Please wait a minute...

Frontiers in Energy

Front. Energy    2015, Vol. 9 Issue (1) : 43-53     https://doi.org/10.1007/s11708-014-0343-5
RESEARCH ARTICLE |
Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels
Ammar NEÇAIBIA1,Samir LADACI2,*(),Abdelfatah CHAREF3,Jean Jacques LOISEAU4
1. Research Unit in Renewable Energies in the Saharan Medium, CDEREPST, URER-MS, Adrar 01000, Algeria; Department of Electrical Engineering, University of Skikda, Skikda 21000, Algeria
2. Department of Electronics, Electrotechnics and Automatics, National Polytechnic School of Constantine, Constantine 25000, Algeria; SP-Lab Laboratory, Department of Electronics, University of Constantine 1, Constantine 25000, Algeria
3. SP-Lab Laboratory, Department of Electronics, University of Constantine 1, Constantine 25000, Algeria
4. Research Institute in Communications and Cybernetics, CNRS UMR 6597, 1 rue de la No? 44321 Nantes, France
Download: PDF(1402 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to the high interest in renewable energy and diversity of research regarding photovoltaic (PV) array, a great research effort is focusing nowadays on solar power generation and its performance improvement under various weather conditions. In this paper, an integrated framework was proposed, which achieved both maximum power point tracking (MPPT) and minimum ripple signals. The proposed control scheme was based on extremum-seeking (ES) combined with fractional order systems (FOS). This auto-tuning strategy was developed to maximize the PV panel output power through the regulation of the voltage input to the DC/DC converter in order to lead the PV system steady-state to a stable oscillation behavior around the maximum power point (MPP). It is shown that fractional order operators can improve the plant dynamics with respect to time response and disturbance rejection. The effectiveness of the proposed controller scheme is illustrated with simulations using measured solar radiation data.

Keywords extremum seeking (ES)      fractional order control (FOC)      fractional calculus      photovoltaic (PV) panel      maximum power point tracking (MPPT)     
Corresponding Authors: Samir LADACI   
Just Accepted Date: 12 December 2014   Online First Date: 04 February 2015    Issue Date: 02 March 2015
 Cite this article:   
Ammar NE?AIBIA,Samir LADACI,Abdelfatah CHAREF, et al. Fractional order extremum seeking approach for maximum power point tracking of photovoltaic panels[J]. Front. Energy, 2015, 9(1): 43-53.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-014-0343-5
http://journal.hep.com.cn/fie/EN/Y2015/V9/I1/43
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ammar NE?AIBIA
Samir LADACI
Abdelfatah CHAREF
Jean Jacques LOISEAU
Fig.1  Block diagram of the scheme under consideration
Fig.2  Dynamical extremum seeking scheme using fractional order integration
Fig.3  Equivalent circuit model of PV cell
Fig.4  P-V and the I-V characteristic of PV array
Fig.5  Effects of ambient temperature and irradiation variations on P-V and I-V
Fig.6  Basic configuration of boost converter
Fig.7  Overall system: PV panel, boost converter, FOES controller and load
Specification parameter Value
Maximum power (Pmax) (75±10%) W
Maximum power voltage (VMPP) 17.3 V
Maximum power current (IMPP) 4.34 A
Open circuit voltage (Voc) 21. 6 V
Short circuit current (Ioc) 4.67 A
Temperature coefficient of Isc (κIsc) 0.065±0.015 %/C
Temperature coefficient of Voc (κVoc) –160±20 mV/C
Panel efficiency (ηPV) 11.2%
NOCT 47±2C
Tab.1  Electrical characteristics data of PV module ISOFOTON 75I-12, taken from the data-sheet
Parameter Description Value
ncell Number of PV cells arranged in series 36
Rs Series resistance 0.24 Ω
Rp Parallel resistance 670 Ω
η Ideality factor 1.2
Tab.2  Model parameters of PV module ISOFOTON 75I-12
Parameter Description Value
K1 Gradient update law gain1 4
K2 Gradient update law gain 2 4
M Min/Max saturation 0.2
Tab.3  Extremum seeking parameters
Fig.8  Overall system presentation in Matlab/Simulink
Fig.9  Power output (W) of PV panel for different values of fractional order λ
Fig.10  Quadratic error criteria versus the fractional order λ
Fig.11  Outputs of PV panel for “optimal” fractional order value λ = 0.76
Fig.12  PV panel outputs for different values of fractional order λ
Fig.13  Irradiance data for one day in February at URERMS research unit
Fig.14  Irradiance data spanning 30 min from 13:22 to 13:52 A.M. on February 23, 2011
Fig.15  Proposed fractional order ESC-based MPPT response to fixed scenario (Power PV (W))
Fig.16  Proposed fractional order ESC-based MPPT response to varying scenarios
1 Lin C H, Huang C H, Du Y C, Chen J L. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method. Applied Energy, 2011, 88(12): 4840–4847
https://doi.org/10.1016/j.apenergy.2011.06.024
2 Melício R, Mendes V M F, Catalao J P S. Fractional-order control and simulation of wind energy systems with PMSG/full-power converter topology. Energy Conversion and Management, 2010, 51(6): 1250–1258
https://doi.org/10.1016/j.enconman.2009.12.036
3 Ne?aibia A, Ladaci S. Fractional control based integration of MPPT for photovoltaic arrays. In: The First International Conference on Electrical Engineering and Control Applications, ICEECA'2012, Khenchela, 2012
4 Oustaloup A. La Commande CRONE: Commande Robuste D’ordre Non Entier. Paris: Hermes, 1991 (in French)
5 Podlubny I. Fractional-order systems and PIλDμ-controllers. IEEE Transactions on Automatic Control, 1999, 44(1): 208–214
https://doi.org/10.1109/9.739144
6 Pan I, Das S. Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. International Journal of Electrical Power & Energy Systems, 2013, 51: 106–118
https://doi.org/10.1016/j.ijepes.2013.02.021
7 Agrawal O P. A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dynamics, 2004, 38(1–4): 323–337
https://doi.org/10.1007/s11071-004-3764-6
8 Ladaci S, Charef A. Fractional order adaptive control systems: a survey. In: Mitchell E W, Murray S R eds. Classification and Application of Fractals. Nova Science Publishers Inc., 2012, 261–275
9 Vinagre B M, Petras I, Podlubny I, Chen Y Q. Using fractional order adjustment rules and fractional order reference models in model reference adaptive control. Nonlinear Dynamics, 2002, 29(1–4): 269–279
https://doi.org/10.1023/A:1016504620249
10 Ladaci S, Loiseau J J, Charef A. Fractional order adaptive high gain controllers for a class of linear systems. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(4): 707–714
https://doi.org/10.1016/j.cnsns.2006.06.009
11 Efe M O, Kasnakoglu C. A fractional adaptation law for sliding mode control. International Journal of Adaptive Control and Signal Processing, 2008, 22(10): 968–986
https://doi.org/10.1002/acs.1062
12 Ladaci S, Loiseau J J, Charef A. Adaptive internal model control with fractional order parameter. International Journal of Adaptive Control and Signal Processing, 2010, 24(11): 944–960
https://doi.org/10.1002/acs.1175
13 Salas V, Olías E, Barrado A, Lázaro A. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Materials and Solar Cells, 2006, 90(11): 1555–1578
https://doi.org/10.1016/j.solmat.2005.10.023
14 Ramaprabha R, Balaji M, Mathur B L. Maximum power point tracking of partially shaded solar PV system using modified Fi-bonacci search method with fuzzy controller. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 754–765
https://doi.org/10.1016/j.ijepes.2012.06.031
15 Ghassami A A, Sadeghzadeh S M, Soleimani A. A high performance maximum power point tracker for PV systems. International Journal of Electrical Power & Energy Systems, 2013, 53: 237–243
https://doi.org/10.1016/j.ijepes.2013.04.017
16 Hong C M, Chen C H. Intelligent control of a grid-connected wind-photovoltaic hybrid power systems. International Journal of Electrical Power & Energy Systems, 2014, 55: 554–561
https://doi.org/10.1016/j.ijepes.2013.10.024
17 Houssamo I, Locment F, Sechilariu M. Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power & Energy Systems, 2013, 46: 98–107
https://doi.org/10.1016/j.ijepes.2012.10.048
18 Armstrong S, Hurley W G. A new methodology to optimise solar energy extraction under cloudy conditions. Renewable Energy, 2010, 35(4): 780–787
https://doi.org/10.1016/j.renene.2009.10.018
19 Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974
20 Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley Interscience, 1993
21 Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999
22 Charef A, Sun H H, Tsao Y Y, Onaral B. Fractional system as represented by singularity function. IEEE Transactions on Automatic Control, 1992, 37(9): 1465–1470
https://doi.org/10.1109/9.159595
23 Ariyur K B, Krstic M. Real-Time Optimization by Extremum-Seeking Control. New York: Wiley, 2003
24 Krsti? M. Performance improvement and limitation in extremum seeking control. Systems & Control Letters, 2000, 39(5): 313–326
https://doi.org/10.1016/S0167-6911(99)00111-5
25 Astrom K J, Wittenmark B. Adaptive Control. 2nd ed. Reading, MA: Addison-Wesley, 1995
26 Carnevale D, Astolfi A, Centioli C, Podda S, Vitale V, Zaccarian L. A new extremum seeking technique and its application to maximize RF heating on FTU. Fusion Engineering and Design, 2009, 84(2–6): 554–558
https://doi.org/10.1016/j.fusengdes.2008.12.032
27 Ladaci S, Charef A. MIT adaptive rule with fractional integration. In: Proceedings of CESA'2003 IMACS Multiconference Computational Engineering in Systems Applications, Lille, 2003
28 Chenni R, Makhlouf M, Kerbache T, Bouzid A. A detailed modeling method for photovoltaic cell. Energy, 2007, 32(9): 1724–1730
https://doi.org/10.1016/j.energy.2006.12.006
29 Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point tracking method. IEEE Transactions on Power Electronics, 2005, 20(4): 963–973
https://doi.org/10.1109/TPEL.2005.850975
30 Kwon J M, Nam K H, Kwon B H. Photovoltaic power conditioning system with line connection. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1048–1054
https://doi.org/10.1109/TIE.2006.878329
31 Heydari-doostabad H, Keypour R, Khalghani M R, Khooban M H. A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Solar Energy, 2013, 94: 28–36
https://doi.org/10.1016/j.solener.2013.04.025
32 Lei P, Li Y, Seem J E. Sequential ESC-based global MPPT control for photovoltaic array with variable shading. IEEE Transactions on Sustainable Energy, 2011, 2(3): 348–358
https://doi.org/10.1109/TSTE.2011.2141692
Related articles from Frontiers Journals
[1] Himani,Ratna DAHIYA. Condition monitoring of a wind turbine generator using a standalone wind turbine emulator[J]. Front. Energy, 2016, 10(3): 286-297.
[2] H. AFGHOUL,F. KRIM,D. CHIKOUCHE,A. BEDDAR. Robust switched fractional controller for performance improvement of single phase active power filter under unbalanced conditions[J]. Front. Energy, 2016, 10(2): 203-212.
[3] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[4] Najet REBEI,Ali HMIDET,Rabiaa GAMMOUDI,Othman HASNAOUI. Implementation of photovoltaic water pumping system with MPPT controls[J]. Front. Energy, 2015, 9(2): 187-198.
[5] Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
[6] Ramesh K GOVINDARAJAN,Pankaj Raghav PARTHASARATHY,Saravana Ilango GANESAN. A control scheme with performance prediction for a PV fed water pumping system[J]. Front. Energy, 2014, 8(4): 480-489.
[7] Akhil GUPTA,Saurabh CHANANA,Tilak THAKUR. THD reduction with reactive power compensation for fuzzy logic DVR based solar PV grid connected system[J]. Front. Energy, 2014, 8(4): 464-479.
[8] M. BENADJA,S. SAAD,A. BELHAMRA. Rapid transaction to load variations of active filter supplied by PV system[J]. Front. Energy, 2014, 8(3): 335-344.
[9] Azzouz TAMAARAT,Abdelhamid BENAKCHA. Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system[J]. Front. Energy, 2014, 8(3): 371-378.
[10] Akhil GUPTA,Saurabh CHANANA,Tilak THAKUR. Power quality investigation of a solar PV transformer-less grid- connected system fed DVR[J]. Front. Energy, 2014, 8(2): 240-253.
[11] Houda BRAHMI, Rachid DHIFAOUI. Dynamic characteristics and improved MPPT control of PV generator[J]. Front Energ, 2013, 7(3): 342-350.
[12] S. Senthil KUMAR, N. KUMARESAN, N. Ammasai GOUNDEN, Namani RAKESH. Analysis and control of wind-driven self-excited induction generators connected to the grid through power converters[J]. Front Energ, 2012, 6(4): 403-412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed