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Abstract Photovoltaic (PV) generation is growing
increasingly fast as a renewable energy source. Never-
theless, the drawback of the PV system is intermittent
because of depending on weather conditions. Therefore,
the wind power can be considered to assist for a stable and
reliable output from the PV generation system for loads
and improve the dynamic performance of the whole
generation system in the grid connected mode. In this
paper, a novel topology of an intelligent hybrid generation
system with PV and wind turbine is presented. In order to
capture the maximum power, a hybrid fuzzy-neural
maximum power point tracking (MPPT) method is applied
in the PV system. The average tracking efficiency of the
hybrid fuzzy-neural is incremented by approximately two
percentage points in comparison with the conventional
methods. The pitch angle of the wind turbine is controlled
by radial basis function network-sliding mode (RBFNSM).
Different conditions are represented in simulation results
that compare the real power values with those of the
presented methods. The obtained results verify the
effectiveness and superiority of the proposed method
which has the advantages of robustness, fast response and

good performance. Detailed mathematical model and a
control approach of a three-phase grid-connected intelli-
gent hybrid system have been proposed using Matlab/
Simulink.

Keywords photovoltaic, wind turbine, hybrid system,
fuzzy logic controller, genetic algorithm, RBFNSM

1 Introduction

As the energy demand increases, more attention is paid to
alternative energy sources. Renewable energy is great in
energy saving, lower environmental impacts, generally
better investment options, improved power security and
etc. Two modern renewable energy technologies which are
most promising are the wind and solar power generation.
However each of these has its own drawbacks. The
purpose of hybrid system is to increase the reliability of the
system for overcoming uncertainty, intermittency and
insufficiency of each renewable energy sources [1–5].
Wind power in distribution generation technology because
of its mature technology, low cost and good efficiency can
be integrated into the PV generation system to form a
hybrid PV/wind generation system, which can be more
stable and reliable [6]. In this paper, a study is conducted of
intelligent PV/wind hybrid power system used in the grid
connected mode.
In recent decade, a lot of researches have been done

focusing on three types of maximum wind power
extraction techniques, namely tip speed ratio (TSR)
control, power signal feedback (PSF) control, and hill-
climb searching (HCS) control. The rotor speed of wind
turbine is regulated using the TSR control to keep an
optimal TSR. The PSF control needs the comprehension of
the maximum power curve of wind turbines, and keeps this
curve through its control mechanisms. In the recent
decade, wind turbine MPPT strategies have been devel-

Received May 6, 2016; accepted July 4, 2016

Alireza REZVANI (✉)
Department of Electrical Engineering, Saveh Branch, Islamic Azad
University, Saveh 3919715179, Iran Water and Power Resources
Development Company (IWPCO), Iran
E-mail: alireza.rezvani.saveh@gmail.com

Ali ESMAEILY
Department of Electrical Engineering, Karaj Branch, Islamic Azad
University, Karaj 3148635731, Iran

Hasan ETAATI
Iran Water and Power Resources Development Company (IWPCO), Iran

Mohammad MOHAMMADINODOUSHAN
Department of Electrical Engineering, Science and Research Branch,
Islamic Azad University, Tehran 1477893855, Iran

Front. Energy 2019, 13(1): 131–148
DOI 10.1007/s11708-017-0446-x



oped. The difficulty in turbine speed measurements and
wind speed leading to the TSR direction control technique
is limited [6]. Radial basis function network (RBFN) is
capable of learning, parallel computing, fault tolerance,
and approximating any intricate nonlinearity infinitely.
Sliding mode variable control is taken as a special
discontinuous nonlinear control method, which has power-
ful robustness versus load perturbations, parameter
changes and uncertainty of system, with the superiority
of quickness and easy comprehension. Incorporating ANN
with sliding mode variable control not only has powerful
robustness which can withstand system disorder and outer
interference but also removes the buffeting. In this paper, a
RBFNSM-based TSR MPPT technique is applied for the
wind turbine system [7].
The drawback of the PV system is intermittent because

of depending on weather conditions. To track the
incessantly diverging maximum power point (MPP) of
the solar array, the MPPT control method plays a
significant role in the PV arrays. The most common
method for MPPT is the perturb-and-observe (P&O)
algorithm [3], incremental conductance (IC) [4], fuzzy
logic controller (FLC) [8], an artificial neural network
(ANN) [9,10].
Simplicity and easy execution of the P&O method in

MPPT application makes it a common method [3–5]. The
drawback of this technique is the low accuracy in steady-
state condition. The perturbation operation would cause an
oscillation in the PV module around the MPP which results
in energy wastes. By minimizing the perturbation step size,
variation can be reduced but it is not assumed to be very
small since a too small step size decelerates the speed of
MPPT and decreases the efficiency. In addition, any
prompt change in weather condition upsets the output
power and the method fails to easily track the MPP.
Tracking the MPP of the PV module using fuzzy logic

control (FLC) is becoming popular in the last decade. This
is due to the robustness and simplicity in design since there
is no need for a super accurate mathematical modelling
[3,8,9]. Also, as per Refs. [8,9], on account of an optimized
perturbation, the FLC based P&O and hill climbing MPPT
methods have better performance. Nevertheless, careful
selection of parameters, membership functions and fuzzy
rules are substantial to FLC. FLC can be effective if
parameters and membership functions are chosen through
experimentation along with an expert opinion. Another
drawback of FLC is the high cost of implementation due to
the complexity of its algorithms.
New methods such as ANN have been utilized to

overcome the downsides [10–13]. Since the ANN has the
capability of being used on nonlinear tasks, its application
in different areas has been growing. ANN does not require
reprogramming since it is based on learning process.
In Ref. [14], the FLC and ANN application on PV

systems as two methods of MPPT have been presented.
The inputs to the two MPPT controllers are irradiance and

temperature of the PV cell which estimates the optimum
duty cycle corresponding to MPP as output.
The conventional algorithms do not trap into local

minimum. Such advantages distinguish the GA from the
conventional algorithms. Combining ANN and the GA
with the purpose of performance improvement has been
presented in Ref. [13]. In this paper, the GA application is
to boost the MPPT efficiency of a photovoltaic module on
an induction motor drive. This can be done by enhancing
the input dataset for a neural network model of the PV
modules. Avariable frequency volts-per-hertz (V/f) control
technique is used to control the speed of the induction
motor, and a space-vector pulse-width modulation (SV-
PWM) method is utilized to act as a 3-phase inverter.
In Refs. [2–5,15–17], the GA has been employed in data

optimization, thus the optimum values are applied for the
purpose of ANN training. The outcome indicates that this
technique has less fluctuation when comparing to the
conventional methods. The advantages of this method
operate in MPPT but there are many drawbacks in
comparison with the neural network.
Reference [16] has presented a new hybrid fuzzy-neural

MPPT controller. The training data of ANN are optimized
using the GA. A novel GA technique to accomplish the
MPPT based on the cell model has also been presented in
Ref. [18].
Some works on hybrid systems have been conducted.

Dynamical simulation of PV/Wind systems have been
investigated for a stand-alone mode including of different
wind turbine and PV array systems in Ref. [19]. It is
suggested to apply particular devices for battery storage, so
that incessant electricity output over the whole year may be
attained. Modelling and simulation of PV/wind/battery
hybrid systems connected to a grid have been discussed in
Ref. [20]. It is found that in order to capture the maximum
power the MPPT can be used for both wind turbine and
photovoltaic panel. In Ref. [21], the hybrid PV/wave
standalone energy conversion system with battery energy
storage has been discussed. In this system, the bidirectional
buck-boost DC-DC converter (BBDC) is applied to keep
the constant DC-link voltage. It is also noted that the extra
hybrid power in the battery bank supplies this power to the
system load during the shortage of hybrid power. In Ref.
[22], the mathematical model of system components has
been assessed to model of different renewable energy
particularly wind, PV, hydro and storage devices.
The authors in Ref. [23] have proposed the performance

of variable step-size P&O MPPT controller and have
initially developed and validated a Matlab based photo-
voltaic generation system model. Then, variable step-size
MPPT controllers are compared in terms of the energy
captured, rise time, settling time and steady-state tracking
accuracy under various operating conditions. In Ref. [24],
the operation of various variable step-size P&O MPPT
methods has been studied. Initially, a Matlab based PV
generation system model is developed and validated.
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Performance indices are also represented to enhance the
reliability of the comparison.
It should be noted that the aforementioned papers are

lack in evaluation of the system performance in the
intelligent hybrid system and no comparison has been
made between the hybrid fuzzy-neural method and the
conventional methods such as P&O, IC and FLC. Such a
comparison could be beneficial to indicate the high
performance of this method in different environmental
conditions. Hence, to the best of authors’ knowledge, there
is none published paper presenting such framework using
intelligent hybrid method for PV system in the grid
connected mode. It is noted that the results confirm the
superiority and effectiveness of the proposed methods. In
this paper, the hybrid fuzzy neural controller is compared
with three MPPT controllers of P&O, IC and fuzzy logic to
show the effectiveness and superiority of the hybrid fuzzy
neural controller than the conventional controllers.
The major contributions of this paper to overcome the

drawbacks of the above references can be listed as follows.
First, it is worth mentioning that the present paper applies
the fuzzy-neural hybrid algorithm to improve the effi-
ciency of the PV system in the rapid changing environ-
mental condition in the hybrid system. Second, the inputs
data of the FLC for hybrid fuzzy-neural method are the
change of the PV system output power (ΔParray), the
change of the PV system output voltage (ΔVarray), and the
change of the reference voltage (ΔVmpp) to be the output.
Next, the GA based offline is utilized to prepare the
reference voltage corresponding to the MPP. Finally, the
pitch angle of the wind turbine is regulated using
RBFNSM controller.

2 PV cell model

Several studies have been conducted on the mathematical
model of the PV cell. In Ref. [24], a structure of the
photovoltaic cell with double diode has been studied. This
model includes of a current source representing the light
flux, in parallel with two diodes. The diode presents the
cell behavior in darkness. Two resistances shunt and series
resistance are applied to represent internal losses. Other
models are proposed to simplify the model of PV cell by
using one diode. Like this last research work, a single
model PV cell is utilized in this paper in order to formalize
and simplify the PV cell, as shown in Fig. 1. The basic
equations representing the I-V characteristic of the PV cell
solar model are given in Eqs. (1) and (2) [3–5].

Iph – ID – Ipv –
Vpv þ RsIpv

Rsh
¼ 0, (1)

ID ¼ I0ðeVD=VT – 1Þ, (2)

where

VD ¼ Vpv þ IpvRs, (3)

VT ¼ nKT

q
, (4)

where IPV is the cell current (A), Iph is the light generated
current (A), ID represents the Shockley diode equation (A),
I0 represents the diode saturation current (A), Rs represents
the cell series resistance (W), Rsh is the cell shunt resistance
(W), VD is the diode voltage (V), VT represents the
temperature voltage (V), VPV is the cell voltage (V), n is the
dimensionless junction material factor, K is the Boltzmann
constant 1.38�1023 J/K, T is the temperature measured by
Celsius, and q is the electron charge 1.602�10–19C.
The Red Sun 90 W is used as the reference module and

attained under the standard test condition (STC) with a
solar irradiance of 1000 W/m2 and a temperature of 25°C.
Simulations are accomplished using the Matlab/Simulink.
The proposed MPPT method is developed to a 4.4 kW PV
array consisting of 49 PV modules as 7�7 array. The
tracking efficiency is applied to analyze the tracking
operation for different MPPT algorithms. The parameters
of the solar module used (Red Sun 90 W) are given in
Table 1.
The tracking efficiency is expressed as [23]

ηmppt ¼
!

t2

t1
Pdt

!
t2

t1
Pmaxdt

, (5)

Fig. 1 Equivalent circuit of one PV array

Table 1 Red sun 90 W module under STC

Imp ( Rated current)
/A

Vmp( Rated voltage)
/V

Pmax(Rated power)
/W

Voc (Open circuit
voltage)

Isc (Short circuit
current)

Np (number of
parallel cells)

Ns (number of
series cells)

4.94 18.65 90 22.32 5.24 1 36
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where t1 represents the start-up time of the system and t2 is
the close-down time of the system, P is the output power of
PV, and Pmax represents the theoretical maximum power of
PV.

3 MPPT-GA technique

3.1 Steps of implementing GA

The GA is based on the conception of the evolutionary
method and prepares optimal results much faster than trial-
and-error techniques. The GA uses three kinds of rules at
each step to prepare the next generation from the current
population: selection rules that choose the individuals,
named parents and contribute to the population at the next
generation; crossover rules that merge two parents to form
children for the next generation; and mutation rules that
use random changes to individual parents to form children.
The GA is utilized based on the offline mode to deliver

the reference voltage (Vmpp) which is corresponding to the
maximum power. The optimum values generated out of the
GA is utilized for training network [3–5,15–18]. The
procedure of the GA can be found in Refs. [3–5]. Design
variable can be considered as x equal to array current (Ix)
and moreover, Fx represents the output power of array
which should be maximized [3–5]. Table 2 lists the GA
structures.

Fx ¼ VxIx, (6)

Vx ¼ ns v0 –
Rs

np
Ix þ

nkðT þ 273Þ
q

ln
IPV – Ix=nP þ I0

I0

� �� �
:

(7)

The power should be set based on the Ix to assign the
objective function

Fx ¼ ns v0 –
Rs

np
Ix þ

nkðT þ 273Þ
q

ln
IPV – Ix=np þ I0

I0

� �� �
Ix,

(8)

where

0< Ix<Isc: (9)

As a result of maximizing Fx, Vmpp and MPP will be
produced in any specific conditions. The GA receives 390
sample data (irradiance between 50 to 1000 W/m2 and
temperatures between 5°C to 55°C) to obtain the optimal
voltage. The obtained results are compared with real
values, which shows a negligible error of about 0.0002%.

3.2 Enhancement of MPPT by combination of fuzzy-neural
algorithm

The fuzzy logic and ANN methods have significant
benefits when comparing to the conventional techniques;
nevertheless ANN has disadvantages such as dependency
to its parameters. The fuzzy logic method requires a trade-
off to be done between the tracking time and static error.
The ANN controller is dependent on time, training error
and estimation of non-linear functions. By combining
these two techniques, the above mentioned problems will
be resolved effectively [16]. The diagram of the discussed
method is illustrated in Fig. 2(a).
As shown in Fig. 2(b) the P–V characteristic is divided

into two regions. When the PVoperation point is located at
the first region, far from MPP, it can be redirected towards
the second region, the vicinity of MPP, using ANN only
[16]. In the second region, the PV operation point is
adjacent to the MPP, excluding the cases when the feature
of the PV system is changed. Thus, by minor changes in
the PV system voltage by fuzzy controller, the operation
point will be put precisely on the MPP. The flowchart of
these two stages is demonstrated in Fig. 3. Using this
method, the two major downsides of the ANN (time
dependence) and the fuzzy logic (trade-off) will be
resolved. The details of the hybrid fuzzy-neural method
have been described in Ref. [16].

3.2.1 Neural network

The most appropriate method of anticipating the nonlinear
systems is ANN. Non-linear systems can be estimated by
multi-layer neural networks which has better outcome in
comparison to other methods. ANN is a novel structure
applied in solving a wide kind of works that are difficult to
handle ordinary rule-based programming, containing
computer vision, pattern and speech recognition, identifi-
cation, classification and control systems. ANN is simple,
fast, and highly accurate. Generally, the ANN method has
three important stages. In this paper, the feed forward
neural network for MPPT process control is implemented.
The core structure of ANN is based on the fact that the
training process requires data to be acquired on each PV
system and each specific position [3–5,15–17].

3.2.2 Fuzzy control

Inputs data of the fuzzy logic controller are the change of
the PV system output power (ΔParray), the change of the
PV system output voltage (ΔVarray) and the change of the

Table 2 Genetic algorithm parameters

Number of design variable Population size Crossover constant/% Mutation rate/% Maximum generations

1 20 80 10 20
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reference voltage (ΔVmpp) to be the output.
Figure 4 depicts the membership functions. Also, for

Centroid, the Min-Max technique is taken into account as a

defuzzification mechanism. Table 3 tabulates the required
guidelines implemented to acquire the best results, where
linguistic variables are presented as positive (P), negative

Fig. 2 Diagram of the discussed method
(a) Proposed MPPT Scheme in PV system; (b) P–V characteristic that is separated into two areas

Fig. 3 Structure of fuzzy-neural hybrid method
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(N) and zero (ZE). In Ref. [16], supplementary information
of the fuzzy method, which is used in this paper, has been
presented.

4 Wind turbine model

The kinetic energy of wind is converted to electrical energy
through a WT. Control objectives determine the level of
simulation intricacy of WTs. When modeling a WT,

Fig. 4 The membership function of fuzzy logic
(a) Membership functions of DParray; (b) Membership functions of DVarray; (c) Membership functions of DVmpp

Table 3 Fuzzy rules

Rule number ΔPpv ΔVpv Δref

1 P P P

2 P N N

3 N P N

4 N N P

5 P P P
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complicated simulators are needed for verification of
dynamic response of aerodynamic loading and multiple
components. In general, interaction of large components
and dynamic loads are verified by an aero elastic simulator.
Simplified mathematical models can be used instead of
complex simulators to design a WT controller. A set of
nonlinear ordinary differential (OD) equations with
restricted degree of freedom are utilized in this work for
modeling WT. The nonlinear expression for the captured
aerodynamic power by the rotor is given in Eq. (10) [7].

Pa ¼
1

2
π�R2Cp l,βð Þυ3: (10)

It can be easily seen from Eq. (10) that the aerodynamic
power Pa has a direct relationship with cube of the wind
speed. Power coefficient Cp depends on blade pitch angle b
and tip speed ratio l which is defined as

l ¼ ωrR

υ
, (11)

which is a ratio between linear tip speed and wind speed.
In this paper, a variable-speed pitch-regulated wind

turbine is studied, where the role of the angle controller is
crucial. Cp-l curves of the wind turbine studied in this
paper is displayed in Fig. 5(a) for different pitch angles [7].
As it can be seen from Fig. 5(a), adjustment of pitch angle
b can change Cp. In other words, pitch angle control
regulates the output power of the WT.
Figure 5(b) and (c) depicts the wind power system that is

applied in this paper. The radial basis function network-
sliding mode (RBFNSM) and proportional-integral (PI) are
described in more detail in Refs. [7,25,26].
The RBFN input is considered as switching function, the

output of neural network is the sliding mode controller, and
the RBFNSM control is accomplished based on the self-
learning ability. Figure 5(d) illustrates the model of the
RBFNSM controller in Eq. (12).

sðtÞ ¼ ceðtÞ þ e_ ðtÞ: (12)

The reference output power and real power of the
generator is represented by Pref and Pout respectively and e
represents the tracking error. Eqs. (13) to (17) explain the
details of the model.

wjðtÞ ¼ wjðt – 1Þ þ η½yðtÞ – ymðtÞ�hj
þ α½wjðt – 1Þ –wjðt – 2Þ�, (13)

Δbj ¼ ½yðtÞ – ymðtÞ�wjhj
kx – cjk

b3j

2

, (14)

bjðtÞ ¼ bjðt – 1Þ þ ηΔbj þ α½bjðt – 1Þ – bjðt – 2Þ�, (15)

Δbij ¼ y tð Þ – ym tð Þ½ �wj
xj – cij
b2j

, (16)

cijðtÞ ¼ cijðt – 1Þ þ ηΔcij þ α½cijðt – 1Þ – cijðt – 2Þ�, (17)

where α and η represent the momentum factor and the
adaptive rate, respectively.

5 Control strategies

The wind turbine and PV are connected to the main grid
through the inverter. The inverter is applied in current
control approach with PWM switching mechanism to
create the inductance current and achieve a low total
harmonic distortion (THD) injected current. The strategy
of control mainly consists of two loops, namely a fast
internal current loop and an external voltage loop. The
methods of the proposed multi-level control are based on
the instantaneous power on the direct-quadrature-zero
(dq0) transformation applied for PWM control [27].
The control scheme of the grid-side inverter is shown in
Fig. 5(e).

5.1 External control loop

The external control is to keep the generated power from
the PV/wind turbine to the grid constant. The active and
reactive power from the grid-side inverter is defined by

Pg ¼ vgaiga þ vgbigb þ vgcigc

Qg ¼
1ffiffiffi
3

p ðvgabigc þ vgbciga þ vgcaigbÞ
,

8><
>: (18)

where vga, vgb, and vgc represent three-phase voltages at the
AC bus, while iga, igb, and igc represent the three-phase
currents injected into the AC grid.
Using Park transformation as expressed in Eq. (19),

Pg ¼ 1:5ðvgdigd þ vgqigqÞ
Qg ¼ – 1:5ðvgqigd – vgdigqÞ

,

(
(19)

where vgq and vgd are the dq components of the voltage at
PCC, while igq and igd are dq components of the line
current. In the reference frame synchronized with the grid
voltage, vgq= 0, vgd= vg, thus

Pg ¼ 1:5vgdigd

Qg ¼ – 1:5vgdigq
:

(
(20)

Equation (20) indicates that the active and reactive
power is carried by d-axis current alone and q-axis current
alone, respectively. This makes the active and reactive
powers to be controlled by controlling the respective
currents independently. So, active and reactive powers are
respectively proportional to igd and igq.

igd,ref ¼ Kgd,p þ
Kgd,i

s

� �
Vdc,ref –Vdc

� �
igq,ref ¼ – Kgq,p þ

Kgq,i

s

� �
Qg,ref –Qg

� � ,
8>><
>>: (21)
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where Vdc represents the voltage of the DC link.

5.2 Internal control loop

It can be obtained as Fig. 5(e),

vga ¼ va – Lf
dia
dt

þ Rf ia

� �

vgb ¼ vb – Lf
dib
dt

þ Rf ib

� �

vgc ¼ vc – Lf
dic
dt

þ Rf ic

� � ,

8>>>>>><
>>>>>>:

(22)

where va, vb, and vc represent the three-phase voltages at

the AC side grid, while Lf and Rf are the filter inductance
and resistance respectively. In rotating the dq frame,
Eq. (22) can be expressed as

vgd ¼ vd – Lf
did
dt

þ Rf id

� �
þ ωLf iq

vgq ¼ vq – Lf
diq
dt

þ Rf iq

� �
–ωLf id

,

8>><
>>: (23)

where w is the grid frequency.
Let

víd ¼ Lf
did
dt

þ Rf id,

víq ¼ Lf
diq
dt

þ Rf iq,

8>><
>>: (24)

Fig. 5 Pitch angle control
(a) Power coefficient Cp (l, b) for various values of pitch angle b; (b) PI controller; (c) RBFNSM controller; (d) structure of the RBFNSM; (e) control
strategy
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then
vgd ¼ vd þ víd –ωLf iq,

vgq ¼ vq þ víq þ ωLf id:

(
(25)

The current controller utilizes PI regulator, therefore

vgd,ref ¼ vd þ �Kígd,p þ Kígd,i
s
 � id,ref – id

� �
–ωLiq

vgq,ref ¼ vq þ Kígq,p þ
Kígq,i
s

�
iq,ref – iq
� �

–ωLid:

�
8>><
>>: (26)

6 Structure of proposed system

In this paper, a case study has been conducted to show the
efficiency and the effectiveness of the proposed methods
using Matlab/Simulink. The proposed hybrid is formed by
a PVarray as a main source, a PV DC-DC boost converter,
a DC bus, a wind turbine, an inverter controller and a load
model. The performance of the hybrid system is to supply
power to the loads.
The block diagram of the proposed system is illustrated

in Fig. 6(a). The hybrid system includes a 4.4 kW PV
system and a 60 kW wind turbine system. The voltage and
frequency of the grid are 220 V and 60 Hz, respectively.
Further information of the detailed models is reported in
Appendix. The proposed MPPT technique is used to a 4.4
kW PV system composed of 49 PV modules as 7�7 array.
To show the performance of the hybrid fuzzy-neural
method, simulations are performed under the following test
circumstances. The structure of the grid controller is
depicted in Fig. 6(b).

7 Simulation results and discussion

7.1 ANN structure

The basic configuration of the ANN is depicted in Fig. 6
(b). It is a three-layered feed forward neural network. The
temperature and solar irradiance is taken as the input
variables of the ANN. The Vmpp equivalent to MPP is the
output of the ANN. To adjust the weights, the propagation
algorithm and gradient descent methods are applied [6].
The algorithm propagates the error between the estimated
and real output. It is noted that the output of the PV varies
over the time period and climate conditions. 390 sample
data (irradiance between 50 to 1000 W/m2 and tempera-
tures between 5°C to 55°C) are generated to train the
network. To carry out the ANN, the layer number, the
neurons number of each layer, and the transmission
function of each layer should be assigned. The suggested
ANN has taken into account three layers. The first and the
second layers have 17 and 9 neurons, respectively, and the
third layer has 1 neuron. The transfer functions of the first

and the second layers are Tansig and the third layer can be
considered as Purelin. Besides, Trainlm is taken as the
training function. 500 training epochs and applying
training as a training function are sufficient enough to get
good results. The training data is obtained by simulating
the PV system in Matlab/Simulink using the genetic
algorithm. The error computation is performed by the
algorithm of mean square error method (MSE) during the
training process. The admissible of MSE for the ANN is
assigned to be 10–3.
The training data are presented to the network during

training, and the network is adjusted according to its error.
The ANN training with the target data is illustrated in Fig.
7. After the ANN has been trained, a validity test is
executed. For this task, a set of samples different from
those used for the training procedure is taken. The
validation data are used to measure network generalization,
and to stop training when best generalization is achieved.
Figure 8 shows a set of 60 data for the validation data to
investigate the accuracy of the results obtained from the
ANN. Test data are not used in training of network. Figure
9 exhibits the random test data with 80 samples, which are
not included in the training data that show a trifling testing
error percentage of about 0.3%.
Figures 7–9 show the calculated MSE and regression.

MSE is the average squared error difference between
outputs and targets. Lower values are better. Zero means no
error. Regression values measure the correlation between
the outputs and targets. The value of 1 means a close
relationship, and 0 a random relationship.

7.2 Effect of irradiance/wind speed variations

In this case, in order to assess the intelligent of the hybrid
structure, the irradiance is increased from 4 to 8 s and 11 to
14 s, and it is decreased between 8 and 11 s as depicted in
Fig. 10(a). In this case, the third load is not connected to
the hybrid system. Distributed generation sources feed
only the first and the second loads. The cell temperature is
kept at a constant value of 25°C. Under these operation
conditions, Fig. 10(b) depicts the performance of the
MPPT controllers in terms of PV output power when
subjected to a sudden change in solar irradiation. From Fig.
10(b), it can be seen that the hybrid fuzzy-neural algorithm
can provide good dynamic operation, faster convergence
speed, less oscillations of operating point around MPP. It
tracks the global maxima under different conditions
effectively than the P&O and FLC. The operating point
does not vary too much from MPP under the quick
changing atmospheric condition and it is more effective.
The efficiency of the MPPT techniques is evaluated by
considering the steady state response of the system as
shown in Fig. 10(c), (d) and (e). The average tracking
efficiency and respond time of each method are presented
in Table 4. It can be seen that the average efficiency of the
hybrid fuzzy-neural method is 99% whereas that of the
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P&O and FLC techniques change between 95% and 97%.
It is worth mentioning that through Fig. 10(f), when the
solar irradiance is 2 kW/m2 and 6 kW/m2, the PV array is
less than 4400 W, therefore, the grid supplies active power
to the hybrid system. The output current and voltage of the
PV are given in Fig. 10(g) and (h) respectively. When the

irradiance is increased to t = 4 s and t = 11 s, it causes an
increase in the output current of the PV system. Table 5
compares the real power values with that of the presented
methods in different irradiance conditions.
In addition, the dynamic responses of the wind turbine

are investigated in the state of fixed load and variable wind

Fig. 6 Control strategy
(a) Case study system; (b) structure of P/Q strategy; (c) feed forward neural network for MPPT
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speed. The wind speed during 0< t< 5 is 9.5 m/s, but at t =
5 s, it is reduced to 9 m/s. Then, at 9< t< 14, the wind
speed is 12 m/s. Figure 11(a) demonstrates the output
power from the WT. As can be noted, the RBFNSM
controller provides a better operation with fewer deviations
than the PI controller. It is obvious that the PI controller
oscillates much more, but RBFNSM fluctuates only
slightly. The wind speed is 9.5 m/s during 0< t< 5 as
well as it is less than 60 kW, therefore, the grid supplies
power to the hybrid system as depicted Fig. 11(b). It can be
seen that the active power from the grid to the hybrid
system in the RBFNSM controller is less than that in the PI
controller because the RBFNSM controller generates
power much more than the PI controller. Figure 11(c)
illustrates the inverter output current of the wind
turbine.

7.3 Effect of temperature variation and load change

In this case assess the effect of temperature changes the
evolution of the operating point of the PV array at a fixed
insulation of 1000 W/m2. Figure 12(a) shows the
corresponding PV output powers during a sudden change
in temperature. It is worth mentioning that the proposed
hybrid fuzzy-neural method is superior to the P&O and
FLC methods in tracking the MPP of the system, as shown
in Fig. 12(b). It can be observed that when the cell
temperature increases from 30°C to 50°C, the hybrid
fuzzy-neural tracks rapidly MPP with negligible oscilla-
tions, generates maximum power, but smaller oscillation
than P&O and FLC methods. However, the other MPPT
techniques have some deviation from the MPP during this
increase of temperature. The average tracking efficiency
and time respond of each method are presented in Table 6.

Fig. 7 Training data of ANN controller
(a) Output of the neural network training with the amount of target data; (b) output of the neural network of Vmpp with the amount of data; (c) total error
percentage of the Vmpp; (d) output of the neural network of MPP with the amount of target data;(e) total error percentage of the MPP; (f) regression
performance
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It can be derived that the average efficiency of the
conventional methods vary from 95% to 97% whereas
the hybrid fuzzy-neural method is 99%, as shown in
Fig. 12(c), (d) and (e). Besides, the response time to
achieve the MPP is also low. It can be seen from Fig. 12(f)
that when the PV array is less than 4400 W, the grid
supplies power to the hybrid system. The output current of
the PV is depicted in Fig. 12 (g). When the temperature is
increased at t = 4 s, the output current of the PV system is
decreased. Table 7 compares the real power values with the
presented methods in different temperature conditions.
Additionally, the dynamic responses of the wind turbine

are studied in the state of load change. The third load is
connected to the hybrid system at t = 7 s. The wind speed
during 0< t< 14 is 12 m/s. Figure 13(a) depicts the output
power from the WT. As can be noted, the RBFNSM
controller provides a better operation with fewer deviations
than the PI controller. The RBFNSM algorithm tracks the
maximum power more quickly and accurately than the PI
controller. During load change, where the active output
power of the PVand wind turbine are not sufficient, active
power is provided from the grid as shown Fig. 13 (b). It can
be seen that the active power from the grid to the hybrid

system in the RBFNSM controller is less than that from the
PI controller because the RBFNSM controller generates
much more power than the PI controller. Figure 13(c)
illustrates the inverter out current of the wind turbine.
Table 8 represents the performance comparison of two
controllers used in the wind turbine.

8 Conclusions

In this paper, a dynamic modeling of intelligent hybrid
photovoltaic/wind turbine system has been presented. A
new method has been presented based on the hybrid fuzzy-
neural MPPT of PV generation to track the MPP. The
detailed mathematical model and a control approach of a
three-phase grid-connected intelligent hybrid system have
been proposed. The acceptable results are summarized as
follows. The simulation of the hybrid system has been
developed using Matlab/Simulink. Within the context of
this paper, numerical simulations have been performed for
the hybrid system containing intelligent fuzzy-neural,
RBFNSM and conventional MPPT controllers, under
varying climatic conditions. The proposed method has a

Fig. 8 Validation data of ANN controller
(a) Output of the neural network with the amount of target data; (b) output of the neural network of Vmpp with the amount of valid target data; (c)
percentage error of valid data Vmpp; (d) output of the neural network of MPP with the amount of target data; (e) percentage error of MPP valid data; (f)
regression performance
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good dynamic performance in tracking quickly and
accurately the maximum power output of the hybrid
power system. The proposed method of the PV is more
speedy and precise in the tracking of the MPP than the
P&O and FLC methods. It is also noted that the RBFNSM
in the wind turbine demonstrates better transient
response, more efficiency and more stability in different
conditions.

Appendix Detailed description of the model

PV parameters: output power = 4.4 kW, carrier frequency
in VMPPT PWM generator = 4.3 kHz, carrier frequency in
grid-side controller = 5 kHz.
Boost converter parameters: L = 3.5 mH, C = 630 µF.
PI coefficients in grid-side controller: KpVdc= 3.5, KiVdc=
7.3, KpId= 8.4, KiId= 343, KpIq= 8.4, KiIq= 343.

Fig. 9 Testing data of ANN controller
(a) Output of the neural network test with the amount of target data; (b) output of the neural network test of Vmpp with the amount of test target data;
(c) percentage error of test data Vmpp; (d) output of the neural network test of MPP with the amount of target data; (e) percentage error of MPP test data;
(f) regression performance

Table 4 Tracking efficiency and response time comparison for different MPPT techniques under irradiance variation

Algorithm Tracking efficiency (avg) Response time (avg)/s Oscillation around MPP (avg)/W

Hybrid fuzzy-neural 99.12 0.10 2.52

Fuzzy logic 97.35 0.17 7.31

P&O 95.14 0.28 29.12

Table 5 Output power values of solar array in various irradiation conditions

Time/s Real value/W Hybrid fuzzy-neural/W Fuzzy logic/W P&O/W

0–4 1600 1598 1555 1533

4–8 3530 3527 3470 3455

8–11 1600 1598 1555 1533

11–14 4400 4398 4348 4325
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Wind turbine parameters: output power = 60 kW, stator
resistance per phase = 2.8 Ω.
Inertia: 0.7e kg$m2, torque constant 12N-M/A, pole pairs =
8, nominal speed = 12 m/s, Ld= La= 6.3 mH.
Grid parameters: X/R = 7.

Other parameters: DC link capacitor = 4700 µF, DC link
voltage = 950.
PI coefficients in grid-side controller: KpVdc= 7.2, KiVdc=
360, KpId= 0.73, KiId= 6, KpIq= 0.73, KiIq= 6.
Loads: load 1 = 4.4 kW, load 2 = 60 kW, load 3 = 15 kW.

Fig. 10 Simulated results of variations of irradiance in case 1
(a) Irradiance variations; (b) output power of PV system; (c) tracking efficiency of hybrid fuzzy-neural; (d) tracking efficiency of FLC; (e) tracking
efficiency of P&O; (f) grid power; (g) inverter output current; (h)inverter output voltage of PV
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Fig. 11 Simulated results for wind system in case 1
(a) Maximum power tracking response of the WT; (b) response of the grid power; (c) inverter out current of wind turbine
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Fig. 12 Simulated results of variations of irradiance in case 2
(a) Temperature variations; (b) output power of PV system; (c) tracking efficiency of hybrid fuzzy-neural; (d) tracking efficiency of FLC; (e) tracking
efficiency of P&O; (f) grid power; (g) inverter output current

Table 6 Tracking efficiency and response time comparison for different MPPT techniques under temperature variation

Algorithm Tracking efficiency (avg) Response time (avg)/s Oscillation around MPP (avg)/W

Hybrid fuzzy-neural 99.45 0.14 2.12

Fuzzy logic 97.62 0.19 7.21

P&O 94.84 0.27 26.12

Table 7 Output power values of solar array in various temperature conditions

Time/s Real value/W Hybrid fuzzy-neural/W Fuzzy logic/W P&O/W

0–4 4298 4297 4261 4246

8–14 1952 1949 1904 1887
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Table 8 Performance comparison of RBFNSM and PI Controller

Controller type Wind speed/(m$s–1) Power coefficient (Cp) Pitch angle/(°) Average power/kW

RBFNSM 12 0.475 – 0.09 59.2

PI 12 0.461 – 0.66 58.1

Fig. 13 Simulated results for wind system in case 2
(a) Maximum power tracking response of the WT; (b) response of the grid power; (c) Inverter out current of wind turbine
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