-piston Stirling engine. In this

model, the piston replacement parameter was used and
therefore, time was eliminated from the equations. Tlili
[16], in one of his researches, maximized the output power
and efficiency of an internal reversible heat engine at the
maximum point of power. He considered the regenerator
loss in his study. Formosa and Despesse performed a
thermodynamic analysis on a free-piston Stirling engine.
They used the experimental data of a GPU-3 engine in their
model [17]. Formosa studied a free-piston Stirling engine
with a thermodynamic-dynamic semi-analytical model in
another work [18]. Some researchers did different works
about Stirling engines, Stirling cycles, and dish-Stirling
systems. The comparison of low and high temperature
differential Stirling engines, investigation of solar collector
design parameters, and study of a real engine were
included in these works [19–21].
Besides the analyses that have been done about Stirling

engines and cycles, there were some works which
optimized the Stirling cycles [22,23]. In some of these
papers, the simultaneous optimization of more than one
objective function was observed. This type of optimiza-
tion, called multi-objective optimization, basically used the
artificial intelligence methods to achieve the optimum
solution. One of the most popular methods used in Stirling
cycle optimizations was the genetic algorithm [24–32].
The genetic algorithm is a type of evolutionary algorithm.
In addition, some energy system optimizations were done
using the particle swarm optimization (PSO) methods. For
example, Chaitou and Nika optimized a thermoacoustic
engine [33]. In some of the optimizations, the multi-
objective particle swarm optimization (MOPSO) algorithm
was used for optimizing the Stirling cycles [34,35].
Most of the multi-objective optimizations done in the

previous studies were with post-expression of preferences,
and the algorithms implemented in these studies were
usually with three or less objective functions. In this
investigation, four objective functions are optimized
simultaneously, including the power, efficiency, entropy,
and economic factors. In addition to the four-objective
optimization, the three-objective, the two-objective, and

the single-objective optimizations are carried out on the
dish-Stirling model. In this study, the algorithm of MPOSO
with post-expression of preferences is used for multi-
objective optimizations while the branch and bound
algorithm with pre-expression of preferences is used for
single-objective and multi-objective optimizations. In the
case of multi-objective optimizations with post-expression
of preferences, after obtaining the Pareto optimal front by
implementing the fuzzy, LINMAP, and TOPSIS decision
making algorithms, the single optimum results can be
achieved.

2 Methodology

In dish-Stirling systems, parabolic mirrors reflect solar
light through a collector which reflects the radiation on the
hot side of Stirling engine. In the present system, it is
assumed that the dish is equipped with a sun tracker.
Therefore, at any moment, the maximum possible solar
energy reaches the collector. In addition to the hot side,
there is a cold side or heat sink in the Stirling engine. In this
study, it is assumed that the hot side and cold side have
constant temperatures.
As shown in Fig. 1, the Stirling thermodynamic cycle

consists of two isothermal and two constant-volume
processes. In process 1–2, a compressing working fluid
at a constant temperature of Tc rejects the heat to a heat sink
at a constant temperature of TL. In process 2–3, the
working fluid crosses over the regenerator in an isochoric
process and is preheated to the temperature of Th. In
process 3–4, the working fluid receives the heat from the
heat source and expands through an isothermal process
with a temperature of TH. In process 4–1, the working fluid
cools down through a constant-volume process by the
regenerator.
By considering the convection and radiation heat losses,

Fig. 1 Thermodynamic cycle of Stirling
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the useful thermal energy received may be calculated by
Eq. (1).

qu ¼ IAappη0 –Arec½hðTH –T0Þ þ εδðT4
H – T4

0 Þ�, (1)

where I is direct solar flux intensity and Aapp is collector
aperture area.
The thermal efficiency of the dish-Stirling system can be

calculated by

ηs ¼
qu

IAapp
¼ η0 –

1

IC
h TH –T0ð Þ þ εδ T4

H – T4
0

� �� �
, (2)

where C is collector concentration ratio.
The heat transferred at the hot side and the cold side of

the Stirling cycle can be calculated by Eqs. (3) and (4).

Qh ¼ ½hhAHðTH – ThÞ�th, (3)

Qc ¼ ½hcALðTc – TLÞ�tl, (4)

where th and tl are the duration times of the heat transfer
process at the hot side and the cold side, respectively.
By implementing the thermodynamic equations and the

entropy definition, the heat that is transferred at the hot side
of the cycle may be calculated by Eq. (5). Also, by
considering the irreversibility factor (f), the rate of heat
transfer at the cold side of the cycle is calculated by Eq. (6).
It is worthy to mention that the irreversibility factor can be
greater than or equal to one.

Q34 ¼ Qh ¼ nRThln
V4

V3

� �
¼ nRThlnl, (5)

Qc ¼ fnRTcln
V1

V2

� �
¼ fnRTclnl: (6)

By simultaneously using the thermodynamic and heat
transfer equations, the duration time of each Stirling cycle
process can be calculated. By utilizing Eqs. (3) and (5), the
duration time of process 3–4 may be obtained throug
Eqs. (7) and (8).

½hhAHðTH – ThÞ�th ¼ nRThlnl, (7)

th ¼
nRTclnl

½hhAHðTH – ThÞ�
: (8)

Also, by applying Eqs. (4) and (6), the time of heat
transfer at the cold side can be calculated by Eqs. (9) and
(10).

½hcALðTc – TLÞ�tl ¼ fnRTclnl, (9)

tl ¼
fnRTclnl

½hcALðTc –TLÞ�
: (10)

To calculate the time of regenerator processes, Eq. (11)
can be used.

dT

dt
¼ �Mi, (11)

where M is only a function of property of the regenerator
materials and called the regenerative time constant. In this
regard, the time of processes 2–3 and 4–1 can be calculated
by Eqs. (12) and (13).

t3 ¼
Th – Tc
M1

, (12)

t4 ¼
Th – Tc
M2

: (13)

Therefore, according to Eqs. (7) to (13), the total time of
the whole thermodynamic cycle can be obtained by Eq.
(14).

t ¼ nRThlnl

½hhAHðTH – ThÞ�
þ fnRTclnl

½hcALðTc –TLÞ�
þ Th – Tc

M1

þ Th – Tc
M2

: (14)

2.1 Heat loss between the hot and cold cylinders of the
Stirling engine

Due to the low distance between the hot and cold cylinders
of the Stirling engine, there is an undesirable conduction
heat transfer between the two cylinders. This heat loss can
be calculated by Eq. (15).

Q0 ¼ k0ðTH – TLÞt: (15)

By considering this heat loss, the total heat removed
from the heat source and the total heat absorbed by the heat
sink may be estimated by Eqs. (16) and (17).

QH ¼ Qh þ Q0, (16)

QL ¼ Qc þ Q0: (17)

2.2 Power, thermodynamic efficiency, and entropy calcula-
tion

To calculate the power, thermodynamic efficiency, and
entropy change of the cycle, Eqs. (18) to (20) can be
utilized.

P# ¼ W

t
¼ QH –QL

t
, (18)

ηt ¼
QH –QL

QH
, (19)

� ¼ 1

t

QL

TL
–
QH

TH

� �
: (20)
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By implementing a variable changing as shown in Eq.
(21), Eqs. (22) to (24) are achieved.

F1 ¼
1

nRlnl

1

M1
þ 1

M2

� �
, (21)

P#¼ Th –fTc
Th

½hhAHðTH – ThÞ�
þ fTc

½hcALðTc – TLÞ�
þ F1 Th – Tcð Þ

� �,
(22)

ηt ¼
Th –fTc

Th þ k0 TH – TLð Þ Th
½hhAHðTH – ThÞ�

þ fTc
½hcALðTc – TLÞ�

þ F1 Th – Tcð Þ
� �, (23)

� ¼
fTc
TL

–
Th
TH

� �
Th

½hhAHðTH – ThÞ�
þ fTc

½hcALðTc – TLÞ�
þ F1 Th – Tcð Þ

� �: (24)

Also, by utilizing two new parameters as x = (Tc/Th) and AR = (AL/AH), the power, efficiency and entropy change may
be obtained by Eqs. (25) to (27).

P# ¼ 1 –fx
1

½hhAHðTH – ThÞ�
þ fx

½hcARAHðxTh – TLÞ�
þ F1 1 – xð Þ

, (25)

ηt ¼
1 –fx

1þ k0 TH – TLð Þ 1

½hhAHðTH – ThÞ�
þ fx

½hcARAHðxTh – TLÞ�
þ F1 1 – xð Þ

� �, (26)

�¼
fx

TL
–

1

TH

� �
1

½hhAHðTH – Th Þ�
þ fx

½hcARAHðxTh – TLÞ�
þ F1 1 – xð Þ

: (27)

By having the thermal efficiency of the solar mirror and
the thermodynamic efficiency of the Stirling engine, the
total efficiency of the dish-Stirling system can be achieved
by Eq. (28).

ηm ¼ ηtηs: (28)

2.3 Economic factor

The economic factor in the dish-Stirling equations shows
the power output of the system per unit of investment cost.
This definition actually has been replaced with the
definition of power per unit of fuel in many energy
systems; but since there is no fuel in a solar system, the
economic factor has been defined [30]. The economic
factor is described by Eq. (29).

F# ¼ P#

Cai
: (29)

The investment of the dish-Stirling system itself is a
function of the heat transfer area of the hot and cold sides
of the cycle [30]. This function is shown in Eq. (30).

Cai ¼ aAH þ bAL: (30)

2.4 Objective functions

By substituting Eqs. (25) to (30) in Eq. (29) and utilizing
the following variable changing, Eq. (32) can be driven.
Also, by implementing some variable changes as Eqs. (33)
to (35), finally the dimensionless objective functions can
be achieved as Eqs. (36) to (39).
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z ¼ a

aþ b
, (31)

F# ¼ 1 –fx

a
1þ 1 – z

z

� �
AR

½hhðTH –ThÞ�
þ

fx 1þ 1 – z

z

� �
AR

� �
½hcARðxTh – TLÞ�

þ F1 1 – xð Þ 1þ 1 – z

z

� �
ARAH

� �0
BB@

1
CCA
, (32)

f ¼ aF#

hhTL
, (33)

P ¼ P#

hhAhTL
, (34)

S ¼ �

hhAhTL
, (35)

f ¼ 1 –fx

TL

1þ 1 – z

z

� �
AR

ðTH – ThÞ
þ

fxhh 1þ 1 – z

z

� �
AR

� �
hcARðxTh – TLÞ

þ F1hhAH 1 – xð Þ 1þ 1 – z

z

� �
AR

� �0
BB@

1
CCA
, (36)

P ¼ 1 –fx

TL
1

ðTH – Th Þ
þ fxhh

hcARðxTh – TL Þ
þ F1hhAH 1 – xð Þ

� �, (37)

ηm ¼ η0 –
1

IC
h TH – T0ð Þ þ εδ T4

H – T4
0

� �� �� �
1 –fx

1þ k0 TH –TLð Þ 1

½hhAHðTH – Th Þ�
þ fx

½hcARAHðxTh – TL Þ�
þ F1 1 – xð Þ

� �,
(38)

S ¼
fx

TL
–

1

TH

� �

TL
1

ðTH – Th Þ
þ fxhh

hcARðxTh – TL Þ
þ F1hhAH 1 – xð Þ

� �:
(39)

3 Variables constraints

After achieving the dimensionless objective functions, the
next step is to specify the decision variables ranges.
According to the final form of the objective functions, the
decision variables consist of φ (internal irreversibility
factor), AR (cold side area to hot side area ratio of Stirling
cycle), x (cold temperature to hot temperature ratio of
working fluid), TH (hot side temperature of the cycle) and

Th (hot temperature of working fluid). These variables are
the most important variables from the system operation
point of view. Afterward, values of other parameters will
be specified.
The optimization will be done with the following

constraints. Equations (40) to (44) show the variable
constraints.

f³1, (40)

0:45£x£0:7, (41)

0:25£AR£10, (42)

1100£TH£1400, (43)

850£Th£1000: (44)
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4 Multi-objective optimization

There are various definitions for multi-objective optimiza-
tion in economy and engineering; but there are some
common basic concepts in all of its definitions. Some of
these basic concepts consist of the preferences, the utility
function, and the Pareto optimal front [36–38].
Preferences: It is about preferences of decision maker in

choosing the optimum point. There are two main types of
preferences in multi-objective optimization. One prefe-
rence takes into consideration the objective function before
optimization, e.g., by inserting some coefficient into
objective functions and adding the objective functions to
each other and creating a main objective function, the so
called utility function. In this paper, this type of preference
is referred to as the pre-expression of preferences. In the
other type, the decision making process is utilized after
achieving the results. In this step, there is not a single point
as the optimum point; but a series of non-dominated points
make a frontier, which is called the Pareto frontier or the
Pareto optimal front. Therefore, by implementing an
appropriate decision making algorithm which applies the
preferences of decision maker, the single optimum point
will be achieved. In this paper, this type of preference is
referred to as the post-expression of preferences.
Utility function: It considers the decision maker

satisfaction. In pre-expression of preferences multi-objec-
tive optimization, one utility function is defined for each
objective function that shows the related importance of
each objective function. The combination of utility
functions makes the main utility function.
Pareto optimal front: In post-expression of preferences

multi-objective optimization, the results of the first step are
a series of points. The Pareto optimal front includes a
group of those points, the so called non-dominated points.
The non-dominated points are the points that, in
comparison with every other point at least at one objective
function, are closer to the optimum result of that objective
function. By implementing the decision making algorithms
at the Pareto frontier, the ultimate optimum result can be
achieved.
The particle swarm algorithm was first introduced by

Kennedy and Eberhart [39]. The beginning of this
algorithm is inspired by the studies done on the movements
of birds and fishes in groups. According to the studies, the
movements of each fish in its group are affected by the best
pervious movements of its own and every other fishes in
the group where the best movement means, for example
closer approach to the food. Therefore, there is a direct or
indirect relation between the movements of each fish in the
group. By passing the time and repeating the movements,
finally all of the fishes are closer to the food, in comparison
to the first movements.
For the particle swarm algorithm there is also a similar

procedure. In the particle swarm optimization (PSO), a

random group of particles are chosen. Each particle
represents one point in the result area. There is a memory
for each point, which makes the point move toward its
previous best position and the best positions of all other
particles. At the end, by enough iteration, the best position
of particles can be found in an acceptable neighborhood of
the optimum point.
The best previous position of each particle is called

personal optimum and the best previous position of all
particles is called the overall optimum. If a movement and
a position vector for each particle are considered, the next
movement vector and the next position vector of each point
would be driven by the influence of these four factors: the
present position vector, the present movement vector, the
difference between present position vector and the
personal optimum, and the difference between present
position vector and the overall optimum.

5 Decision making algorithms

As mentioned before, the results of multi-objective
optimizations with post-expression of preferences make
the Pareto optimal front. After developing the Pareto
frontier, by utilizing decision making algorithms, the
ultimate optimum point would be achieved. To obtain the
optimum result, there are so many decision making
algorithms, but the three most popular of these algorithms
are fuzzy, TOPSIS, and LINMAP. In this study these three
decision making algorithms have been considered.
Before implementing the decision making algorithms

into the Pareto frontier, the results of the previous step of
optimization should be non-dimensionalized. Two non-
dimentionalization methods are described here.
(a) Linear non-dimensionalization
The results of multi-objective optimization are vectors

with more than one dimension. The number of dimensions
of multi-objective optimization results is as many as the
number of objective functions. If a point of Pareto frontier
is presented by Fij, where i is the index for each point and j
is the index for each objective function, the linear non-
dimensionalization algorithm for a point when its objective
is maximizing or minimizing is shown by Eqs. (45) and
(46), respectively.

Fnorm
ij ¼ Fij

maxiðFijÞ
, (45)

Fnorm
ij ¼ Fij

maxi
1

Fij

� �: (46)

(b) Fuzzy non-dimensionalization
In this method, for each point of Fij, the distance to the

ideal point is divided by the distance between the ideal
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point and the non-ideal point. The ideal point is the point in
which all of the objective functions are optimum and the
non-ideal point is the point in which all of the objective
functions are the worst possible amount. According to that,
in the multi-objective optimization, the results have been
achieved by trial and error so that the worst possible
amount of each objective has a specific value. The fuzzy
non-dimensionalization of point Fij can be calculated by
Eq. (47).

Fnorm
ij ¼ Fij –F

nonideal
ij

F ideal
ij –Fnonideal

ij

: (47)

5.1 Fuzzy decision making method

In this method, the dimensionless values that are non-
dimensionalized by the fuzzy method, are utilized. As
mentioned before, in the non-dimensionalization step,
there is a corresponding dimensionless point for any point
at the Pareto frontier. In the fuzzy decision making method,
for each dimensionless point of Fij, the optimum point is
achieved by Eq. (48).

FOptFuzzy ¼ Fij;maxi minj
Fij –F

nonideal
ij

F ideal
ij –Fnonideal

ij

 !" #
: (48)

5.2 LINMAP decision making algorithm

The basic of this method is about finding a point in the
Pareto optimal front that is closest to the ideal point. This
method can be expressed by Eq. (49).

FOptLinmap ¼ Fij;minðjF Ideal –FjÞ: (49)

5.3 TOPSIS decision making algorithm

This algorithm is based on finding a point in the Pareto
frontier that has the least distance to the ideal point and the
most distance to the non-ideal point. In fact, this is the
point whose distance to the ideal point minus its distance to
the non-ideal point is minimum in comparison to all other
Pareto points. This method can be expressed by Eq. (50).

FOptTopsis ¼ Fij;minðjF Ideal –F j – jFnonIdeal –FjÞ: (50)

Afterward, first the set values of parameters will be
specified and then the results of optimizations of dish-
Stirling system will be presented.
Optimization parameters
With the purpose of optimization of the dish-Stirling

model, the values of constant parameters should be
specified. To have consistency with previous studies, the
specific value of parameters are considered as follows
[22,30]:
hh = hc = 200 W$K–1$m–2, f = 0.7, C = 1300, d = 5.67

�10–8W$K–4$m–2, TL = 300 K, h = 20 W$K–1$m–2,
I = 1000 W$m–2, (1/M1 + 1/M2) = 2�10–5 s.K–1, R =
8.3 J$mol–1$K–1, n = 1 mol, l = 2, ɛ = 0.9, k0 = 2.5 W$K–1,
η0 = 0.85.

6 Results

As mentioned before, at the present study, the dish-Stirling
model is solved in the cases of single-objective and multi-
objective optimizations. In the case of multi-objective
optimizations, there are two types of pre-expression and
post-expression of preferences. In the case of optimization
with pre-expression of preferences, there is a four-
objective optimization. But in the case of optimization
with post-expression of preferences, there appear two-
objective, three-objective, and four-objective optimiza-
tions. Finally, the results of all these optimizations are
presented.

6.1 Results of single-objective optimization

For each one of the four objective functions, there is an
optimum point. To optimize each objective function, the
branch and bound optimization algorithm has been
utilized. The branch and bound algorithm is a nonlinear
optimization. Table 1 lists the optimum results for each
objective function together with corresponding values of
other objective functions.

6.2 Results of four-objective optimization with pre-
expression of preferences

By using the branch and bound algorithm in order to solve
the four-objective optimization with pre-expression of
preferences, the results of optimization of the dish-Stirling
model are presented in Table 2.

Table 1 Results of single-objective optimization

Decision variables Objectives

φ x AR TH Th f P η S

Max(f) 1.000 0.478 1.491 1400.0 998.290 0.190 0.312 0.333 0.000465

Max(P) 1.000 0.475 10.000 1400.0 850.000 0.100 0.531 0.344 0.000790

Max(h) 1.000 0.450 10.000 1100.0 850.000 0.060 0.315 0.408 0.000285

Min(S) 1.000 0.450 0.250 1100.0 850.000 0.046 0.051 0.323 0.000046
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In this optimization, each of the four objective functions
have a proportional weight to their optimum value.

6.3 Results of multi-objective optimization with
post-expression of preferences

As mentioned before, in the case of optimization with post-
expression of preferences, there are two-objective, three-
objective, and four-objective optimizations.

6.3.1 Four-objective optimization results

Since there are four objective functions, the results of this
optimization are vectors with four dimensions. Therefore,
the results cannot be shown in a chart and due to the great
number of results, just the ultimate optimum result is
presented in this case. The ultimate result, achieved by
each one of the decision making methods, is presented in
Table 3.
According to the results of four-objective optimization,

at the ultimate optimal point, the dimensionless power is in
the range of 0.33 to 0.34 and the thermal efficiency falls in
the range of 0.35 to 0.37. Among the decision making
algorithms, the fuzzy algorithm has picked an optimal
point with the best thermal efficiency and slightly more
optimum entropy. On the other hand, an optimal point with
a better economical factor has been chosen by the TOPSIS
algorithm.

6.3.2 Three-objective optimization results

By having four objective functions, there could be four
optimizations of three-objective optimization. Therefore,
the Pareto frontier and ultimate optimum results of each
three-objective optimization are presented in Figs. 2–5 and
Tables 3–6. In Section 6, the figures represent the
corresponding Pareto frontier. In these figures the non-
dominating points, the ideal point, the non-ideal point, and
the ultimate optimal point, chosen by the decision making
algorithms, have been shown. Besides, the tables in this

section represent the optimal objective functions and their
corresponding decision variables chosen by various
decision making algorithms.
The results of the economic factor, the power, and the

thermal efficiency of the three-objective optimization are
demonstrated in Fig. 2 and Table 4. According to these
results and in comparison with other decision making
methods, the fuzzy algorithm, the LINMAP algorithm, and
the TOPSIS algorithm have reached the best thermal
efficiency, power, and economic factor, respectively.
Figure 3 and Table 5 display the results of the economic

factor, the power, and the entropy of the three-objective
optimization. The interesting point in these results is that
both the LINMAP and the TOPSIS algorithm have
obtained a similar optimal point.
The results of the economic factor, the thermal

efficiency, and the entropy of the three-objective optimiza-
tion are shown in Fig. 4 and Table 6. The results show that
all of three decision making algorithms have obtained
similar optimal points, although the fuzzy algorithm has
obtained a better economic factor and thermal efficiency.
Figure 5 and Table 7 represent the results of the power,

the thermal efficiency, and the entropy of the three-
objective optimization. The optimal points that have been
selected by the TOPSIS and the LINMAP decision making
algorithms are exactly the same. While the fuzzy algorithm
has achieved an optimal point with a slightly better
entropy, it has a worse power function.

6.3.3 Two-objective optimization results

By having four objective functions, there could be six
optimizations with two-objectives. Therefore, the Pareto
frontier and the ultimate optimum results of each two-
objective optimization are presented in Figs. 6–11 and
Tables 8–13.
The results of the economic factor and the power of the

two-objective optimization are exhibited in Fig. 6 and
Table 8. According to these results, the fuzzy decision
making algorithm has reached an optimal point with a

Table 3 Results of four-objective optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f P η S

Fuzzy 1.003 0.4602 2.0689 1292.4 949.096 0.155 0.339 0.373 0.000395

LINMAP 1.0026 0.4802 4.1062 1391.2 907.0816 0.172 0.332 0.363 0.000401

TOPSIS 1.0411 0.4603 2.9210 1349.7 931.4148 0.183 0.337 0.351 0.000423

Table 2 Results of four-objective optimization with pre-expression of preferences

Decision variables Objectives

φ x AR TH Th f P η S

1.000 0.450 10.000 1400.0 876.6 0.100 0.528 0.36 0.000665
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Fig. 2 Pareto frontier of three-objective (f, P,h) optimization with post-expression of preferences

Fig. 3 Pareto frontier of three-objective (f, P, S) optimization with post-expression of preferences

Table 5 Results of three-objective (f, P, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f P η

Fuzzy 1.0031 0.4800 1.9688 1335.1 925.26 0.1412 0.357 0.000411

LINMAP 1.0080 0.4636 4.5553 1220.8 938.81 0.1629 0.341 0.000404

TOPSIS 1.0080 0.4636 4.5553 1220.8 938.81 0.1629 0.341 0.000404

Table 4 Results of three-objective (f, P,h) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f P η

Fuzzy 1.0019 0.452 3.232 1286.2 932.82 0.145 0.423 0.364

LINMAP 1.0026 0.468 6.396 1310.2 897.80 0.158 0.431 0.355

TOPSIS 1.0303 0.475 5.061 1364.9 929.26 0.177 0.384 0.348
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higher power and the TOPSIS algorithm has reached a
point with a higher economical factor. As tabulated in
Table 8, in comparison with the other decision making
algorithms, the optimal point chosen by the LINMAP
algorithm is at a higher heat source temperature and a

lower heat sink temperature.
In Fig. 7 and Table 9, the results of the economic factor

and the thermal efficiency of the two-objective optimiza-
tion are presented. Among the results of the three decision
making algorithms, the ultimate optimal point of fuzzy

Fig. 4 Pareto frontier of three-objective (f, h, S) optimization with post-expression of preferences

Table 6 Results of three-objective (f, h, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th P η S

Fuzzy 1.0027 0.4750 2.4029 1229.5 974.21 0.1430 0.3784 0.000237

LINMAP 1.0171 0.4504 1.4500 1214.7 948.59 0.1426 0.3640 0.000213

TOPSIS 1.0014 0.4542 3.9563 1139.6 984.06 0.1415 0.3608 0.00208

Fig. 5 Pareto frontier of three-objective (P, h, S) optimization with post-expression of preferences
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algorithm shows a better thermal efficiency but a lower
economic factor, in comparison to the TOPSIS and the
LINMAP algorithms. This optimal point has been in a
lower amounts of x and AR decision variable.
The results of the economic factor and the entropy of the

two-objective optimization are represented in Fig. 9 and
Table 11. The results show that the fuzzy decision making

algorithm has selected a point with a better economic
factor in comparison with the TOPSIS algorithm that
reaches a point with a lower entropy change.
According to Fig. 10 and Table 12 which show the

results of a two-objective optimization of the power and
entropy, in order to reach the optimal point, all of the three
decision making algorithms have reached a point with an

Table 7 Results of three-objective (P, h, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th P η S

Fuzzy 1.0054 0.4504 6.4309 1128.7 868.23 0.309 0.407 0.000280

LINMAP 1.0008 0.4503 7.9711 1137.7 850.00 0.315 0.407 0.000285

TOPSIS 1.0008 0.4503 7.9711 1137.7 850.00 0.315 0.407 0.000285

Fig. 6 Pareto frontier of two-objective (f, P) optimization with post-expression of preferences

Table 8 Results of two-objective (f, P) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f P

Fuzzy 1.0000 0.4726 3.0483 1399.9 945.86 0.1533 0.4423

LINMAP 1.0005 0.4836 4.1740 1400.0 929.26 0.1609 0.4275

TOPSIS 1.0002 0.4605 1.9859 1399.9 977.11 0.1738 0.3973

Table 9 Results of two-objective (f, h) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f η

Fuzzy 1.0003 0.4584 1.7197 1252.4 934.53 0.1500 0.3799

LINMAP 1.0005 0.4801 3.3165 1284.5 940.28 0.1812 0.3571

TOPSIS 1.0002 0.4750 3.0802 1326.8 965.14 0.1883 0.3507
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approximate maximum AR (the cold side heat transfer area
to the hot side heat transfer area). In comparison with other
decision making algorithms, the fuzzy algorithm has

selected an optimal point with a higher power and the
TOPSIS algorithm has opted a point with a better entropy
change.

Fig. 8 Pareto frontier of two-objective (P, h) optimization with post-expression of preferences

Fig. 7 Pareto frontier of two-objective (f, h) optimization with post-expression of preferences

Table 10 Results of two-objective (P, h) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th P η

Fuzzy 1.0001 0.4520 9.9352 1152.3 852.47 0.4523 0.3845

LINMAP 1.0000 0.4542 9.9471 1299.5 858.50 0.5074 0.3674

TOPSIS 1.0000 0.4500 9.9586 1264.8 850.00 0.5283 0.3596

660 Front. Energy 2020, 14(3): 649–665



Figure 11 and Table 13 represent the results of the
thermal efficiency and the thermal efficiency of the two-
objective optimization. The results show that the ultimate

optimal points have been obtained at almost the minimum
of x (the hot side temperature to the cold side temperature
of the cycle), Th (the hot side temperature) and TH (the heat

Fig. 9 Pareto frontier of two-objective (f, S) optimization with post-expression of preferences

Table 11 Results of two-objective (f, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th f S

Fuzzy 1.0079 0.4500 0.7250 1240.2 984.29 0.1520 0.000235

LINMAP 1.0000 0.4519 0.5000 1276.9 960.01 0.1425 0.000211

TOPSIS 1.0007 0.4523 1.4500 1262.3 955.29 0.1275 0.000175

Fig. 10 Pareto frontier of two-objective (P, S) optimization with post-expression of preferences
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source temperature). According to Table 13, the fuzzy
decision making algorithm has chosen a point with a
higher thermal efficiency and the TOPSIS algorithm has
selected a point with a better entropy change.

6.4 Validation

Apart from the various optimizations done in this work,
some optimizations have been done in some other papers.
Therefore, the results of optimizations in these papers can
be verified with some references. According to the results
of single-objective optimization, in order to achieve the
optimal thermal efficiency, the heat source temperature
should be about 1100°C. As shown in Fig. 12, similar
results were reported in Refs. [22,23] in a wide range of the

concentration ratios. In addition, among the decision
variables, x (the hot side temperature to the cold side
temperature of the cycle) is in a range of 0.45 to 0.50 that
can be verified by the results from Refs. [23,25]. Figure 13
shows the range of the optimum point for variable x.
Also, as shown in Fig. 13, the optimal thermal efficiency

results obtained through various multi-objective optimiza-
tions in this research are in a range of 0.35% to 0.41%
which is a valid range for a Stirling cycle thermal
efficiency [30].
Therefore, the validation can be presented in brief as

shown in Table 14.
It also shows that, with a finite time analysis of a dish-

Stirling cycle and by implementing the irreversibility
factor, the MOPSO multi-objective optimization can lead

Fig. 11 Pareto frontier of two-objective (η, S) optimization with post-expression of preferences

Table 13 Results of two-objective (η, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th η S

Fuzzy 1.0000 0.4502 1.9978 1100.2 853.18 0.3903 0.000152

LINMAP 1.0000 0.4500 2.5461 1100.6 865.72 0.3686 0.000092

TOPSIS 1.0005 0.4502 4.5771 1100.9 859.37 0.3618 0.000118

Table 12 Results of two-objective (P, S) optimization with post-expression of preferences

Decision variables Objectives

φ x AR TH Th P S

Fuzzy 1.0005 0.4816 9.6704 1339.3 857.53 0.3790 0.000391

LINMAP 1.0000 0.4711 9.3228 1209.7 865.87 0.3571 0.000358

TOPSIS 1.0059 0.4929 10.0000 1377.8 850.00 0.3227 0.000308

662 Front. Energy 2020, 14(3): 649–665



to an acceptable series of results, which represent the
characteristics of a real system.

7 Conclusions

For the first time in a dish-Stirling finite time analysis, a

four-objective optimization of the economic factor, the
power, the thermal efficiency, and the entropy change are
implemented and for optimization, the MOPSO algorithm
has been used. A series of results can be achieved by a
series of the multi-objective optimizations done in this
research. According to the results of the four-objective
optimization at the ultimate optimal point, the dimension-
less power is in the range of 0.33 to 0.34 and the thermal
efficiency is opted in the range of 0.35 to 0.37. Among the
decision making methods, the fuzzy method has chosen an
optimal point with the best thermal efficiency and slightly
more optimum entropy, while an optimal point with a
better economical factor has been obtained by the TOPSIS
method. In this investigation, the results of the single-
objective and multi-objective optimization of the dish-
Stirling cycle can be a reference for further studies. In
addition, the adaptation of the results with practical works
demonstrates the applicability of finite time analysis at
estimating a dish-Stirling system performance.
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Notations

Fig. 13 Pareto optimal frontier in objectives’ space (thermal
efficiency- dimensionless objective function)

Table 14 Verification of decision variables of x and TH [22,30]

Decision variable or objective function In this paper In the references

TH 1100 1100

hm 0.35< < 0.40 0.37< < 0.41

Fig. 12 Optimum absorber temperature and concentrating ratio
of the system (Adapted with permission from Ref. [22])

Ares Absorber area

Aapp Aperture area

C Concentration ratio

F Dimensionless objective function

f Dimensionless economic factor

h Heat transfer coefficient/(W$K–4 or W$m–2$K–1)

I Direct solar flux intensity/(W$m–2)

i ith objective

j jth solution

n Mole number of the working fluid/mol

P Dimensionless output power

Q Heat transfer/J

R Universal gas constant/(J$mol–1$K–1)

S Dimensionless entropy

T Temperature/K

W Work/J

V Volume

t Cyclic period/s

x Temperature ratio of the Stirling engine

Greek letters

l Ratio of volume during the regenerative processes

η Thermal efficiency

ε Emissivity factor

σ Entropy
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