Please wait a minute...

Frontiers in Energy

Front. Energy    2015, Vol. 9 Issue (2) : 170-179
A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system
Nabil KAHOUL1,*(),Mourad HOUABES1,Ammar NEÇAIBIA2
1. Laboratoire d’ Electrotechnique, d’ Annaba, Badji Mokhtar-Annaba University, Annaba 23000, Algeria
2. Research Unit of Renewable Energy in Saharan Middle (URER/MS), Adrar 01000, Algeria
Download: PDF(1557 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

When designing a maximum power point tracking (MPPT) algorithm, it is often difficult to correctly predict, before field testing, the behavior of this MPPT under varying solar irradiation on photovoltaic (PV) panels. A solution to this problem is to design a maximum power point trackers simulator of a PV system used to test MPPT algorithms. This simulator must have the same role as the MPPT card of the PV panel and thus will fully emulate the response of a real MPPT card of the PV panel. Therefore, it is a good substitute to help to test the peak power trackers of the PV system in the laboratory. This paper describes a simple peak power trackers simulator of the PV system which has a short response time thus, can be used to test MPPT algorithms under very rapid variation condition. The obtained results and the theoretical operation confirm the reliability and the superior performance of the proposed model.

Keywords photovoltaic module      DC-DC converter      design      maximum power point tracking (MPPT) card      microprocessor     
Corresponding Authors: Nabil KAHOUL   
Just Accepted Date: 02 February 2015   Online First Date: 11 March 2015    Issue Date: 29 May 2015
 Cite this article:   
Nabil KAHOUL,Mourad HOUABES,Ammar NE?AIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
E-mail this article
E-mail Alert
Articles by authors
Fig.1  Single-diode model of PV cell
Open-circuit voltage Voc/V21.6
Short-circuit current Isc/A???4.67
Voltage at MPP Vmp/V17.3
Current at MPP Imp/A???4.34
Maximum power Pm/W?75.08
Quality factor A?1.3
Series resistance Rs/????0.24
Parallel resistance Rp/?866.92
Tab.1  Main parameters of the PV module ISOFOTON I-75
Fig.2  I-V simulated and experimental curves of the studied PV module

(a) Simulated curves; (b) experimental curves

Fig.3  I-V simulated curves of the studied PV module under different solar irradiation levels
Fig.4  Simulink implementation of the PV panel simulator
Fig.5  Buck-boost converter circuit
Fig.6  Microcontroller 16F876A
Fig.7  Flowchart of P&O algorithm
Fig.8  Voltage divider circuitry
Fig.9  Hall Effect current sensor
Fig.10  Simulink implementation of the MPPT system simulator
Fig.11  Simulated results of the whole system at STC

Notes: Blue curve—voltage waveform VPV; red curve—current waveform IPV; yellow curve—PWM output of the PIC

Fig.12  Tracking power P(t)
Fig.13  Tracking voltage V(t) and current I(t) under fast-changing solar irradiation level and a temperature of 25°C.
Fig.14  Tracking voltage and current under different solar irradiation and a temperature of 25°C
1 Kim I S, Kim M B, Youn M J. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027–1035
2 Xiao W, Lind M G J, Dunford W G, Capel A. Real-time identification of optimal operating points in photovoltaic power systems. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017–1026
3 Li Y, Lee T, Peng F, Liu D. A hybrid control strategy for photovoltaic simulator. In: Proceedings of 2009 24th Annual IEEE Applied Power Electronics Conference and Exposition. Washington DC, 2009, USA, 899–903
4 Subudhi B, Pradhan R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy, 2013, 4(1): 89–98
5 Santos J L, Antunes F, Chehab A, Cruz C. A maximum power point tracker for PV systems using a high performance boost converter. Solar Energy, 2006, 80(7): 772–778
6 Yang Y, Zhao F P. Adaptive perturb and observe MPPT technique for grid connected photovoltaic inverters. Procedia Engineering, 2011, 23: 468–473
7 Wang J C, Shieh J C, Su Y L, Kuo K C, Chang Y W, Liang Y T, Chou J J, Liao K C, Jiang J A. A novel method for the determination of dynamic resistance for photovoltaic modules. Energy, 2011, 36(10): 5968–5974
8 Kahoul N, Houabes M, Sadok M. Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Conversion and Management, 2014, 82: 320–326
9 Yordanov G H, Midtg?rd O M, Saetre T O. Series resistance determination and further characterization of c-Si PV modules. Renewable Energy, 2012, 46: 72–80
10 Tey K S, Mekhilef S. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Solar Energy, 2014, 101: 333–342
11 Safari A, Mekhilef S. Implementation of incremental conductance method with direct control. 2014–<month>02</month>–<day>25</day>,
12 Scheurer A, Ago E, Hidalgo J S, Kobosko S. Photovoltaic MPPT charge controller. 2014–<month>02</month>–<day>25</day>,
13 Nolan T. Peak power tracker circuit description. 2014–<month>02</month>–<day>26</day>,;_ylu=X3oDMTEzYmNpNGdqBHNlYwNzcgRwb3MDMQRjb2xvA2dxMQR2dGlkA1NNRTkwNl8x/RV=2/RE=1420469981/RO=10/
14 Houssamo I, Locment F, Sechilariu M. Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power & Energy Systems, 2013, 46: 98–107
15 Ishaque K, Salam Z, Amjad M, Mekhilef S. An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 2012, 27(8): 3627–3638
16 Hussein K H, Muta I, Hoshino T, Osakada M. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proceedings–Generation, Transmission and Distribution, 1995, 142(1): 59–64
17 Ahmed M. Atallah, Almoataz Y. Abdelaziz, and Raihan S. Jumaah. Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters. Emerging Trends in Electrical, Electronics & Instrumentation Engineering: an International Journal (EEIEJ), 2014, 1(1): 31–44
18 Tey K S, Mekhilef S. Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5384–5392
Related articles from Frontiers Journals
[1] Harald SCHWARZ, Xiaoshu CAI. Integration of renewable energies, flexible loads and storages into the German power grid: Actual situation in German change of power system[J]. Front. Energy, 2017, 11(2): 107-118.
[2] Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG. Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine[J]. Front. Energy, 2016, 10(1): 88-104.
[3] Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN. Active fuel design—A way to manage the right fuel for HCCI engines[J]. Front. Energy, 2016, 10(1): 14-28.
[4] Mohamed Yacine HAMMOUDI,Abdelkarim ALLAG,Mohamed BECHERIF,Mohamed BENBOUZID,Hamza ALLOUI. Observer design for induction motor: an approach based on the mean value theorem[J]. Front. Energy, 2014, 8(4): 426-433.
[5] Amel HADRI-HAMIDA, S. ZEROUALI, A. ALLAG. Toward a nonlinear control of an AC-DC-PWM converter dedicated to induction heating[J]. Front Energ, 2013, 7(2): 140-145.
[6] Jufang FAN, Weikun DING, Zhigeng WU, Yaling HE, Wenquan TAO, Yongxin ZHENG, Yifeng GAO, Ji SONG. A new performance evaluation method and its application in fin-tube surface design of small diameter tube[J]. Front Energ, 2011, 5(1): 59-68.
[7] Deodat MAKHANLALL, Linhua LIU, . Entropy production analysis of swirling diffusion combustion processes[J]. Front. Energy, 2010, 4(3): 326-332.
[8] Nengsheng BAO, Weidou NI, . Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants[J]. Front. Energy, 2010, 4(2): 205-210.
[9] B. V. BORGMEYER, H. B. MA, . Heat-spreading analysis of a heat sink base embedded with a heat pipe[J]. Front. Energy, 2010, 4(2): 143-148.
[10] Y. G. LI, P. PILIDIS, . Nonlinear design-point performance adaptation approaches and their comparisons for gas turbine applications[J]. Front. Energy, 2009, 3(4): 446-455.
[11] Chong-hyun CHO, Soo-yong CHO, Chaesil KIM, . Development of an axial-type fan with an optimization method[J]. Front. Energy, 2009, 3(4): 414-422.
[12] Xiaohong HE, Ruixian CAI. Typical off-design analytical performances of internal combustion engine cogeneration[J]. Front Energ Power Eng Chin, 2009, 3(2): 184-192.
[13] LIU Xiaojing, CHENG Xu. Steady-state thermal-hydraulic analysis of SCWR assembly[J]. Front. Energy, 2008, 2(4): 475-478.
[14] SHI Jinyuan. Reliability design method for steam turbine blades[J]. Front. Energy, 2008, 2(4): 363-368.
[15] SHU Xinwei, GU Chuangang, XIAO Jun, GAO Chuang. Centrifugal compressor blade optimization based on uniform design and genetic algorithms[J]. Front. Energy, 2008, 2(4): 453-456.
Full text