Please wait a minute...

Frontiers in Energy

Front. Energy    2017, Vol. 11 Issue (3) : 401-409     https://doi.org/10.1007/s11708-017-0496-0
RESEARCH ARTICLE |
β-Nickel hydroxide cathode material for nano-suspension redox flow batteries
Yue LI1, Cheng HE1, Elena V. TIMOFEEVA2, Yujia DING2, Javier PARRONDO1, Carlo SEGRE2, Vijay RAMANI1()
1. Center for Solar Energy?and Energy Storage, Department of Energy,?Environmental and Chemical?Engineering, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO 63130, USA
2. Physics Department, Illinois Institute of Technology, Chicago, IL 60616, USA
Download: PDF(393 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH)2 nanoparticles as the cathode material, nano-sized β-Ni(OH)2 particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl2 precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH)2 was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH)2 could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH)2 was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated usingin-situ X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH)2 and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

Keywords nano-suspension flow battery      β-Ni(OH)2      scanning electronic microscopy (SEM)      X-ray diffraction (XRD)      X-ray adsorption near edge structure (XANES)      extended X-ray absorption fine structure (EXAFS)     
Corresponding Authors: Vijay RAMANI   
Just Accepted Date: 18 July 2017   Online First Date: 25 August 2017    Issue Date: 07 September 2017
 Cite this article:   
Yue LI,Cheng HE,Elena V. TIMOFEEVA, et al. β-Nickel hydroxide cathode material for nano-suspension redox flow batteries[J]. Front. Energy, 2017, 11(3): 401-409.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-017-0496-0
http://journal.hep.com.cn/fie/EN/Y2017/V11/I3/401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue LI
Cheng HE
Elena V. TIMOFEEVA
Yujia DING
Javier PARRONDO
Carlo SEGRE
Vijay RAMANI
Fig.1  Schematic of the pouch cell used for in-situ XAFS measurement and the X-ray path through the cell
Fig.2  Histogram of the particle size distribution of the as-synthesized Ni(OH)2 particles
Fig.3  XRD patterns of as-synthesized Ni(OH)2 and b-Ni(OH)2 baseline
Fig.4  Charge and discharge curves for b-Ni(OH)2 pouch cells at a charge/discharge C-rate of C/2
Fig.5  Specific discharge capacity vs. cycle number
Fig.6  XAFS spectra for the Ni K-edge of as-synthesized Ni(OH)2 powder and for the Ni(OH)2 casted electrode in the pouch cell in charged and discharged states
Fig.7  EXAFS spectra in R-space for pristine Ni(OH)2 and for pouch cells in charged and discharged states
Sample Rf/% Model Amp. Path N R σ2
Pristine Ni(OH) 2 4.7 b-Ni(OH)2 0.77 Ni-O 6 2.07(2) 0.005(4)
Ni-Ni 6 3.11(2) 0.006(3)
Charged sample 1.2 b-NiOOH 0.73 Ni-O 6 1.91(1) 0.006(2)
Ni-Ni 6 2.83(2) 0.010(2)
Discharged sample 4.0 b-Ni(OH)2 0.59 Ni-O 6 2.08(3) 0.0055
Ni-Ni 6 3.12(3) 0.0061
g-NiOOH 0.24 Ni-O 6 1.94(5) 0.0059
Ni-Ni 6 2.83(5) 0.0096
Tab.1  EXAFS modelling results for Ni(OH)2 electrodes
Fig.8  Charge curves at 7.2 mA/cm2 for b-Ni(OH)2 nano-suspension
Fig.9  Discharge at 0.72 mA/cm2 for b-Ni(OH)2 nano-suspension
Fig.10  Comparison of XRD patterns of as-prepared Ni(OH)2 and nanoparticles recovered from nano-suspension after 13 cell charge/discharge cycles
Fig.11  Specific discharge capacities at a discharge current density of 0.72 mA/cm2 for b-Ni(OH)2 nano-suspension at different charge rates
Fig.12  Specific discharge capacity for b-Ni(OH)2 nano-suspension at a charge current density of 7.2 mA/cm2 and a discharge current density of 0.72 mA/cm2
1 Zhou H, Zhou  Z. Effects of ultrasonic treatment on the structure and electrochemical performance of spherical  b-Ni(OH)2. Chinese Journal of Chemistry, 2006, 24(1): 37–44
https://doi.org/10.1002/cjoc.200690019
2 Shuka A K, Venugopalah  S, Hariprakash B . Nickel-based rechargeable batteries. Journal of Power Sources, 2001, 100(1–2): 125–148 
https://doi.org/10.1016/S0378-7753(01)00890-4
3 Freitas M B J G . Nickel hydroxide powder for NiOOH/Ni(OH)2 electrodes of the alkaline batteries. Journal of Power Sources, 2001, 93(1–2): 163–173
https://doi.org/10.1016/S0378-7753(00)00570-X
4 Xu P, Han  X, Zhang B ,  Lv Z, Liu  X. Characterization of an ultrafine nickel hydroxide from supersonic co-precipitation method. Journal of Alloys and Compounds, 2007, 436(1–2): 369–374
https://doi.org/10.1016/j.jallcom.2006.07.055
5 Cheng J, Zhang  L, Yang Y ,  Wen Y, Cao  G, Wang X . Preliminary study of single flow zinc-nickel battery. Electrochemistry Communications, 2007, 9(11): 2639–2642
https://doi.org/10.1016/j.elecom.2007.08.016
6 Jia C, Pan  F, Zhu Y ,  Huang Q ,  Lu L, Wang  Q. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane. Science Advances, 2015, 1(10): e1500886
https://doi.org/10.1126/sciadv.1500886
7 Pan J, Sun  Y, Wan P ,  Wang Z, Liu  X. Synthesis, characterization and electrochemical performance of battery grade NiOOH. Electrochemistry Communications, 2005, 7(8): 857–862
https://doi.org/10.1016/j.elecom.2005.05.004
8 Guan X, Deng  J. Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 2007, 61(3): 621–625
https://doi.org/10.1016/j.matlet.2006.05.026
9 Han X, Xu  P, Xu C ,  Zhao L, Mo  Z, Liu T . Study of the effects of nanometer  b-Ni(OH)2 in nickel hydroxide electrodes. Electrochimica Acta, 2005, 50(14): 2763–2769
https://doi.org/10.1016/j.electacta.2004.11.025
10 Köhler U, Antonius  C, Bauerlein P . Advances in alkaline batteries. Journal of Power Sources, 2004, 127(1–2): 45–52
https://doi.org/10.1016/j.jpowsour.2003.09.006
11 Liu X, Yu  L. Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Materials Letters, 2004, 58(7–8): 1327–1330
https://doi.org/10.1016/j.matlet.2003.09.054
12 Losev A V, Petrii  O A. Effect of the aggregate stability of a suspension on the rate of charge transfer from the current collector of the suspension electrode to suspension particles. Elektrokhimiya, 1976, 12: 1749
13 Garche J, Dietz  H, Wiesener K . The suspension electrode technique for electrochemical analysis of lead dioxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984, 180(1–2): 577–585
https://doi.org/10.1016/0368-1874(84)83608-4
14 Duduta M, Ho  B, Wood V C ,  Limthongkul P ,  Brunini V E ,  Carter W C ,  Chiang Y M . Semi-solid lithium rechargeable flow battery. Advanced Energy Materials, 2011, 4(1): 551–556
15 Pomerantseva, Kumbur E C ,  Gogotsi Y . Composite manganese oxide percolating networks as a suspension electrode for an asymmetric flow capacitor. ACS Applied Materials & Interfaces, 2014, 6(11): 8886–8893
16 Pandya K I, O’Grady  W E, Corrigan  D A, McBreen  J, Hoffman R W . Extended X-ray absorption fine structure investigation of nickel hydroxides. Journal of Physical Chemistry, 1990, 94(1): 21–26
https://doi.org/10.1021/j100364a005
17 Ichiyanagi Y, Kondoh  H, Yokoyama T ,  Okamoto K ,  Nagai K ,  Ohta T. X-ray absorption fine-structure study on the Ni(OH)2 monolayer nanoclusters. Chemical Physics Letters, 2003, 379(3–4): 345–350
https://doi.org/10.1016/j.cplett.2003.08.051
18 Farley N R S ,  Gurman S J ,  Hillman A R . In-situ EXAFS study of nickel hydroxide electrodes during discharge. Journal of Synchrotron Radiation, 1999, 6(3): 198–200
https://doi.org/10.1107/S0909049599001168
19 Morishita M, Ochiai  S, Kakeya T ,  Ozaki T ,  Kawabe Y ,  Watada M ,  Tanase S ,  Sakai T . Phase transformation in the charge-discharge process and the structural analysis by synchrotron XAFS and XRD for nickel hydroxide electrode. Electrochemistry, 2008, 76(11): 802–807
https://doi.org/10.5796/electrochemistry.76.802
20 Zimmerman A H . Mechanisms for capacity fading in the NiH2 cell and its effects on cycle life. The 1992 NASA Aerospace Battery Workshop. NASA CP-3102, 1993, 153–175
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed