Please wait a minute...

Frontiers in Energy

Front Energ Power Eng Chin    2011, Vol. 5 Issue (2) : 149-158     https://doi.org/10.1007/s11708-010-0124-8
RESEARCH ARTICLE |
Nongray radiation from gas and soot mixtures in planar plates based on statistical narrow-band spectral model
Huaqiang CHU1, Qiang CHENG1, Huaichun ZHOU1(), Fengshan LIU2
1. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ont, K1A 0R6 Canada
Download: PDF(553 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nongray behavior of combustion products plays an important role in various areas of engineering. Based on the statistical narrow-band (SNB) spectral model with an exponential-tailed inverse intensity distribution and the ray-tracing method, a comprehensive investigation of the influence of soot on nongray radiation from mixtures containing H2O/N2+soot, CO2/N2+soot, or H2O/CO2/N2+soot was conducted in this paper. In combustion applications, radiation transfer is significantly enhanced by soot due to its spectrally continuous emission. The effect of soot volume fraction up to 1×10-6 on the source term, the narrow-band radiation intensities along a line-of-sight, and the net wall heat fluxes were investigated for a wide range of temperature. The effect of soot was significant and became increasingly drastic with the increase of soot loading.

Keywords soot      combustion      SNB model      nongray radiation     
Corresponding Authors: ZHOU Huaichun,Email:hczhou@mail.hust.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Huaqiang CHU,Qiang CHENG,Huaichun ZHOU, et al. Nongray radiation from gas and soot mixtures in planar plates based on statistical narrow-band spectral model[J]. Front Energ Power Eng Chin, 2011, 5(2): 149-158.
 URL:  
http://journal.hep.com.cn/fie/EN/10.1007/s11708-010-0124-8
http://journal.hep.com.cn/fie/EN/Y2011/V5/I2/149
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Huaqiang CHU
Qiang CHENG
Huaichun ZHOU
Fengshan LIU
1 Modest M F. Radiative Heat Transfer. 2nd ed. San Diego , New York: Academic Press, 2003
2 Song T H. Comparison of engineering models of non-grey behavior of combustion products. International Journal of Heat Mass Transfer , 1993, 36(16): 3975–3982
doi: 10.1016/0017-9310(93)90148-Y
3 Marakis J G. Application of narrow and wide band models for radiative transfer in planar media. International Journal of Heat Mass Transfer , 2001, 44(1): 131–142
doi: 10.1016/S0017-9310(00)00090-9
4 Hottel H C, Sarofim A F. Radiative Transfer. 1st ed. New York: McGraw-Hill, 1967
5 Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J-P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J-M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J-Y, Massie S T, Mikhailenko S N, Miller C E, Moazzen-Ahmadi N, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Predoi-Cross A, Rinsland C P, Rotger M, ?ime?kováM, Smith M A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C, Vander Auwera J. The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer , 2009, 110(9,10): 533–572
6 Rothman L S, Camy-Peyret C, Flaud J M, Camache R R, Goldman A, Goorvitch D, Hawkins L H, Schroeder J, Selby J E A, Wattson R B. HITEMP, the high-temperature molecular spectroscopic database 2000. Journal of Quantitative Spectroscopy and Radiative Transfer , 2010, 111(15): 2139–2150
doi: 10.1016/j.jqsrt.2010.05.001
7 Goody R. A statistical model for water vapour absorption. Quarterly Journal of the Royal Meteorological Society , 1952, 78(336): 165–169
doi: 10.1002/qj.49707833604
8 Malkmus W. Random Lorentz band model with exponential-tailed S-1 line intensity distribution function. Journal of the Optical Society of America , 1967, 57(3): 323–329
doi: 10.1364/JOSA.57.000323
9 Marin O, Buckius R O. Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media. ASME Journal of Heat Transfer , 1997, 119(4): 719–729
doi: 10.1115/1.2824176
10 Chu H, Cheng Q, Zhou H, Liu F. Comparison of two statistical narrow band models for non-gray gas radiation in planar plates. In: Webb B W, Lemonnier D, eds. Proceedings of the 6th International Symposium on Radiative Transfer, Antalya, Turkey , 2010
11 Cumber P S, Fairweather M, Ledin H S. Application of wide band radiation models to non-homogeneous combustion systems. Int J Heat Mass Transfer , 1998, 41(11): 1573–1584
12 Bressloff N W. The influence of soot loading on weighted sum of grey gases solutions to the radiative transfer equation across mixtures of gases and soot. International Journal of Heat and Mass Transfer , 1999, 42(18): 3469–3480
13 Solovjov V P, Webb B W. The influence of carbon monoxide on radiation transfer from a mixture of combustion gases and soot. In: Lemonnier D, Sel?uk N, Lybaert P, eds. Proceedings of Eurotherm 78-Computational Thermal Radiation in Participating MdeiaⅡ. Poitiers, France , 2006, 207–214
14 Liu F, Guo H, Smallwood G J, Gülder ? L. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative Spectroscopy and Radiative Transfer , 2002, 73(2–5): 409–421
15 Liu F, Guo H, Smallwood G J, Hafi M E. Effects of gas and soot radiation on soot formation in counterflow ethylene diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer , 2004, 84(4): 501–511
16 Liu F, Thomson K A, Smallwood G J. Effects of soot absorption and scattering on LII intensities in laminar coflow diffusion flames. Journal of Quantitative Spectroscopy and Radiative Transfer , 2008, 109(2): 337–348
17 Brookes S J, Moss J B. Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combustion and Flame , 1999, 116(4): 486–503
18 Yan Z, Holmstedt G. Fast, narrow-band computer model for radiation caculations. Numerical Heat Transfer, Part B , 1997, 31(1): 61–71
19 Wang L Y. Detailed chemistry, soot, and radiation calculations in turbulent reacting flows. Dissertation for the Doctoral Degree . University Park: The Pennsylvania State University, 2004
20 Liu F, Gülder ? L, Smallwood G J, Ju Y. Non-grey gas radiative transfer analyses using the statistical narrow-band model. International Journal of Heat and Mass Transfer , 1998, 41(14): 2227–2236
21 Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002
22 Kim T K, Menart J A, Lee H S. Non-grey radiative gas analysis using the S-N discrete ordinates method. ASME Journal of Heat Transfer , 1991, 113(4): 946–952
23 Ludwig D B, Malkmus W, Reardon J E, Thomson J A L. Handbook of Infrared Radiation from Combustion Gases, NASA SP3080. Washington, D C: NASA, 1973
24 Soufiani A, Hartmann J M, Taine J. Validity of band-model calculations for CO, and H2O applied to radiative properties and conductive-radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer , 1985, 33(3): 243–257
25 Soufiani A, Taine J. High temperature gas radiative property parameters of statistical narrow band model for H2O, CO2 and CO, and correlated k model for H2O and CO2. International Journal of Heat and Mass Transfer , 1997, 40(4): 987–991
26 Godson W L. The evaluation of infra-red radiation fluxes due to atmospheric water vapor. Quarterly Journal of the Royal Meteorological Society , 1953, 79(341): 367–379
27 Buckius R O, Tien C L. Infrared flame radiation. International Journal of Heat and Mass Transfer , 1977, 20(2): 93–106
28 Denison M K. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE Solvers. Dissertation for the Doctoral Degree . Provo, U T: Brigham Young University, 1994
Related articles from Frontiers Journals
[1] M. LOGANATHAN, A. VELMURUGAN, TOM PAGE, E. JAMES GUNASEKARAN, P. TAMILARASAN. Combustion analysis of a hydrogen-diesel fuel operated DI diesel engine with exhaust gas recirculation[J]. Front. Energy, 2017, 11(4): 568-574.
[2] Yiji LU, Anthony Paul ROSKILLY, Long JIANG, Longfei CHEN, Xiaoli YU. Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery[J]. Front. Energy, 2017, 11(4): 527-534.
[3] Zhen HUANG,Zhongzhao LI,Jianyong ZHANG,Xingcai LU,Junhua FANG,Dong HAN. Active fuel design—A way to manage the right fuel for HCCI engines[J]. Front. Energy, 2016, 10(1): 14-28.
[4] SUKARNI,SUDJITO,Nurkholis HAMIDI,Uun YANUHAR,I.N.G. WARDANA. Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere[J]. Front. Energy, 2015, 9(2): 125-133.
[5] Zuohua HUANG, Jinhua WANG, Erjiang HU, Chenglong TANG, Yingjia ZHANG. Progress in hydrogen enriched hydrocarbons combustion and engine applications[J]. Front Energ, 2014, 8(1): 73-80.
[6] Ying GU, Xiaowei LIU, Bo ZHAO, Minghou XU. Effect of Fe on NO release during char combustion in air and O2/CO2[J]. Front Energ, 2012, 6(2): 200-206.
[7] K. RAJKUMAR, P. GOVINDARAJAN. Impact of oxygen enriched combustion on the performance of a single cylinder diesel engine[J]. Front Energ, 2011, 5(4): 398-403.
[8] Shiyan ZHENG. Unified cycle model of a class of internal combustion engines and their optimum performance characteristics[J]. Front Energ, 2011, 5(4): 367-375.
[9] Pawel LUSZCZ, Hongming XU, Mirek WYZSNSKI, Xiao MA, Rob STEVENS, Athanasios TSOLAKIS. Imaging studies of in-cylinder HCCI combustion[J]. Front Energ, 2011, 5(3): 313-321.
[10] Shi SU, Xinxiang YU. Progress in developing an innovative lean burn catalytic turbine technology for fugitive methane mitigation and utilization[J]. Front Energ, 2011, 5(2): 229-235.
[11] Ni ZHANG, Zuohua HUANG, Xiangang WANG, Bin ZHENG. Combustion and emission characteristics of a turbo-charged common rail diesel engine fuelled with diesel-biodiesel-DEE blends[J]. Front Energ, 2011, 5(1): 104-114.
[12] Pinglu CHEN, Xiaoli YU, Xianghong NIE, Yidong FANG. Modeling and simulation analysis on parallel hybrid air-fuel vehicle[J]. Front Energ Power Eng Chin, 2010, 4(4): 553-559.
[13] Qulan ZHOU, Qinxin ZHAO, Guangjie ZHOU, Huiqing WANG, Tongmo XU, Shien HUI, . Comparison of combustion characteristics of petroleum coke and coal in one-dimensional furnace[J]. Front. Energy, 2010, 4(3): 436-442.
[14] Jizu LV, Minli BAI, Long ZHOU, Jian ZHOU, . Effect of heat transfer space non-uniformity of combustion chamber components on in-cylinder heat transfer in diesel engine[J]. Front. Energy, 2010, 4(3): 392-401.
[15] Gen CHEN, Norimasa IIDA, Zuohua HUANG, . Numerical study of EGR effects on reducing the pressure rise rate of HCCI engine combustion[J]. Front. Energy, 2010, 4(3): 376-385.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed