Please wait a minute...

Frontiers in Energy

Front Energ    2013, Vol. 7 Issue (3) : 307-316     https://doi.org/10.1007/s11708-013-0269-3
RESEARCH ARTICLE |
An interval type-2 fuzzy logic controller for TCSC to improve the damping of power system oscillations
Manoj Kumar PANDA1(), Gopinath PILLAI2, Vijay KUMAR1
1. Electronics & Computer Engineering Department, Indian Institute of Technology, Roorkee 247667, India; 2. Electrical Engineering Department, Indian Institute of Technology, Roorkee 247667, India
Download: PDF(594 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper an interval type-2 fuzzy logic controller (IT2FLC) was proposed for thyristor controlled series capacitor (TCSC) to improve power system damping. For controller design, memberships of system variables were represented using interval type-2 fuzzy sets. The three-dimensional membership function of type-2 fuzzy sets provided additional degree of freedom that made it possible to directly model and handle uncertainties. Simulations conducted on a single machine infinite bus (SMIB) power system showed that the proposed controller was more effective than particle swarm optimization (PSO) tuned and type-1 fuzzy logic (T1FL) based damping controllers. Robust performance of the proposed controller was also validated at different operating conditions, various disturbances and parameter variation of the transmission line parameters.

Keywords power system oscillations      thyristor controlled series capacitor (TCSC)      type-2 fuzzy logic system      interval type-2 fuzzy logic controller (IT2FLC)     
Corresponding Authors: PANDA Manoj Kumar,Email:pandadec@iitr.ernet.in   
Issue Date: 05 September 2013
 Cite this article:   
Manoj Kumar PANDA,Gopinath PILLAI,Vijay KUMAR. An interval type-2 fuzzy logic controller for TCSC to improve the damping of power system oscillations[J]. Front Energ, 2013, 7(3): 307-316.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-013-0269-3
http://journal.hep.com.cn/fie/EN/Y2013/V7/I3/307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Manoj Kumar PANDA
Gopinath PILLAI
Vijay KUMAR
1 Celikyilmaz A, Urksen I B. Modeling uncertainty with fuzzy logic: with recent theory and applications. Studies in Fuzziness and Soft Computing . Springer, 2009
2 Hagras H. Type-2 FLCs: a new generation of fuzzy controllers. IEEE Computational Intelligence Magazine , 2007, 2(1): 30–43
doi: 10.1109/MCI.2007.357192
3 Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning—I. Information Sciences , 1975, 8(3): 199–249
doi: 10.1016/0020-0255(75)90036-5
4 Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning—II. Information Sciences , 1975, 8(4): 301–357
doi: 10.1016/0020-0255(75)90046-8
5 Zadeh L A. The concept of a linguistic variable and its applications to approximate reasoning—III. Information Sciences , 1975, 9(1): 43–80
doi: 10.1016/0020-0255(75)90017-1
6 Karnik N N, Mendel J M. An introduction to type-2 fuzzy logic systems (USC Report). 1998, http://sipi.usc.edu/~mendel/report
7 Karnik N N, Mendel J M, Liang Q. Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems , 1999, 7(6): 643–658
doi: 10.1109/91.811231
8 Karnik N N, Mendel J M. Centroid of a type-2 fuzzy set. Information Sciences , 2001, 132(1-4): 195–220
doi: 10.1016/S0020-0255(01)00069-X
9 Liang Q, Mendel J M. Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems , 2000, 8(5): 535–550
doi: 10.1109/91.873577
10 Liang Q, Mendel J M. Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Transactions on Fuzzy Systems , 2000, 8(5): 551–563
doi: 10.1109/91.873578
11 Liang Q, Karnik N N, Mendel J M. Connection admission control in ATM networks using Survey- based type-2 fuzzy logic systems. IEEE Transactions on Systems, Man and Cybernetics. Part C, Applications and Reviews , 2000, 30(3): 329–339
doi: 10.1109/5326.885114
12 Innocent P, John R. Type-2 fuzzy representations of lung scans to predict pulmonary emboli. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver , Canada, 2001, 1902–1907
13 John R, Lake S. Type-2 fuzzy sets for modeling nursing intuition. In: Proceedings of the Joint 9th IFSA World Congress and 20th NAFIPS International Conference . Vancouver, Canada, 2001:1920–1925
14 Chaoui H, Gueaieb W. Type-2 fuzzy logic control of a flexible-joint manipulator. Journal of Intelligent & Robotic Systems , 2008, 51(2): 159–186
doi: 10.1007/s10846-007-9185-2
15 Mendel J M. Uncertainty, fuzzy logic, and signal processing. Signal Processing , 2000, 80(6): 913–933
doi: 10.1016/S0165-1684(00)00011-6
16 Mitchell H B. Pattern recognition using type-II fuzzy sets. Information Sciences , 2005, 70(2-4): 409–418
doi: 10.1016/j.ins.2004.02.027
17 Wu H, Mendel J M. Classification of battlefield ground vehicles using acoustic features and fuzzy logic rule-based classifiers. IEEE Transactions on Fuzzy Systems , 2007, 15(1): 56–72
doi: 10.1109/TFUZZ.2006.889760
18 Li L, Lin W H, Liu H. Type-2 fuzzy logic approach for short-term traffic forecasting. Proc. Inst Elect Eng Intell Transp. Syst , 2006, 153(1): 33–40
19 Sepulveda R, Castillo O, Melin P, Montiel O, Rodríguez-Díaz A. Handling uncertainty in controllers using type-2 fuzzy logic. Journal of Intelligent Systems , 2011, 14(2,3): 237–262
20 Panda M K, Pillai G N, Kumar V. Design of an interval type-2 fuzzy logic controller for automatic voltage regulator system. Electric Power Components and Systems , 2012, 40(2): 219–235
doi: 10.1080/15325008.2011.629336
21 Panda M K, Pillai G N, Kumar V. Interval type-2 fuzzy logic controller as a power system stabilizer. In: 2012 International Conference on Advances in Power Conversion and Energy Technologies (APCET) , Mylavaram, India, 2012, 1–6
22 Aguero J R, Vargas A. Calculating functions of interval type-2 fuzzy numbers for fault current analysis. IEEE Transactions on Fuzzy Systems , 2007, 15(1): 31–40
doi: 10.1109/TFUZZ.2006.889757
23 Lin P Z, Lin C M, Hsu C F, Lee T T. Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters. IEE Proceedings. Electric Power Applications , 2005, 152(6): 1482–1488
doi: 10.1049/ip-epa:20045232
24 Tripathy M, Mishra S. Interval type-2 based thyristor controlled series capacitor to improve power system stability. IET Generation. Transmission and Distribution , 2011, 5(2): 209–222
doi: 10.1049/iet-gtd.2010.0035
25 Mendel J M, John R I B. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems , 2002, 10(2): 117–127
doi: 10.1109/91.995115
26 Wu D, Tan W W. Interval type-2 Fuzzy PI controllers: why they are more robust. In: Proceedings of the IEEE International Conference on Granular Computing , Silicon Valley, USA, 2010, 802–807
27 Hingorani N G, Gyugyi L. Understanding FACTS: Concepts and Technology of Flexible ac Transmission Systems. New York: IEEE Press, 2000
28 Mathur R M, Verma R K. Thyristor-Based FACTS Controllers for Electrical Transmission Systems, Piscataway: IEEE Press, 2002
29 Mhaskar U P, Kulkarni A M. Power oscillation damping using FACTS devices: modal controllability, observability in local signals, and location of transfer function zeros. IEEE Transactions on Power Systems , 2006, 21(1): 285–294
doi: 10.1109/TPWRS.2005.856983
30 Abido M A. Pole placement technique for PSS and TCSC based stabilizer design using simulated annealing. International Journal of Electrical Power & Energy Systems , 2000, 22(8): 543–554
doi: 10.1016/S0142-0615(00)00027-2
31 Noroozian M, Ghandhari M, Andersson G, Gronquist J, Hiskens I. A Robust control strategy for shunt and series reactive compensators to damp electromechanical oscillations. IEEE Transactions on Power Delivery , 2001, 16(4): 812–817
doi: 10.1109/61.956774
32 Jiang T, Chen C.A design method of nonlinear optimal predictive controller for thyristor controlled series compensation. Electric Power Systems Research , 2006, 76(9,10): 753–759
33 Majumder R, Chaudhuri B, Pal B C. A probabilistic approach to model-based adaptive control for damping of inter area oscillations. IEEE Transactions on Power Systems , 2005, 20(1): 367–374
doi: 10.1109/TPWRS.2004.840408
34 Cai Z, Zhu L, Lan Z, Gan D, Ni Y, Shi L, Bi T. A study on robust adaptive modulation controller for TCSC based on COI signal in inter connected power systems. Electric Power Systems Research , 2008, 78(1): 147–157
doi: 10.1016/j.epsr.2007.01.008
35 Panda S, Patel R N, Padhy N P. Power system stability improvement by TCSC controller employing a multi-objective genetic algorithm approach. International Journal of Electrical and Computer Engineering , 2006, 1: 553–560
36 Panda S, Padhy N P. Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Applied Soft Computing , 2008, 8(4): 1418–1427
doi: 10.1016/j.asoc.2007.10.009
37 Hameed S, Das B, Pant V. A self tuning fuzzy PI controller for TCSC to improve power system stability. Electric Power Systems Research , 2008, 78(10): 1726–1735
doi: 10.1016/j.epsr.2008.03.005
38 Hagras H A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robot. IEEE Transactions on Fuzzy Systems , 2004, 12(4): 524–539
doi: 10.1109/TFUZZ.2004.832538
39 Mendel J M, Hagras H, John R I. Standard background material about interval type-2 fuzzy logic systems that can be used by all authors. 2006, http://ieee-cis.org/technical/standards
40 Wang H F, Swift F J. A unified model for the analysis of FACTS devices in damping power system oscillations, Part 1. Single-machine infinite-bus power systems. IEEE Transactions on Power Delivery , 1997, 12(2): 941–946
doi: 10.1109/61.584417
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed