Please wait a minute...

Frontiers in Energy

Front Energ    2013, Vol. 7 Issue (3) : 317-332
Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials
Lei WANG1, Jing LIU2()
1. Key Laboratory of Cryogenics and Beijing Key Laboratory of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Key Laboratory of Cryogenics and Beijing Key Laboratory of CryoBiomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
Download: PDF(674 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

As the basis of modern industry, the roles materials play are becoming increasingly vital in this day and age. With many superior physical properties over conventional fluids, the low melting point liquid metal material, especially room-temperature liquid metal, is recently found to be uniquely useful in a wide variety of emerging areas from energy, electronics to medical sciences. However, with the coming enormous utilization of such materials, serious issues also arise which urgently need to be addressed. A biggest concern to impede the large scale application of room-temperature liquid metal technologies is that there is currently a strong shortage of the materials and species available to meet the tough requirements such as cost, melting point, electrical and thermal conductivity, etc. Inspired by the Material Genome Initiative as issued in 2011 by the United States of America, a more specific and focused project initiative was proposed in this paper—the liquid metal material genome aimed to discover advanced new functional alloys with low melting point so as to fulfill various increasing needs. The basic schemes and road map for this new research program, which is expected to have a worldwide significance, were outlined. The theoretical strategies and experimental methods in the research and development of liquid metal material genome were introduced. Particularly, the calculation of phase diagram (CALPHAD) approach as a highly effective way for material design was discussed. Further, the first-principles (FP) calculation was suggested to combine with the statistical thermodynamics to calculate the thermodynamic functions so as to enrich the CALPHAD database of liquid metals. When the experimental data are too scarce to perform a regular treatment, the combination of FP calculation, cluster variation method (CVM) or molecular dynamics (MD), and CALPHAD, referred to as the mixed FP-CVM-CALPHAD method can be a promising way to solve the problem. Except for the theoretical strategies, several parallel processing experimental methods were also analyzed, which can help improve the efficiency of finding new liquid metal materials and reducing the cost. The liquid metal material genome proposal as initiated in this paper will accelerate the process of finding and utilization of new functional materials.

Keywords liquid metal material genome      energy material      material discovery      advanced material      room-temperature liquid alloy      thermodynamics      phase diagram     
Corresponding Authors: LIU Jing,   
Issue Date: 05 September 2013
 Cite this article:   
Lei WANG,Jing LIU. Liquid metal material genome: Initiation of a new research track towards discovery of advanced energy materials[J]. Front Energ, 2013, 7(3): 317-332.
E-mail this article
E-mail Alert
Articles by authors
Jing LIU
Fig.1  Typical applications of room-temperature liquid metal (a) Optical image of LEDs circuits written with GaIn-based liquid metal ink as conductive medium; (b) a lighted up LED with GTC films []; (c) schematic structure of iTMCs-based electro-luminescent nanofibers (TELFs) []; (d) liquid metal cooling driven by a peristaltic pump []
PropertiesLiquid metalsWater
Melting point/°C-38.8729.8-19-12.60
Vapor pressure/mmHg1.68×10-3 a)10-12<10-8 d)2.5×10-8 c)17.54
Mass density/(kg·m-3)13546a)5907b)6440a)855c)988 b)
Viscosity/(mPa·s)1.2 e)1.002
Thermal conductivity/ (W·m-1·°C-1)8.34a)29.4b16.5230.6
Specific heat/(kJ·kg-1·K-1)0.139a)0.37b)0.9538b4.182
Surface tension/(N·m-1)0.455a)0.707b)0.718a)0.11m)0.072
Tab.1  Properties of several typical liquid metals and water
MetalMelting pointBulkAggregates of small droplets
Tin231.8931200.89110 [26]121.89
Tab.2  Maximum subcooling degree of Tin, Mercury and Gallium []
Fig.2  Overview of the material genome initiative []
Fig.3  Structure of the liquid metal material genome initiative
TypeLiquid metalsMelting point/°CTypeLiquid metalsMelting point/°C
Binary alloysGaZn5GaSn8GaSn12Ga75In2525201716Binary alloysNa6.2Rb93.8K78Na22K76.7Na23.3Cs77K23-4.5-11-12.7-37.5
Multicomponent alloysGaIn12Zn16GaIn29Zn4GaIn25Sn13Ga62.5In21.5Sn16Ga69.8In17.6Sn12.61713510.710.8Multicomponent alloysGaIn60Sn10GaIn25Sn13Zn1GalinstanCs73.71K22.14Na4.14123-19-78.2
Tab.3  Some liquid metals whose melting points are less than 60 °C [-]
Fig.4  Some potential elements marked in color which can form room-temperature liquid alloys
Tab.4  Families of Ga-based and Hg-based binary alloys
Fig.5  Dependence of nucleation undercooling on the heating and cooling rate of several room-temperature liquid metals
Fig.6  Basic scheme of CALPHAD method []
Fig.7  Illustration of Step 1 and Step 2
Fig.8  Schematic diagram of batch preparation of alloy samples
Fig.9  Schematic diagram of ion implantation
1 Pan J S, Tong J M, Tian M B. Fundamentals of Materials Science. Beijing: Tsinghua University Press, 1998 (in Chinese)
2 Zrodnikov A V, Efanov A D, Orlov Y I, Martynov P N, Troyanov V M, Rusanov A E. Heavy liquid metalcoolant: lead–bismuth and lead-technology. Atomic Energy , 2004, 97(2): 534–537
doi: 10.1023/B:ATEN.0000047678.35315.b6
3 Liu J, Zhou Y X. A computer chip cooling method which uses low melting point metal and its alloys as the cooling fluid. China Patent 02131419.5 . 2002
4 Li H Y, Liu J. Revolutionizing heat transport enhancement with liquid metals: proposal of a new industry of water-free heat exchangers. Frontiers in Energy , 2011, 5(1): 20–42
doi: 10.1007/s11708-011-0139-9
5 Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Applied Physics Letters , 2004, 85(3): 506–508
doi: 10.1063/1.1772862
6 Li T, Lv Y G, Liu J, Zhou Y X. Computer chip cooling method using low melting point liquid metal or its alloy as the cooling fluid. In: Annual Heat and Mass Transfer Conference of the Chinese Society of Engineering Thermophysics , Jilin, China, 2004, 1115–1118 (in Chinese)
7 Zhang Q, Zheng Y, Liu J. Direct writing of electronics based on alloy and metal ink (DREAM ink): A newly emerging area and its impact on energy, environment and health sciences. Frontiers in Energy , 2012, 6(4): 311–340
doi: 10.1007/s11708-012-0214-x
8 Gao Y X, Li H Y, Liu J. Direct writing of flexible electronics through room temperature liquid metal ink. PLoS ONE , 2012, 7(9): e45485
doi: 10.1371/journal.pone.0045485
9 Li H Y, Yang Y, Liu J. Printable tiny thermocouple by liquid metal gallium and its matching metal. Applied Physics Letters , 2012, 101(7): 073511
doi: 10.1063/1.4746397
10 Liu J, Li H Y. A liquid metal based printed circuit board and its fabrication method. China Patent 201110140156.6 . 2011
11 Liu J. Printable semiconductive device and its fabrication method. China Patent 2012103572802 . 2012
12 Liu J, Li H Y. A thermal energy harvesting device and its fabrication method. China Patent 201210241718.0 . 2012
13 Liu J. Piezoelectric thin film electricity generator and its fabrication method, China Patent 2012103225845 . 2012
14 Liu J. Liquid metal ink printed microfluidic lab on paper and its fabrication method. China Patent 2012103625068 . 2012
15 Liu J. Printable solar cell and its fabrication method. China Patent 2012103224715 . 2012
16 Leenen M A M, Arning V, Thiem H, Steiger J, Anselmann R. Printable electronics: flexibility for the future. Physical Status Solidi A , 2009, 206(4): 588–597
doi: 10.1002/pssa.200824428
17 Mei S F, Gao Y X, Li H Y, Deng Z S, Liu J. Thermally induced porous structures in printed gallium coating to make transparent conductive film. Applied Physics Letters , 2013, 102(4): 041905
doi: 10.1063/1.4789978
18 Yang H F, Lightner C R, Dong L. Light-emitting coaxial nanofibers. ACS Nano , 2012, 6(1): 622–628
doi: 10.1021/nn204055t
19 Ma K Q, Liu J. Liquid metal cooling in thermal management of computer chips. Frontiers in Energy , 2007, 1(4): 384–402
20 Trasande L, Landrigan P J, Schechter C. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environmental Health Perspectives , 2005, 113(5): 590–596
doi: 10.1289/ehp.7743
21 Wood J M. Biological cycles for toxic elements in the environment. Science , 1974, 183(4129): 1049–1052
doi: 10.1126/science.183.4129.1049
22 Zahir F, Rizwi S J, Haq S K, Khan R H. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology , 2005, 20(2): 351–360
doi: 10.1016/j.etap.2005.03.007
23 Liu J. Development of new generation miniaturized chip-cooling device using metal with low melting point or its alloy as the cooling fluid. In: Proceedings of the International Conference on Micro Energy Systems . Sanya, China, 2005, 89–97
24 Tripathi V, Loh Y L. Thermal conductivity of a granular metal. Applied Physics Letters , 2006, 96(4): 046805
doi: 10.1103/PhysRevLett.96.046805
25 Turnbull D. The subcooling of liquid metals. Journal of Applied Physics , 1949, 20(8): 817
doi: 10.1063/1.1698534
26 Vonnegut B. Variation with temperature of the nucleation rate of supercooled liquid tin and water drops. Journal of Colloid Science , 1948, 3(6): 563–569
doi: 10.1016/S0095-8522(48)90049-X
27 Liu Z, Bando Y, Mitome M, Zhan J. Unusual freezing and melting of gallium encapsulated in carbon nanotubes. Physical Review Letters , 2004, 93(9): 095504
doi: 10.1103/PhysRevLett.93.095504
28 Cicco A D. Phase transitions in confined gallium droplets. Physical Review Letters , 1998, 81(14): 2942–2945
doi: 10.1103/PhysRevLett.81.2942
29 Amon C H, Murthy J, Yao S C, Narumanchi S, Wu C F, Hsieh C C. MEMS-enabled thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics. Experimental Thermal and Fluid Science , 2001, 25(5): 231–242
doi: 10.1016/S0894-1777(01)00071-1
30 Bradwell D J, Kim H, Sirk A H C, Sadoway D R. Magnesium-Antimony liquid metal battery for stationary energy storage. Journal of the American Chemical Society , 2012, 134(4): 1895–1897
doi: 10.1021/ja209759s
31 Wilson J R. The great cooling dilemma: conduction, convection, or liquid. 2006-05-01,
32 Gao Y X, Liu J. Gallium-based thermal interface material with high compliance and wettability. Applied Physics. A, Materials Science & Processing , 2012, 107(3): 701–708
doi: 10.1007/s00339-012-6887-5
33 Holdren J P. Materials genome initiative of global competitiveness. In: National Science and Technology Council OSTP . Washington, USA, 2011
34 White A. The Materials Genome Initiative: One year on. MRS Bulletin , 2012, 37(8): 715–716
doi: 10.1557/mrs.2012.194
35 Kalil T, Wadia C. Materials genome initiative: a renaissance of American manufacturing. 2011-06-24,
36 Ghoshal U, Grimm D, Ibrani S, Johnston C, Miner A. High-performance liquid metal cooling loops. In: Proceedings of the 21th IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, USA, 2005, 16–19
37 Liu G Y, Tan H D. Gallium and Gallium Compounds. In: Cyclopaedia of Chemical Engineering: Metallurgy and Metallic Materials . Beijing: Chemical Industry Press, 1994, 329–335 (in Chinese)
38 Schormann M, Klimek K S, Hatop H, Varkey S P, Roesky H W, Lehmann C, R?pken C, Herbst-Irmer R, Noltemeyer M. Sodium-potassium alloy for the reduction of monoalkyl aluminum (III) compounds. Journal of Solid State Chemistry , 2001, 162(2): 225–236
doi: 10.1006/jssc.2001.9278
39 Oshe R W. Handbook of Thermodynamic and Transport Properties of Alkali Metals. Oxford: Blackwell Scientific Publications, 1985, 987
40 40 .Wikipedia. Fusible alloy. 2013-04-02,
41 Surmann P, Zeyat H. Voltammetric analysis using a self-renewable non-mercury electrode. Analytical and Bioanalytical Chemistry , 2005, 383(6): 1009–1013
doi: 10.1007/s00216-005-0069-7
42 Sivan V, Tang S Y, O’Mullane A P, Petersen P, Eshtiaghi N, Kalantar-zadeh K, Mitchell A. Liquid metal marbles. Advanced Functional Materials , 2013, 23(2): 144–152
doi: 10.1002/adfm.201200837
43 Liu T Y, Sen P, Kim C J C J. Characterization of nontoxic liquid-metal alloy Galinstan for applications in microdevices. Journal of Microelectromechanical Systems , 2012, 21(2): 443–450
doi: 10.1109/JMEMS.2011.2174421
44 Liu T Y, Sen P, Kim C J. Characterization of liquid-metal Galinstan for droplet applications. In: Proceedings of the 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 10) . Hong Kong, China, 2010, 560–563
45 Ma K Q, Liu J. Nano liquid-metal fluid as ultimate coolant. Physics Letters. [Part A] , 2007, 361(3): 252–256
doi: 10.1016/j.physleta.2006.09.041
46 Xue Q Z. Model for effective thermal conductivity of nanofluids. Physics Letters. [Part A] , 2003, 307(5-6): 313–317
doi: 10.1016/S0375-9601(02)01728-0
47 Maxwell J C. A Treatise on Electricity and Magnetism. Cambridge: Oxford University Press, 1904, 435-441
48 Hamilton R L, Crosser O K. Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals , 1962, 1(3): 187–191
doi: 10.1021/i160003a005
49 Jeffrey D J. Conduction through a random suspension of spheres. Proceedings of the Royal Society of London. Series A . Mathematical, Physical and Engineering Sciences, 1973, 335(1602): 355–367
50 Davis R H. The effective thermal conductivity of a composite material with spherical inclusions. International Journal of Thermophysics , 1986, 7(3): 609–620
doi: 10.1007/BF00502394
51 Lu S, Lin H. Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity. Journal of Applied Physics , 1996, 79(9): 6761–6769
doi: 10.1063/1.361498
52 Wang B X, Zhou L P, Peng X F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer , 2003, 46(4): 2665–2672
doi: 10.1016/S0017-9310(03)00016-4
53 Bonnecaze R T, Brady J F. The Effective conductivity of random suspensions of spherical particles. Proceedings of the Royal Society of London. Series A . Mathematical, Physical and Engineering Sciences, 1991, 432(1886): 445–465
54 Fisher J C, Hollomon J H, Turnbull D. Nucleation. Journal of Applied Physics , 1948, 19(8): 775–784
doi: 10.1063/1.1698202
55 Schaefer V J. The production of ice crystals in a cloud of supercooled water droplets. Science , 1946, 104(2707): 457–459
doi: 10.1126/science.104.2707.457
56 Turnbull D. Formation of crystal nuclei in liquid metals. Journal of Applied Physics , 1950, 21(10): 1022–1028
doi: 10.1063/1.1699435
57 Fisher J C, Hollomon J H, Turnbull D. Rate of nucleation of solid particles in a subcooled liquid. Science , 1949, 109(2825): 168–169
doi: 10.1126/science.109.2825.168-a
58 Chen H S, Zu F Q, Chen J, Zou L, Ding G H, Huang Z Y. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy. Science in China Series E: Technological Sciences , 2008, 51(9): 1402–1408
doi: 10.1007/s11431-008-0130-9
59 Yin F S, Sun X F, Guan H R, Hu Z Q. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. Journal of Alloys and Compounds , 2004, 364(1): 225–228
doi: 10.1016/S0925-8388(03)00497-3
60 Kaban I, Gruner S, Hoyer W, II'inskii A, Shpak A. Effect of temperature on the structure of liquid In20Sn80. In: 10th International Conference on the Structure of Non-Crystalline Materials . Prague, Czech Republic, 2007, 1979–1984
61 Lad'yanov V I, Bel'tyukov A L, Men'shikova S G, Maslov V V, Nosenko V K, Mashira V A. Viscosity of glass forming Al86Ni8(La/Ce)(6), Al86Ni6CO2Gd4(Y/Tb)(2) melts. Physics and Chemistry of Liquids , 2008, 46(1): 71–77
doi: 10.1080/00319100701488508
62 Jian Z Y, Zhou J, Chang F E, Jie W Q. Research on the hysteresis of atom cluster size variation in Ga melt from the nucleation undercooling. Acta Metallurgica Sinica , 2009, 45(9): 1146–1152
63 Ziegler J F. Ion implantation: Science and Technology. Orlando: Academic Press, 1984
64 Reuther H, Talut G, Muecklich A, Stromberg F. Magnetism in Ge by ion implantation with Fe and Mn. Journal of Physics. D, Applied Physics , 2012, 45(39): 395001
doi: 10.1088/0022-3727/45/39/395001
65 Yuk H S, Oh J H, Lim K J. SiGe synthesis by Ge ion implantation. Japanese Journal of Applied Physics , 2012, 51(9): 09MF03
doi: 10.1143/JJAP.51.09MF03
66 Stepanov A L. Applications of ion implantation for modification of TiO2: A review. Reviews on Advanced Materials Science , 2012, 30(2): 150–165
67 Dearnaley G. Applications of ion implantation in metals. Thin Solid Films , 1983, 107(3): 315–326
doi: 10.1016/0040-6090(83)90411-X
68 Jung W S. Reaction mechanism of the nitridation of alpha-gallium oxide to gallium nitride under a flow of ammonia. Materials Letters , 2006, 60(24): 2954–2957
doi: 10.1016/j.matlet.2006.02.022
69 Ambacher O. Growth and applications of Group III-nitrides. Journal of Physics. D, Applied Physics , 1998, 31(20): 2653–2710
doi: 10.1088/0022-3727/31/20/001
70 Zhang J J, Huang Y. Preparation and optical properties of AgGaS2 nanofilms. Crystal Research and Technology , 2011, 46(5): 501–506
doi: 10.1002/crat.201100045
71 Moss S J, Ledwith A. The Chemistry of the Semiconductor Industry. New York: Chapman and Hall, 1987
72 Smart L, Moore E. Solid State Chemistry: An Introduction. 3rd ed. Boca Raton: Taylor and Francis CRC Press, 2005
73 Dong Y J, Peng Q, Wang R J, Li Y. Synthesis and characterization of an open framework ballium selenide: Ga4Se7(en)2x(enH)2. Inorganic Chemistry , 2003, 42(6): 1794–1796
doi: 10.1021/ic0262536
74 Moss S J, Ledwith A. The Chemistry of the Semiconductor Industry. New York: Chapman and Hall, 1987
75 Saunders N, Miodownik A P. CALPHAD (Calculation of Phase Diagrams)—A Comprehensive Guide. Oxford: Pergamon Press, 1998
76 Kaufman L, Bernstein H. Computer Calculation of Phase Diagrams. New York: Academic Press, 1970
77 Dai Z H, Lu J T, Kong G.The research process of phase diagram calculation. Materials Review, 2006, (4): 94–97 (in Chinese)
78 Chen Z G, Xia Z D, Shi Y W. The application of thermodynamic calculation in the lead-free solder alloy design. Electronics Process Technology , 2002, (3): 77–82 (in Chinese)
79 Chen S L, Daniel S, Zhang F, Chang Y A, Yan X Y, Xie F Y, Schmid-Fetzer R, Oates W A. The PANDAT software package and its applications. Calphad , 2002, 26(2): 175–188
doi: 10.1016/S0364-5916(02)00034-2
80 Bale C, Chartrand P, Degterov S A, Eriksson G, Hack K, Ben Mahfoud R, Melancon J, Pelton A D, Petersen S. FactSage thermochemical software and databases. Calphad , 2002, 26(2): 189–228
doi: 10.1016/S0364-5916(02)00035-4
81 Eriksson G, Hack K. ChemSage-A computer program for the calculation of complex chemical equilibria. Metallurgical and Materials Transactions B, 1990, 21(6): 1013-1023
82 Davies R H, Dinsdale A T, Gisby J A, Robinson J A J, Martin S M. MTDATA—Thermodynamic and phase equilibrium software from the National Physical Laboratory. Calphad , 2002, 26(2): 229–271
doi: 10.1016/S0364-5916(02)00036-6
83 Sundman B, Janson B, Andesson J O. The THERMO-CALC databank system. Calphad , 1985, 9(2): 153–190
doi: 10.1016/0364-5916(85)90021-5
84 Foster P A. Determination of the cryolite-alumina phase diagram by quenching methods. Journal of the American Ceramic Society , 1960, 43(2): 66–68
doi: 10.1111/j.1151-2916.1960.tb13642.x
85 Kodentsov A A, Bastin G F, van Loo F J J. The diffusion couple technique in phase diagram determination. Journal of Alloys and Compounds , 2001, 320(2): 207–217
doi: 10.1016/S0925-8388(00)01487-0
86 Faure P, Rambert N, Ragot S. Structural characterization by X-ray diffraction analysis at different temperatures and pressures. In: Conference on X-Rays and Matter (RX 97) . Strasbourg, France, 1997, 481–487
87 Ferro R, Saccone A. Thermal analysis and alloy phase diagrams. Thermochimica Acta , 2004, 418(1,2): 23-32
88 Motoyama G, Yokoyama N, Sumiyama A, Oda Y. Electrical resistivity and thermal expansion measurements of URu2Si2 under pressure. Journal of the Physical Society of Japan , 2008, 77(12): 1–4
doi: 10.1143/JPSJ.77.123710
89 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review , 1965, 140(4A): A1133–A1138
doi: 10.1103/PhysRev.140.A1133
90 Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B: Condensed Matter and Materials Physics , 1993, 47(1): 558–561
doi: 10.1103/PhysRevB.47.558
91 Kaufman L, Turchi P E A, Huang W M, Liu Z K. Thermodynamics of the Cr-Ta-W system by combining the Ab-initio and calphad methods. Calphad , 2001, 25(3): 419–433
doi: 10.1016/S0364-5916(01)00061-X
92 Colinet C. Phase diagram calculations: Contribution of Ab-initio and cluster variation methods. In: Symposium on Calphad and Alloy Thermodynamics held at the 2002 TMS Annual Meeting . Seattle, USA, 2002, 21–52
93 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B: Condensed Matter and Materials Physics , 1996, 54(16): 11169–11186
doi: 10.1103/PhysRevB.54.11169
94 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science , 1996, 6(1): 15–50
doi: 10.1016/0927-0256(96)00008-0
95 Zhang Y, Gu J H, Shang J X, Ma Y. Computational Materials Science Foundation. Beijing: Beijing University of Aeronautics and Astronautics Press, 2007 (in Chinese)
96 Oates W A, Wenzl H, Mohri T. On putting more physics into calphad solution models. Calphad , 1996, 20(1): 37–45
doi: 10.1016/0364-5916(96)00011-9
97 Kikuchi R, Masuda-Jindo K. Cluster variation method in the computational materials science. Calphad , 2002, 26(1): 33–54
doi: 10.1016/S0364-5916(02)00023-8
98 Colinet C. Applications of the cluster variation method to empirical phase diagram calculations. Calphad , 2001, 25(4): 607–623
doi: 10.1016/S0364-5916(02)00011-1
99 Cao W, Chang Y A, Zhu J, Chen S, Oates W A. Application of the cluster/site approximation to the calculation of multicomponent alloy phase diagrams. Acta Materialia , 2005, 53(2): 331–335
doi: 10.1016/j.actamat.2004.09.028
100 Oates W A, Wenzl H. The cluster/site approximation for multicomponent solutions-A practical alternative to the cluster variation method. Scripta Materialia , 1996, 35(5): 623–627
doi: 10.1016/1359-6462(96)00198-4
101 Demirors A F, van Blaaderen A, Imhof A. A general method to coat colloidal particles with Titania. Langmuir , 2010, 26(12): 9297–9303
doi: 10.1021/la100188w
102 Sukumaran K, Pai B C, Chakraborty M. The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition. Materials Science and Engineering: A Structural Materials Properties Microstructure and Processing , 2004, 369(1,2): 275–283
103 Ives C E, Kunz C J. Solution agitation by means of compressed air. Journal of the SMPTE , 1940, 34(4): 364–374
doi: 10.5594/J14628
104 Sato K, Li J G, Kamiya H, Ishigaki T. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. Journal of the American Ceramic Society , 2008, 91(8): 2481–2487
doi: 10.1111/j.1551-2916.2008.02493.x
105 Perrault S D, Chan W C W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society , 2009, 131(47): 17042–17043
doi: 10.1021/ja907069u
106 Kohiki S, Nishitani M, Wada T. Enhanced electrical-conductivity of zinc-oxide thin-films by ion-implantation of gallium, aluminum, and boron atoms. Journal of Applied Physics , 1994, 75(4): 2069–2072
doi: 10.1063/1.356310
107 Hildebrand J H. Solubility XII regular solutions. Journal of the American Chemical Society , 1929, 51(1): 66–80
doi: 10.1021/ja01376a009
108 Hardy H K. An equation for the solubility surface of ternary “sub-regular” solutions. Acta Metallurgica , 1954, 2(2): 348–349
doi: 10.1016/0001-6160(54)90183-2
109 Guggenheim E A. Mixtures: the theory of the equilibrium properties of some simple classes of mixtures, solutions and alloys. Oxford: Clarendon Press, 1952
Related articles from Frontiers Journals
[1] Zeshao CHEN, Songping MO, Peng HU, Shouli JIANG, Gang WANG, Xiaofang CHENG, . Entropy flow, entropy generation, exergy flux, and optimal absorbing temperature in radiative transfer between parallel plates[J]. Front. Energy, 2010, 4(3): 301-305.
[2] Lin ZUO, Lixia SUN, Changfu YOU. Latest progress in numerical simulations on multiphase flow and thermodynamics in production of natural gas from gas hydrate reservoir[J]. Front Energ Power Eng Chin, 2009, 3(2): 152-159.
[3] YANG Yang, LIU Jing. Nano thermo-hydrodynamics method for investigating cell membrane fluidity[J]. Front. Energy, 2008, 2(2): 121-128.
Full text