Please wait a minute...

Frontiers in Energy

Front Energ    2011, Vol. 5 Issue (3) : 305-312     https://doi.org/10.1007/s11708-011-0155-9
RESEARCH ARTICLE |
Computer modeling of crystal growth of silicon for solar cells
Lijun LIU1(), Xin LIU1, Zaoyang LI1, Koichi KAKIMOTO2
1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
Download: PDF(850 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A computer simulator with a global model of heat transfer during crystal growth of Si for solar cells is developed. The convective, conductive, and radiative heat transfers in the furnace are solved together in a coupled manner using the finite volume method. A three-dimensional (3D) global heat transfer model with 3D features is especially made suitable for any crystal growth, while the requirement for computer resources is kept permissible for engineering applications. A structured/unstructured combined mesh scheme is proposed to improve the efficiency and accuracy of the simulation. A dynamic model for the melt-crystal (mc) interface is developed to predict the phase interface behavior in a crystal growth process. Dynamic models for impurities and precipitates are also incorporated into the simulator.

Applications of the computer simulator to Czochralski (CZ) growth processes and directional solidification processes of Si crystals for solar cells are introduced. Some typical results, including the turbulent melt flow in a large-scale crucible of a CZ-Si process, the dynamic behaviors of the mc interface, and the transport and distributions of impurities and precipitates, such as oxygen, carbon, and SiC particles, are presented and discussed. The findings show the importance of computer modeling as an effective tool in the analysis and improvement of crystal growth processes and furnace designs for solar Si material.

Keywords computer modeling      silicon      crystal growth      solar cells     
Corresponding Authors: LIU Lijun,Email:ljliu@mail.xjtu.edu.cn   
Issue Date: 05 September 2011
 Cite this article:   
Lijun LIU,Xin LIU,Zaoyang LI, et al. Computer modeling of crystal growth of silicon for solar cells[J]. Front Energ, 2011, 5(3): 305-312.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-011-0155-9
http://journal.hep.com.cn/fie/EN/Y2011/V5/I3/305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lijun LIU
Xin LIU
Zaoyang LI
Koichi KAKIMOTO
Fig.1  Configuration and computational mesh of a DS furnace
(a) Configuration; (b) global mesh; (c) local mesh
Fig.2  Configuration, domain partition, and computational mesh of a CZ furnace
(a) Configuration and domain partition; (b) local view of the 2D/3D mesh
Fig.3  Dynamic behavior of the thermal field and mc interface of an industrial CZ-Si growth process
(a)–(c) dynamic behavior of the thermal field; (d) mc interface
Fig.4  3D features of TMCZ-Si growth
(a) Melt convection, thermal field, and mc interface profiles in symmetric planes (right) =0 and =0 (left); (b) a local view of the mc interface and the temperature distribution on the melt top surface
Fig.5  Instability of the melt flow of large volume
(a) Fluctuation of temperature; (b) fluctuation of radial velocity; (c) fluctuation of azimuthal velocity; (d) fluctuation of axial velocity
Fig.6  Temperature and oxygen distributions in the melt of an EMCZ-TMF configuration
(a) Temperature; (b) oxygen
Fig.7  Thermal fields in the furnace
(a) Temperature distribution and flow fields in the furnace; (b) temperature distribution in the melt, crystal, crucibles, and pedestal (unit of temperature, K)
Fig.8  Melt-solid interface shape, temperature distributions in the melt-crystal domain, and melt convective flow field
(a) Interface profiles and temperature distributions on the boundary surfaces of the melt-crystal domain; (b) velocity fields of the melt flow in three perpendicular cross-planes
Fig.9  Impurity distributions
(a) Distribution of iron concentration in a solidified silicon ingot (atom/cm); (b) distributions of substitutional carbon (left) and SiC particles (right) in a cross-plane of a solidified ingot ()
1 Li J F, Wang S C, Zhang M J, Ma L J. China Solar PV Report. Beijing: China Environmental Science Press, 2007 (in Chinese)
2 Derby J J, Brown R A. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth I. Simulation. Journal of Crystal Growth , 1986, 74(3): 605–624
doi: 10.1016/0022-0248(86)90208-3
3 Kobayashi N. Computational simulation of the melt flow during Czochralski growth. Journal of Crystal Growth , 1978, 43(3): 357–363
doi: 10.1016/0022-0248(78)90394-9
4 Kakimoto K, Liu L J. Numerical study of the effects of cusp-shaped magnetic fields and thermal conductivity on the melt-crystal interface in CZ crystal growth. Crystal Research and Technology , 2003, 38(7, 8): 716–725
doi: 10.1002/crat.200310086
5 Krauze A, Muiznieks A, Muhlbauer A, Wetzel T. Ammon W. Numerical 3D modelling of turbulent melt flow in large CZ system with horizontal DC magnetic field I. Flow structure analysis. Journal of Crystal Growth , 2004, 262(1-4): 157–167
doi: 10.1016/j.jcrysgro.2003.10.071
6 Atherton L J, Derby J J, Brown R A. Radiative heat exchange in Czochralski crystal growth. Journal of Crystal Growth , 1987, 84(1): 57–78
doi: 10.1016/0022-0248(87)90114-X
7 Dupret F, Nicodeme P, Ryckmans Y, Wouters P, Crochet M J. Global modelling of heat transfer in crystal growth furnaces. International Journal of Heat and Mass Transfer , 1990, 33(9): 1849–1871
doi: 10.1016/0017-9310(90)90218-J
8 Li M W, Li Y R, Imaishi N, Tsukada T. Global simulation of a silicon Czochralski furnace. Journal of Crystal Growth , 2002, 234(1): 32–46
doi: 10.1016/S0022-0248(01)01634-7
9 Kalaev V V, Evstratov I Yu. Makarov Yu N. Gas flow effect on global heat transport and melt convection in Czochralski silicon growth. Journal of Crystal Growth , 2003, 249(1, 2): 87–99
doi: 10.1016/S0022-0248(02)02109-7
10 Liu L J, Kakimoto K. Partly three-dimensional global modeling of a silicon Czochralski furnace I. Principles, formulation and implementation of the model. International Journal of Heat and Mass Transfer , 2005, 48(21, 22): 4481–4491
doi: 10.1016/j.ijheatmasstransfer.2005.04.031
11 Liu L J, Kakimoto K. Partly three-dimensional global modeling of a silicon Czochralski furnace II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field. International Journal of Heat and Mass Transfer , 2005, 48(21, 22): 4492–4497
doi: 10.1016/j.ijheatmasstransfer.2005.04.030
12 Kakimoto K, Liu L, Miyazawa H, Nakano S, Kashiwagi D, Chen X J, Kangawa Y. Numerical investigation of crystal growth process of bulk Si and nitrides-a review. Crystal Research and Technology , 2007, 42(12): 1185–1189
doi: 10.1002/crat.200711004
13 Kashiwagi D, Gejo R, Kangawa Y, Liu L J, Kawamura F, Mori Y, Sasaki T, Kakimoto K. Global analysis of GaN growth using a solution technique. Journal of Crystal Growth , 2008, 310(7-9): 1790–1793
doi: 10.1016/j.jcrysgro.2007.10.061
14 Chen X J, Liu L J, Tezuka H, Usuki Y, Kakimoto K. Numerical investigation of induction heating and heat transfer in a SiC growth system. Crystal Research and Technology , 2007, 42(10): 971–975
doi: 10.1002/crat.200710970
15 Chen X J, Liu L J, Tezuka H, Usuki Y, Kakimoto K. Optimization of the design of a crucible for a SiC sublimation growth system using a global model. Journal of Crystal Growth , 2008, 310(7-9): 1810–1814
doi: 10.1016/j.jcrysgro.2007.11.016
16 Liu L J, Kakimoto K. 3D global analysis of CZ-Si growth in a transverse magnetic field with rotating crucible and crystal. Crystal Research and Technology , 2005, 40(4, 5): 347–351
doi: 10.1002/crat.200410349
17 Liu L J, Nakano S, Kakimoto K. An analysis of temperature distribution near the melt-crystal interface in silicon Czochralski growth with a transverse magnetic field. Journal of Crystal Growth , 2005, 282(1, 2): 49–59
doi: 10.1016/j.jcrysgro.2005.05.002
18 Liu L J, Nakano S, Kakimoto K. Investigation of oxygen distribution in electromagnetic CZ-Si melts with a transverse magnetic field using 3D global modeling. Journal of Crystal Growth , 2007, 299(1): 48–58
doi: 10.1016/j.jcrysgro.2006.10.247
19 Liu L J, Nakano S, Kakimoto K. Three-dimensional global modeling of a unidirectional solidification furnace with square crucibles. Journal of Crystal Growth , 2007, 303(1): 165–169
doi: 10.1016/j.jcrysgro.2006.11.274
20 Liu L J, Nakano S, Kakimoto K. Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model. Journal of Crystal Growth , 2006, 292(2): 515–518
doi: 10.1016/j.jcrysgro.2006.04.060
21 Liu L J, Nakano S, Kakimoto K. Carbon concentration and particle precipitation during directional solidification of multi-crystalline silicon for solar cells. Journal of Crystal Growth , 2008, 310(7-9): 2192–2197
doi: 10.1016/j.jcrysgro.2007.11.165
22 Miyazawa H, Liu L J, Hisamatsu S, Kakimoto K. Numerical analysis of influence of tilt of crucibles on interface shape and fields of temperature and velocity in a unidirectional solidification process. Journal of Crystal Growth , 2008, 310(6): 1034–1039
doi: 10.1016/j.jcrysgro.2007.12.021
23 Evstratov I Yu, Kalaev V V, ZhmakinA I,MakarovYu N,AbramovA G,IvanovN G,SmirnovE M,DornbergerE,VirbulisJ,TomzigE,von AmmonW. Modeling analysis of unsteady three-dimensional turbulent melt flow during Czochralski growth of Si crystals. Journal of Crystal Growth , 2001, 230(1, 2): 22–29
doi: 10.1016/S0022-0248(01)01314-8
Related articles from Frontiers Journals
[1] Rui JIA,Ke TAO,Qiang LI,Xiaowan DAI,Hengchao SUN,Yun SUN,Zhi JIN,Xinyu LIU. Influence of using amorphous silicon stack as front heterojunction structure on performance of interdigitated back contact-heterojunction solar cell (IBC-HJ)[J]. Front. Energy, 2017, 11(1): 96-104.
[2] R. CHEN,S. WANG,A. WENHAM,Z. SHI,T. YOUNG,J. JI,M. EDWARDS,A. SUGIANTO,L. MAI,S. WENHAM,C. CHONG. Plated contacts for solar cells with superior adhesion strength to screen printed solar cells[J]. Front. Energy, 2017, 11(1): 72-77.