Please wait a minute...

Frontiers in Energy

Front Energ    2014, Vol. 8 Issue (1) : 49-61     https://doi.org/10.1007/s11708-013-0285-3
REVIEW ARTICLE |
Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade
Yunxia GAO1, Lei WANG1, Haiyan LI1, Jing LIU1,2()
1. Key Lab of Cryogenics and Beijing Key Lab of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
Download: PDF(548 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current highly integrated electronics and energy systems are raising a growing demand for more sophisticated thermal management in harsh environments such as in space or some other cryogenic environment. Recently, it was found that room temperature liquid metals (RTLM) such as gallium or its alloys could significantly reduce the electronics temperature compared with the conventional coolant, like water, oil or more organic fluid. However, most of the works were focused on RTLM which may subject to freeze under low temperature. So far, a systematic interpretation on the preparation and thermal properties of liquid metals under low temperature (here defined as lower than 0°C) has not yet been available and related applications in cryogenic field have been scarce. In this paper, to promote the research along this important direction and to overcome the deficiency of RTLM, a comprehensive evaluation was proposed on the concept of liquid metal with a low melting point below zero centigrade, such as mercury, alkali metal and more additional alloy candidates. With many unique virtues, such liquid metal coolants are expected to open a new technical frontier for heat transfer enhancement, especially in low temperature engineering. Some innovative ways for making low melting temperature liquid metal were outlined to provide a clear theoretical guideline and perform further experiments to discover new materials. Further, a few promising applied situations where low melting temperature liquid metals could play irreplaceable roles were detailed. Finally, some main factors for optimization of low temperature coolant were summarized. Overall, with their evident merits to meet various critical requirements in modern advanced energy and power industries, liquid metals with a low melting temperature below zero centigrade are expected to be the next-generation high-performance heat transfer medium in thermal managements, especially in harsh environment in space.

Keywords liquid metal      cryogenics      low melting point      thermal management      aircraft      liquid cooling      space exploration     
Corresponding Authors: LIU Jing,Email:jliubme@tsinghua.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Yunxia GAO,Lei WANG,Haiyan LI, et al. Liquid metal as energy transportation medium or coolant under harsh environment with temperature below zero centigrade[J]. Front Energ, 2014, 8(1): 49-61.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-013-0285-3
http://journal.hep.com.cn/fie/EN/Y2014/V8/I1/49
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yunxia GAO
Lei WANG
Haiyan LI
Jing LIU
Fig.1  Typical cryogenic devices which can work under temperatures below zero degree centigrade
Fig.2  Photo various spacecrafts
(a) Space probe; (b) satellite; (c) manned spacecraft; (d) radar
Metal/ alloyMelting point/°CEvaporation point/°CEvaporation pressure/mmHgSpecific heat/(kJ·kg-1 ·K-1)Density/(kg·m-3)Thermal conductivity/(W·m-1·°C-1)Surface tension/(N·m-1)
Mercury- 38.87356.651.68 × 10 -3a)0.139a)13546a)8.34a)0.455a)
Gallium29.82204.810-120.37n)5907n)29.4n)0.707n)
Galinstan- 19>1300<10 -8d)*6440a)16.50.718a)
Cesium28.652023.8410 -6c)0.236c)1796c)17.4c)0.248c)
Rubidium38.85685.736 × 10-60.363m)1470m)29.3m)0.081
Potassium63.2756.56 × 10-70.78664m)54.0m)0.103c)
Sodium97.83881.410-101.38926.9c)86.9c)0.194c)
Lithium1861342.310-104.389b)515b)41.3b)0.405b)-
Na23.3K76.7- 12.67852.5 × 10 -8c)0.9538n)855c)230.11m)
Tab.1  Thermal properties of typical metal and alloys with low melting point [-]
Fig.3  Appearance of mercury and its typical applications
(a) Physical pictures of Hg and applications of Hg; (b) mercury thermometers [];(c) mercury-vapor lamps []; (d) medicine-amalgam filling []
Fig.4  A phase diagram for GaIn alloy []
AlloysMelting point/°CAlloysMelting point/°C
Galinstan- 19GaIn29Zn413
GaIn15Sn13Zn13Ga75In2516
GaIn25Sn135GaSn1217
Ga62.5In21.5Sn1610.7GaIn12Zn1617
Ga69.8In17.6Sn12.610.8GaSn820
GaIn60Sn1012GaZn525
Tab.2  Typical low-melting-point gallium alloys [-]
Fig.5  Applications of Na-K alloy in SNAP-10A reactor [] and CPU coolers []
(a) SNAP-10A reactor; (b) CPU coolers
AlloysMelting point/°CEutectic state
Cs73.71K22.14Na4.14- 78.2Yes
Cs77K23- 37.5No
Cs94.6Na5.4- 31.83Yes
K76.7Na23.3- 12.7Yes
K78Na22- 11No
Na6.2Rb93.8- 4.5Yes
Tab.3  Typical alkali metal containing alloys [,]
Fig.6  Calculated phase diagrams of the Cs-K system and comparison with the experimental data []
Fig.7  A phase diagram for a fictitious binary chemical mixture (with the two components denoted by and ) used to depict the eutectic composition, temperature, and point ( denotes liquid state.)
Fig.8  Phase diagram of NaK alloy []
MetalMaximum subcooling/°CT/Tmσ
BulkAggregates of small droplets
Tin311100.7865
Mercury14460.8023
Gallium55700.7555
Tab.4  Maximum subcooling obtained in bulk and small droplets []
Fig.9  Temperature of gallium in solidifying process []
Ga/%In/%Sn/%Ag/%Bi/%Physical state
62.521.51600Solid
61.99251300Solid
67.9820.0110.51.510Liquid
59.5220.4815.244.760Solid
67.992010.501.51Solid
68.1019.910.51.10.4Liquid
682010.50.750.75Liquid
67.9820.0110.50.381.13Solid
Tab.5  Compositions of a plurality of alloys and their physical state at 4°C
Fig.10  Application areas of liquid metal with a melting temperature below zero degree centigrade
(a) Unmanned aerial vehicle systems []; (b) infrared search and track sensors []; (c) missile warning receivers []; (d) satellite tracking systems []
Fig.11  Characteristics of new optimized coolants
1 Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology , 2009, 4(4): 235 -238
doi: 10.1038/nnano.2008.417 pmid:19350033
2 Arik M, Becker C, Weaver S, Petroski J. Thermal management of LEDs: package to system. In: 3rd International Conference on Solid State Lighting. San Diego, CA , 2003, 64 -75
3 Tzuk Y, Tal A, Goldring S, Glick Y, Lebiush E, Kaufman G, Lavi R. Diamond cooling of high-power diode-pumped solid-state lasers. IEEE Journal of Quantum Electronics , 2004, 40(3): 262-269
doi: 10.1109/JQE.2003.823028
4 Strassberg D. Cooling hot microprocessors. EDN (European Edition) , 1994, 39: 40-48
5 Lundquist C, Carey V P. Microprocessor-based adaptive thermal control for an air-cooled computer CPU module. In: Proceedings of the 17th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA , 2001, 168-173
6 Xie H, Ali A, Bhatia R. Use of heat pipes in personal computers. In: Proceedings of the Intersociety Conference—Thermo Mechanical Phenomena in Electronic Systems. Seattle, USA , 1998, 442-448
7 Nquyen T, Mochizuki M, Mashiko K, Saito Y, Sauciuc I. Use of heat pipe/heat sink for thermal management of high performance CPUs. In: Proceedings of the 16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA , 2000, 76-79
8 Rao W, Zhou Y X, Liu J, Deng Z S, Ma K Q, Xiang S H. Vapor-compression-refrigerator enabled thermal management of high performance computer. International Congress of Refrigeration, Beijing, China , 2007
9 Amon C, Murthy J, Yao S C, Narumanchi S, Wu C F, Hsieh C C. MEMS-enabled thermal management of high-heat-flux devices EDIFICE embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science , 2001, 25(5): 231-242
doi: 10.1016/S0894-1777(01)00071-1
10 Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI. IEEE Electron Device Letters , 1981, 2(5): 126-129
doi: 10.1109/EDL.1981.25367
11 Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers of Energy and Power Engineering in China , 2007, 1(4): 384-402
doi: 10.1007/s11708-007-0057-3
12 Deng Y G, Liu J. Hybrid liquid metal-water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer , 2010, 46(11-12): 1327-1334
doi: 10.1007/s00231-010-0658-7
13 Deng Y G, Liu J. A liquid metal cooling system for the thermal management of high power LEDs. International Communications in Heat and Mass Transfer , 2010, 37(7): 788-791
doi: 10.1016/j.icheatmasstransfer.2010.04.011
14 Ma K Q, Liu J, Xiang S H, Xie K W, Zhou Y X. Study of thawing behavior of liquid metal used as computer chip coolant. International Journal of Thermal Sciences , 2009, 48(5): 964-974
doi: 10.1016/j.ijthermalsci.2008.08.005
15 Dai D, Zhou Y, Liu J. Liquid metal based thermoelectric generation system for waste heat recovery. Renewable Energy , 2011, 36(12): 3530-3536
doi: 10.1016/j.renene.2011.06.012
16 Deng Y G, Liu J. Heat spreader based on room-temperature liquid metal. ASME Journal of Thermal Science and Engineering Applications , 2012, 4(2): 024501
doi: 10.1115/1.4006274
17 Li P P, Liu J. Harvesting low grade heat to generate electricity with thermosyphon effect of room temperature liquid metal. Applied Physics Letters , 2011, 99(9): 094106–3
doi: 10.1063/1.3635393
18 Liu J, Zhou Y X. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent 02131419.5 . 2002
19 Deng Y G, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. ASME Journal of Electronic Packaging , 2010, 132(3): 031009
doi: 10.1115/1.4002012
20 Ryall J. Space probe set to “collide” with earth to simulate approaching asteroid. 2009–0611, http://www.sott.net/articles/show/186648
21 Weinberger S. Lockheed trumps boeing for new GPS. 2008–0516, http://www.wired.com/dangerroom/2008/05/lockheed-trumps/
22 Coppinger R. ESA’s manned ARV team despondent over cash. http://www.flightglobal.com/blogs/hyperbola/2009/01/
23 THERMACORE. Satellite thermal control: unique products for unique challenges. 2013–0526, http://www.thermacore.com/applications/satellite-thermal-control.aspx
24 Zuo Z J, North M T, Wert K L. High heat flux heat pipe mechanism for cooling of electronics. IEEE Transactions on Components and Packaging Technologies , 2001, 24(2): 220-225
doi: 10.1109/6144.926386
25 Haws J. Short E. Method and apparatus for cooling with phase change materials and heat pipes. European Patent 00965034.2–2220–US0025297 . 2002
26 Meyer L, Dasgupta S, Shaddock D, Tucker J. Fillion R. A silicon-carbide micro-capillary pumped loop for cooling high power devices. In: 9th Annual IEEE Symposium on Semiconductor Thermal Measurement and Management. Austin, USA , 1993, 364-368
27 Butler D, Ku J. Swanson T. Loop heat pipes and capilary pump loops—an application perspective. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA , 2002, 49-56
28 Golliher E L. Microscale technology electronics cooling overview. In: Space Technology and Applications International Forum-STAIF. Albuquerque, USA , 2002, 250-257
29 Ohadi M, Qi J. Thermal management of harsh environment electronics. Microscale Heat Transfer Fundamentals and Applications , 2005, 193: 479-498
doi: 10.1007/1-4020-3361-3_26
30 Heffington S N, Black W Z, Glezer A. Vibration-induced droplet atomization heat transfer cell for high-heat flux dissipation. Thermal Challenges in Next Generation Electronic Systems (THERMES-2002). Santa Fe, USA , 2002
31 Fan X, Zeng G, LaBounty C, Croke E, Vashaee D, Shakouri A, Ahn C, Bowers J E. High cooling power density SiGe/Si micro coolers. Electronics Letters , 2001, 37(2): 126-127
doi: 10.1049/el:20010096
32 Zimm C, Jastrab A, Sternberg A, Pecharsky V Jr, Gschneidner K, Osborne M, Anderson I. Description and performance of a near-room temperature magnetic refrigerator. Advances in Cryogenic Engineering , 1998, 43: 1759-1766
33 Swfit G W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. New York: Acoustical Society of America (ASA) Publications, 2002
34 Dawson V P, Bowles M D. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket 1958-2002. Washington , DC: NASA Office of External Relations, 2004
35 Kwon D W, Sedwick R J. Cryogenic heat pipe for cooling high temperature superconductors. Cryogenics , 2009, 49(9): 514-523
doi: 10.1016/j.cryogenics.2009.07.005
36 Purvis T, Vaughn J M, Rogers T L, Chen X, Overhoff K A, Sinswat P, Hu J, McConville J T, Johnston K P, Williams R O 3rd. Cryogenic liquids, nanoparticles, and microencapsulation. International Journal of Pharmaceutics , 2006, 324(1): 43-50
doi: 10.1016/j.ijpharm.2006.04.012 pmid:16814968
37 Yildiz Y, Nalbant M. A review of cryogenic cooling in machining processes. International Journal of Machine Tools & Manufacture , 2008, 48(9): 947-964
doi: 10.1016/j.ijmachtools.2008.01.008
38 Hong S Y. Economical and ecological cryogenic machining. Journal of Manufacturing Science and Engineering , 2001, 123(2): 331-338
doi: 10.1115/1.1315297
39 Pacio J C, Dorao C A. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics , 2011, 51(7): 366-379
doi: 10.1016/j.cryogenics.2011.04.005
40 Gorla R S R. Rapid calculation procedure to determine the pressurizing period for stored cryogenic fluids. Applied Thermal Engineering , 2010, 30(14-15): 1997-2002
doi: 10.1016/j.applthermaleng.2010.05.002
41 Liu J. Development of new generation miniaturized chip-cooling device using metal with low melting point or its alloy as the cooling fluid. In: Proceedings of the International Conference on Micro Energy Systems. Sanya, China , 2005, 89-97
42 Smither R K. Liquid metal cooling of synchrotron optics. In: Society of Photo-Optical Instrumentation Engineers (SPIE) International Symposium on Optical Applied Science and Engineering, San Diego, USA , 1992, 116-134
43 Iida T, Guthrie R I L. The Physical Properties of Liquid Metals. Oxford: Clarendon Press, 1993
44 Shimoji M. Liquid Metals: An Introduction to the Physics and Chemistry of Metals in the Liquid State. New York: Academic Press, 1977
45 Karcher C, Kocourek V, Schulze D. Experimental investigations of electromagnetic instabilities of free surfaces in a liquid metal drop. In: International Scientific Colloquium Modelling for Electromagnetic Processing. Hannover, Germany , 2003, 105-110
46 Wikipedia. NaK. 2013–0526, http://en.wikipedia.org/wiki/NaK
47 Bradhurst D H, Buchanan A S. Surface properties of liquid sodium and sodium potassium alloys in contact with metal-oxide surfaces. Australian Journal of Chemistry , 1961, 14(3): 397-408
doi: 10.1071/CH9610397
48 Chu K Y. Sodium loses its luster: A liquid metal that's not really metallic. http://www.physorg.com/news110042534.Html
49 Wikipedia. Mercury (element). 2013–0526, http://en.wikipedia.org/wiki/Mercury_(element)
50 Senese F. Why is mercury a liquid at STP? 2013–0526, http://antoine.frostburg.edu/chem/senese/101/inorganic/faq/why-is-mercury-liquid.shtml
51 Norrby L J. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks? Journal of Chemical Education , 1991, 68(2): 110-113
doi: 10.1021/ed068p110
52 Lide D R. CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. 2005, 4.125-4.126
53 MDCH. Mercury and Your Health. http://www.michigan.gov/mdch/0,1607,7-132-54783_54784_54786—,00.html
54 Lovegrove R. Artemide Mercury Suspension. 2013–0526, http://www.stardust.com/mercurylamp.html
55 Dental Amalgam P E I. 2013–0526, http://www.gov.pe.ca/environment/dental-amalgam
56 Vargel C, Jacques M, Schmidt M P. Corrosion of Aluminium. Elsevier , 2004, 158
57 Anderson T J, Ansara I. The Ga-Sn (Gallium-Tin) system. Journal of Phase Equilibria , 1992, 13(2): 181-189
doi: 10.1007/BF02667485
58 Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry , 2005, 383(6): 1009-1013
doi: 10.1007/s00216-005-0069-7 pmid:16228199
59 Ghoshal U, Grimm D, Ibrani S, Johnston C, Miner A. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA , 2005, 16-19
60 Liu G Y, Tan H D. Gallium and gallium compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials . Beijing: Chemical Industry Press, 1994, 329-335 (in Chinese)
61 Schormann M, Klimek K S, Hatop H, Varkey S P, Roesky H W, Lehmann C, R?pken C, Herbst-Irmer R, Noltemeyer M. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. Journal of Solid State Chemistry , 2001, 162(2): 225-236
doi: 10.1006/jssc.2001.9278
62 Li H Y, Liu J. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers. Frontiers in Energy , 2011, 5(1): 20-42
doi: 10.1007/s11708-011-0139-9
63 Kagan D N, Krechetova G A, Shpilrain E E. Elaborating and applying a new method of Gibbs energy determination for multicomponent alkali-metal coolants. Journal of Physics: Conference Series , 2008, 98(3): 032007
doi: 10.1088/1742-6596/98/3/032007
64 EnviroReporter.com. SSFL Area IV-SNAP. 2013–0527, http://www.enviroreporter.com/gallery/rocketdyne-gallery/ssfl-area-iv/ssfl-area-iv-snap/
65 Dyson R W, Penswick B, Robbie M, Geng S M. Investigation of liquid metal heat exchanger designs for fission surface power. In: Sixth International Energy Conversion Engineering Conference (IECEC). Cleveland, USA , 2008, 1-6
66 Klinkrad H. Space Debris: Models and Risk Analysis. Springer , 2006, 83
67 Xie K W. Study on the liquid metal cooling method for thermal management of computer. Dissertation for the Master′s Degree . Beijing: the Chinese Academy of Science, 2009: 58-76
68 Butler H. Danamics LMX Superleggera Cooler Review. 2013–0528, http://www.bit-tech.net/hardware/cooling/2010/05/14/danamics-lmx-superleggera-review/1
69 Oshe R W. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Oxford. UK: Blackwell Scientific Publications Ltd, 1985, 987
70 Wikipedia. Fusible alloy. 2013–0528, http://en.wikipedia.org/wiki/Fusible_alloy#cite_note-0
71 Rinck E. Diagram of solidification and electric conductivityof the potassium-cesium alloys. Comptes Rendus Hebdomadaires Des Seances De L'Academie Des Science , 1936, 203: 255-257
72 Shmueli U, Steinberg V, Sverbilova T, Voronel A. New crystalline phases of an equiatomic K-Cs alloy at low temperature. Journal of Physics and Chemistry of Solids , 1981, 42(1): 19-22
doi: 10.1016/0022-3697(81)90005-6
73 Simon A, Brumer W, Hillenkotter B, Kullmann H J. Novel compounds between potassium and cesium. Zeitschrift fur Anorganische und Allgemeine Chemie , 1976, 419: 253-274
doi: 10.1002/zaac.19764190306
74 Ren X, Li C R, Du Z M, Guo C P. Thermodynamic assessments of six binary systems of alkali metals. Calphad , 2011, 35(3): 446-454
doi: 10.1016/j.calphad.2011.06.005
75 Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams—A Comprehensive Guide. Elsevier Science Ltd. , 1998
76 Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams. New York: Academic Press, 1970
77 Wikipedia. Eutectic system. 2013–0528, http://en.wikipedia.org/wiki/Eutectic_point#CITEREFSmithHashemi2006
78 Von Buch F, Lietzau J, Mordike B L, Pisch A, Schmid-Fetzer R. Development of Mg-Sc-Mn alloys. Materials Science and Engineering A , 1999, 263(1): 1-7
doi: 10.1016/S0921-5093(98)01040-5
79 Grobner J, Schmid-Fetzer R. Selection of promising quaternary candidates from Mg–Mn–(Sc, Gd, Y, Zr) for development of creep-resistant magnesium alloys. Journal of Alloys and Compounds , 2001, 320(2): 296-301
doi: 10.1016/S0925-8388(00)01480-8
80 Ohno M, Mirkovic D, Schmid-Fetzer R. Phase equilibria and solidification of Mg-rich Mg-Al-Zn alloys. Materials Science and Engineering A , 2006, 421(1-2): 328-337
doi: 10.1016/j.msea.2006.02.006
81 Tang R Z, Tian R Z. Binary eutectic phase diagram and the crystal structures of intermediate phase. Changsha:Zhongnan University Press, 2009, 736 (in Chinese)
82 Newhouse W H, Hagner A F, Devore G W. Structural control in the formation of gneisses and metamorphic rocks. Science , 1949, 109(2825): 168-169
doi: 10.1126/science.109.2825.168 pmid:17791298
83 Wang L, Liu J. Discontinuous structural phase transition of liquid metal and alloys. Physics Letters [Part A] , 2004, 328(2-3): 241-245
doi: 10.1016/j.physleta.2004.06.025
84 Zhang Y N, Wang L, Wang W M, Zhou J K. Structural transition of sheared-liquid metal in quenching state. Physics Letters [Part A] , 2006, 355(2): 142-147
doi: 10.1016/j.physleta.2006.02.020
85 Prabhu K N, Ravishankar B N. Effect of modification metal treatment on casting/chill interfacial heat transfer and electrical conductivity of Al-13% Si alloy. Materials Science and Engineering A , 2003, 360(1-2): 293-298
doi: 10.1016/S0921-5093(03)00467-2
86 Shim J H, Lee S C, Lee B J, Suh J Y, Cho Y W. Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth , 2003, 250(3-4): 558-564
doi: 10.1016/S0022-0248(02)02490-9
87 Li H, Bian X F, Wang G H. Molecular dynamics computation of the liquid structure of Fe50Al50 alloy. Materials Science and Engineering A , 2001, 298(1-2): 245-250
doi: 10.1016/S0921-5093(01)01187-X
88 Chen X S, Zhao J J, Sun Q, Liu F, Wang G, Shen X C. Surface thermal stability of nickel clusters. Physica Status Solidi. B, Basic Research , 1996, 193(2): 355-361
doi: 10.1002/pssb.2221930210
89 Hattori T, Kinoshita T, Taga N, Takasugi Y, Mori T, Tsuji K. Pressure and temperature dependence of the structure of liquid InSb. Physical Review B: Condensed Matter and Materials Physics , 2005, 72(6): 064205
doi: 10.1103/PhysRevB.72.064205
90 Turnbull D. The Subcooling of liquid metals. Journal of Applied Physics , 1949, 20(8): 817
doi: 10.1063/1.1698534
91 Li T, Lv Y G, Liu J, Zhou Y X. A powerful way of cooling computer chip using liquid metal with low melting point as the cooling fluid. Forschung im Ingenieurwesen , 2005, 70(4): 243-251
doi: 10.1007/s10010-006-0037-1
92 Liu Z, Bando Y, Mitome M, Zhan J H. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Physical Review Letters , 2004, 93(9): 095504
doi: 10.1103/PhysRevLett.93.095504 pmid:15447113
93 Platzek D. Liquid metal undercooled below its Curie temperature. Physical Review Letters , 1994, 65(13): 1723-1724
94 Wei B B, Yang G C, Zhon Y H. High undercooling and rapid solidification of Ni 32.5%Sn eutectic alloy. Acta Metallurgica et Materialia , 1991, 39(6): 1249-1258
doi: 10.1016/0956-7151(91)90212-J
95 Liu R P, Volkraann T, Herlach D M. Undereooling and solidification of Si by electromagnetic levitation. Acta Materialia , 2001, 49(3): 439-444
doi: 10.1016/S1359-6454(00)00330-X
96 Hofmeister W H, Robinson M B, Bayuzick R J. Undercooling of pure metals in a containerless, microgravity environment. Applied Physics Letters , 1986, 49(20): 1342-1344
doi: 10.1063/1.97372
97 Bosio L, Windsor C G. Observation of a metastability limit in liquid gallium. Physical Review Letters , 1975, 35(24): 1652-1655
doi: 10.1103/PhysRevLett.35.1652
98 Cicco A D. Phase transitions in confined gallium droplets. Physical Review Letters , 1998, 81(14): 2942-2945
doi: 10.1103/PhysRevLett.81.2942
99 Parravicini G B, Stella A, Ghignaa P, Spinolo G, Migliori A, d’Acapito F, Kofman R. Extreme undercooling (down to 90 K) of liquid metal nanoparticles. Applied Physics Letters , 2006, 89(3): 033123
doi: 10.1063/1.2221395
100 Taylor L T, Rancourt J. Non-toxic liquid metal composition for use as a mercury substitute. United States Patent No. 5,792, 236 . 1998–0811
101 Wu Y Y, Liu X F, Liu X J, Bian X F. Effect of Sb, Bi and Fe on melting points and microstructures of eutectic Cu-8P alloys. Chinese Journal of Nonferrous Metals , 2004, 14(7): 1206-1210
102 ARMY. Hermes? 90 UAS unmanned aircraft system. 2013–0528, http://www.armyrecognition.com/israel_israeli_army_military_equipment_uk/hermes_90_uav_unmanned_aerial_aircraft_vehicle_system_data_sheet_information_specifications.html
103 LOCKHEED MARTIN. IRST sensor system. 2013–0601, http://www.lockheedmartin.com/us/products/InfraredSearchTrack.html
104 NORTHROP GRUMMAN. 2008photo archive.2013–0601, http://132.228.182.15/media/photo/2008.html
Related articles from Frontiers Journals
[1] Xi ZHAO, Shuo XU, Jing LIU. Surface tension of liquid metal: role, mechanism and application[J]. Front. Energy, 2017, 11(4): 535-567.
[2] Yujie DING,Jing LIU. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon[J]. Front. Energy, 2016, 10(1): 29-36.
[3] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[4] Lei WANG, Jing LIU. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials[J]. Front Energ, 2013, 7(3): 317-332.
[5] Qin ZHANG, Yi ZHENG, Jing LIU. Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences[J]. Front Energ, 2012, 6(4): 311-340.
[6] Dan DAI, Jing LIU, Yixin ZHOU. Harvesting biomechanical energy in the walking by shoe based on liquid metal magnetohydrodynamics[J]. Front Energ, 2012, 6(2): 112-121.
[7] Haiyan LI, Jing LIU. Revolutionizing heat transport enhancement with liquid metals: Proposal of a new industry of water-free heat exchangers[J]. Front Energ, 2011, 5(1): 20-42.
[8] MA Kunquan, LIU Jing. Liquid metal cooling in thermal management of computer chips[J]. Front. Energy, 2007, 1(4): 384-402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed