Please wait a minute...

Frontiers in Energy

Front. Energy    2015, Vol. 9 Issue (3) : 322-334     https://doi.org/10.1007/s11708-015-0362-x
RESEARCH ARTICLE |
Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances
Saeed VAFAEI(),Alireza REZVANI,Majid GANDOMKAR,Maziar IZADBAKHSH
Department of Electrical Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran
Download: PDF(2019 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, many different techniques are applied in order to draw maximum power from photovoltaic (PV) modules for changing solar irradiance and temperature conditions. Generally, the output power generation of the PV system depends on the intermittent solar insolation, cell temperature, efficiency of the PV panel and its output voltage level. Consequently, it is essential to track the generated power of the PV system and utilize the collected solar energy optimally. The aim of this paper is to simulate and control a grid-connected PV source by using an adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) controller. The data are optimized by GA and then, these optimum values are used in network training. The simulation results indicate that the ANFIS-GA controller can meet the need of load easily with less fluctuation around the maximum power point (MPP) and can increase the convergence speed to achieve the MPP rather than the conventional method. Moreover, to control both line voltage and current, a grid side P/Q controller has been applied. A dynamic modeling, control and simulation study of the PV system is performed with the Matlab/Simulink program.

Keywords photovoltaic system      maximum power point (MPP)      adaptive neuro-fuzzy inference system (ANFIS)      genetic algorithm (GA)     
Corresponding Authors: Saeed VAFAEI   
Just Accepted Date: 07 May 2015   Online First Date: 11 June 2015    Issue Date: 11 September 2015
 Cite this article:   
Saeed VAFAEI,Alireza REZVANI,Majid GANDOMKAR, et al. Enhancement of grid-connected photovoltaic system using ANFIS-GA under different circumstances[J]. Front. Energy, 2015, 9(3): 322-334.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-015-0362-x
http://journal.hep.com.cn/fie/EN/Y2015/V9/I3/322
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Saeed VAFAEI
Alireza REZVANI
Majid GANDOMKAR
Maziar IZADBAKHSH
Fig.1  Equivalent circuit of the photovoltaic array
Current at maximum power IMP/A Voltage at maximum power VMP/V Maximum power PMAX/ W Open circuit voltage VOC /V Short circuit current ISC/A Total number of parallel cells NP Total number of series cells NS
4.94 18.65 90 22.32 5.24 1 36
Tab.1  Red sun 90 W module
Number of design variable Population size Crossover constant Mutation rate Maximum generations
1 27 75% 13% 24
Tab.2  GA parameters
Fig.2  ANFIS architecture of a 2-input first-order Sugeno fuzzy model with 2 rules
Fig.3  Proposed MPPT scheme
Fig.4  Data

(a) Inputs data of irradiation and temperature; (b) VMPP corresponding to MPP

Fig.5  ANFIS controller structure
Fig.6  Solar irradiance membership function for ANFIS
Fig.7  Temperature membership functions for ANFIS
Fig.8  Fuzzy rules
Fig.9  Output of ANFIS with the amount of target data
Fig.10  Output of ANFIS VMPP with the amount of target data
Fig.11  Total error percentage of VMPP after training data
Fig.12  Output of ANFIS test with the amount of target data
Fig.13  Output of ANFIS test of VMPP with the amount of target data
Fig.14  Error percentage of test data of VMPP after training data
Fig.15  Synchronous reference machine
Fig.16  Inverter control model
Fig.17  Case study system
Fig.18  Structure of P/Q strategy
Fig.19  Simulated results for PV (variation of irradiance) in case 1

(a) Irradiance; (b) inverter output voltage; (c) inverter output current; (d) PV power; (e) grid power

Fig.20  Simulated results for PV (variation of temperature) in case 1

(a) Temperature; (b) grid voltage; (c) inverter output current; (d) PV power; (e) grid power

MPPT techniques Convergence speed Implementation complexity Periodic tuning Sensed parameters
P& O Varies Low No Voltage
IC Varies Medium No Voltage, Current
Fuzzy logic control Fast High Yes Varies
ANIFS+ GA Fast High Yes Varies
Tab.3  Characteristics of different MPPT techniques
1 Rezvani A, Gandomkar M, Izadbakhsh M, Ahmadi A. Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production, 2015, 87: 216–226
https://doi.org/10.1016/j.jclepro.2014.09.088
2 Izadbakhsh M, Gandomkar M, Rezvani A, Ahmadi A. Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy, 2015, 75: 598–606
https://doi.org/10.1016/j.renene.2014.10.043
3 Salas V, Olias E, Barrado A, Lazaro A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 2006, 90(11): 1555–1578
https://doi.org/10.1016/j.solmat.2005.10.023
4 Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observer maximum power point tracking method. IEEE Transactions on Power Electronics, 2005, 20(4): 963–973
https://doi.org/10.1109/TPEL.2005.850975
5 Najet R, Belgacem B G, Othman H. Modeling and control of photovoltaic energy conversion connected to the grid. Frontiers in Energy, 2012, 6(1): 35–46
https://doi.org/10.1007/s11708-012-0169-y
6 Liu F, Duan S, Liu F, Liu B, Kang Y. A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622–2628
https://doi.org/10.1109/TIE.2008.920550
7 Altin N. Interval type-2 fuzzy logic controller based maximum power point tracking in photovoltaic systems. Advances in Electrical and Computer Engineering, 2013, 13(3): 65–70
https://doi.org/10.4316/AECE.2013.03011
8 Bouchafaa F, Hamzaoui I, Hadjammar A. Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Procedia, 2011, 6(1): 152–159
9 Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Transactions on Industrial Electronics, 2003, 50(4): 749–758
https://doi.org/10.1109/TIE.2003.814762
10 Rai A K, Kaushika N D, Singh B, Agarwal N. Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Materials and Solar Cells, 2011, 95(2): 773–778
https://doi.org/10.1016/j.solmat.2010.10.022
11 Chandrasekaran S, Amarkarthik A, Sivakumar K, Selvamuthukumaran D, Sidney S H. Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion. Frontiers in Energy, 2013, 7(3): 279–287
https://doi.org/10.1007/s11708-013-0268-4
12 Liu F R, Duan S X, Liu F, Liu B Y, Kang Y. A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2622–2628
https://doi.org/10.1109/TIE.2008.920550
13 Esram T, Chapman P L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion, 2007, 22(2): 439–449
https://doi.org/10.1109/TEC.2006.874230
14 Godoy Sim?es M, Franceschetti N N. Fuzzy optimisation based control of a solar array system. Electric Power Applications, 1999, 146(5): 552–558
https://doi.org/10.1049/ip-epa:19990341
15 Huh D P, Ropp M E. Comparative study of maximum power point tracking algorithm using an experimental, programmable, maximum power point tracking test bed. In: Proceedings of 28th IEEE Photovoltaic Specialists Conference. Anchorage, USA, 2000, 1–5
16 Al-Amoudi A, Zhang L. Application of radial basis function networks for solar-array modeling and maximum power-point prediction. IEE Proceedings-Generation, Transmission and Distribution, 2000, 147(5): 310–316
https://doi.org/10.1049/ip-gtd:20000605
17 Zhang L, Bai Y F. Genetic algorithm-trained radial basis function neural networks for modeling photovoltaic panels. Engineering Applications of Artificial Intelligence, 2005, 18(7): 833–844
https://doi.org/10.1016/j.engappai.2005.02.004
18 Hiyama T, Kitabayashi K. Neural network based estimation of maximum power generation from PV Module using environment information. IEEE Transactions on Energy Conversion, 1997, 12(3): 241–247
https://doi.org/10.1109/60.629709
19 Aldobhani A M S, John R. Maximum power point tracking of PV system using ANFIS prediction and fuzzy logic tracking. In: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS). Hong Kong, China, 2008, 19–21
20 Jang J S R, Sun C T, Mizutani E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall, 1997
21 Patcharaprakiti N, Premrudeepreechacharn S, Sriuthaisiriwong Y. Maximum power point tracking using adaptive fuzzy logic control for grid connected photovoltaic system. Renewable Energy, 2005, 30(1): 1771–1788
22 Vincheh M R, Kargar A, Markadeh G A. A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arabian Journal for Science and Engineering, 2014, 39(6): 4715–4725
https://doi.org/10.1007/s13369-014-1056-0
23 Ramaprabha R, Mathur B L. Intelligent controller based maximum power point tracking for solar PV system. International Journal of Computers and Applications, 2011, 12(10): 37–41
https://doi.org/10.5120/1717-2303
24 Rezvani A, Gandomkar M, Izadbakhsh M, Vafaei S. Optimal power tracker for photovoltaic system using ann-ga. International Journal of Current Life Sciences, 2014, 4(9): 107–111
25 Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998, 13(2): 44–49
https://doi.org/10.1109/5254.671091
Related articles from Frontiers Journals
[1] Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN. A control scheme with performance prediction for a PV fed water pumping system[J]. Front. Energy, 2014, 8(4): 480-489.
[2] Sunil DHINGRA, Gian BHUSHAN, Kashyap Kumar DUBEY. Development of a combined approach for improvement and optimization of karanja biodiesel using response surface methodology and genetic algorithm[J]. Front Energ, 2013, 7(4): 495-505.
[3] Moulay Rachid DOUIRI, Mohamed CHERKAOUI. Comparative study of various artificial intelligence approaches applied to direct torque control of induction motor drives[J]. Front Energ, 2013, 7(4): 456-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed