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Abstract Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for
revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating
cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our
understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention
is being given to the significance of metabolism, through the production of energy and generation of small molecules, as
a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling
of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which
influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem
cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the
field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology.
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Stem cells and metabolism

Stem cells are the foundation of all multi-cellular organisms.
They have the ability to self-renew, maintain pluripotency, as
well as differentiate to specific cellular lineages. Many
factors, from transcriptional signaling to epigenetics, have
been shown to contribute to fate determination; in addition,
increasing attention is being given to the role of metabolism
as a regulator of stem cell fate (Vacanti and Metallo, 2013;
Ramm Sander et al., 2013; Ito and Suda, 2014). With new
advancements in technology, we are now able to probe stem
cell metabolism like never before (Fig. 1), leading to
discoveries that are reshaping our traditional ideas regarding
the role of metabolism in stem cell biology. The objective of
this review is to provide a primer for entering the field of stem
cell metabolomics with examples of frequently used meth-
odologies and how they can be employed to uncover novel

metabolic mechanisms important for the regulation of stem
cell biology.

From metabolism to metabolomics

Metabolism refers to all chemical reactions, essential for life,
that occur in living organisms. These reactions involve
metabolites (small molecules, less than 1kDa) and the
enzymes that process them, and are organized in a set of
pathways that allow cell growth, reproduction, and response
to the environment. The complete set of metabolites within a
cell or tissue is called “the metabolome.” The abundance of
each metabolite within the metabolome depends on the
specific physiological, developmental, and pathological state
of a cell or tissue. Therefore, the metabolome reflects the
phenotype of a cell or tissue, resulting in response to different
genetic or environmental influences (Fiehn, 2002).

Traditionally, metabolism has been studied through
biochemistry, focusing on one pathway at the time. From its
inception in the 19th century (1833 discovery of amylase,
Anselme Payen) to peak discoveries in the mid-20th
century (glycolysis, Krebs cycle, electron transport chain),
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biochemistry has proven invaluable to our understanding of
life. In addition, over the past decade, it has been increasingly
important to grasp the whole metabolome in an unbiased way
in order to understand how gene-environment interactions
affect metabolic status of the cell. Consequently, studies of
metabolism expanded toward a systems biology approach,
metabolomics.

Metabolomics is the scientific study of global metabolite
profiles of cells, tissues, and organisms, or “the metabolome”
(Nicholson et al., 2012). The complexity of the metabolome
has led to development of different analytical strategies in
order to discern its details, such as targeted analysis and
metabolomic profiling. While targeted analysis implies
quantitation of a class of metabolites that comprise a specific
metabolic pathway, metabolomic profiling provides the
complete metabolite composition of a cell or a tissue.
Metabolomic fingerprinting, a subcategory of the metabolo-
mic profiling, represents a scan of a large number of
intracellular metabolites, aiming to find a specific signature
of a given tissue or a certain state of the tissue. In essence, it is
a non-invasive and medically applicable technique for
detection of low quantities of known metabolites and
identification of unknown compounds (Griffin et al., 2002).

Unlike genomics, transcriptomics, and proteomics, meta-
bolomics analysis is less complex because of fewer endpoints.
It has been estimated that in the human body, there are more
than 500 different histological cell types consisting of unique,
dynamic cellular genomes, proteomes, and metabolomes
(Nicholson et al., 2012). Nonetheless, the total number of
human metabolites identified is relatively modest (the Human
Metabolome Database (Wishart et al., 2007) currently has
41511 metabolite entries) compared with transcriptomics

(~85000) and proteomics (> 10000000), where more targets
can be identified and quantified (Sreekumar et al., 2009; Shah
et al., 2012). In addition, a major advantage of metabolomics
over other ‘omics’ strategies is that metabolites are inherently
linked to phenotypes (Fiehn, 2002). Metabolomics builds on
more than 100 years of knowledge in biochemistry, which has
thoroughly defined metabolic pathways enabling much faster
translation of profile data than what is possible with other
‘omics’ fields. This has largely been mediated by publicly
available pathway databases, such as KEGG (Kanehisa and
Goto, 2000), Reactome (Milacic et al., 2012), and Biocarta
(Nishimura, 2000), which enable one to map and consider
metabolites of interest in systems-level context.

Despite advantages, metabolomics research has its own set
of pitfalls. These primarily stem from an incredible physical
and chemical complexity of the metabolites (de Graaf et al.,
2010). This prevents identification and quantification of the
whole metabolome by any one of the existing platforms. In
general, when the goal of a study is to be as inclusive as
possible, the method is termed untargeted, unbiased metabo-
lomics. In contrast, when the goal is to be as accurate as
possible on a known subset of the metabolome, the method is
termed targeted metabolomics. Here, we outline in brief the
major platforms for metabolomics studies, as well as
considerations for sample preparation and data analysis.

Metabolomics: technology and techniques

Profiling the metabolome of stem cells requires the acquisi-
tion of high quality data on hundreds or thousands of unique

Figure 1 Platforms for studying stem cell metabolism.
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molecules in the system. While there are many available
options to achieve this goal, the two most common profiling
platforms are mass spectrometry and nuclear magnetic
resonance spectroscopy (Dunn et al., 2011). Further,
metabolomics can be employed to study either steady-state
metabolic differences between control and experimental
conditions, which is valuable for biomarker discovery, or
metabolic flux analysis, useful for assessing changes in the
metabolic pathway utilization. When designing metabolo-
mics experiments, careful consideration should be given to
the pros and cons of each of these factors.

Technology

Mass spectrometry (MS) is an attractive platform in the
pursuit of metabolomics data due to its high resolution and
sensitivity. Briefly, MS is based on the concept of molecular
separation by mass-to-charge (m/z) ratios. Every MS consists
of 3 components: an ion source, a mass analyzer, and a
detector (Dass, 2007). As the sample enters the instrument,
molecules in the sample become charged via the ion source.
The charged molecules are then accelerated and subjected to a
magnetic or electric field which promotes separation based on
each ion’s m/z ratio. This separation promotes the detection
of unique ionic species, allowing the MS to detect metabolites
at very low concentrations within a sample. In metabolomics,
mass spectrometry coupled to liquid chromatography (LC-
MS) or gas chromatography (GC-MS) are commonly utilized
as chromographic separation reduces matrix effects and the
complexity of the sample (Gika et al., 2014). One major
disadvantage of using MS is that samples are not recoverable
after ionization; that is, MS is a destructive platform. Another
disadvantage is that samples must be chemically prepared
prior to analysis, possibly resulting in increased analytical
variance and making absolute quantitative measurement
challenging.

Conversely, Nuclear Magnetic Resonance Spectroscopy
(NMR) is a platform that provides relatively low sensitivity
but very accurate and reproducible quantitative measurements
within a large dynamic range. NMR is a physical phenom-
enon whereby nuclei in a magnetic field absorb and re-emit
electromagnetic energy at a specific resonance frequency
depending on the strength of the magnetic field and the
magnetic properties of the atoms (de Graaf, 2008). Mostly,
NMR metabolomics utilizes proton (1H)-based spectroscopy,
but analyses of other nuclei, such as 13C-, 31P-, and 15N-, are
also relevant. Typically, a metabolite detected by the 1H-
NMR contains one or more protons and each of the protons
produces one or more peaks that can resonate at different
chemical shifts. The pattern of NMR spectrum is also affected
by scalar coupling (J coupling or spin-spin coupling),
originating from the interactions among magnetic moments
of nuclei. Such interactions can split resonances into several
smaller ones. Consequently, the number of peaks and their

resonances directly relate to the chemical structure of the
molecule. Although each metabolite has a unique spectral
pattern, one or more spectral peaks of different metabolites
may overlap; therefore, the ability to resolve overlapping
peaks is critical to any analytical method. To assist the
identification of unknown metabolites a variety of 2D-and
3D-NMR approaches (COSY, TOCSY, high-resolution
HSQC, HSQC-TOCSY) can be used. NMR is the basis for
many applications, ranging from medical diagnostics (MRI
scanners) and quantum computer design to high throughput
metabolomics (Vandersypen et al., 2001; Mountford et al.,
2010). One major advantage of NMR is that it requires little to
no sample preparation prior to analysis, thus minimizing
analytical variance and facilitating applications such as
noninvasive metabolomic profiling. In addition, it does not
require sample destruction for analysis, which is useful when
sample quantities are limited as well as when the same sample
needs to be utilized for other types of analyses. The primary
disadvantage of NMR for metabolomic applications is its low
sensitivity, which restricts the number of detectable molecular
species. However, the high degree of connectivity within
metabolic networks can somewhat reduce the problem of low
sensitivity, because changes in low concentration metabolites
may lead to indirect changes in higher concentration
metabolites. In addition to analysis of biofluids, cells, cell
extracts, and tissue homogenates, NMR can be used for intact
tissue analysis, using high resolution magic angle spinning
(HRMAS). HRMAS has a high degree of reproducibility and
a non-destructive nature, and thus, the same specimen can be
assessed by histopathology, gene expression profiling or other
methods after spectral analysis (DeFeo and Cheng, 2010).
This allows direct comparisons between spectral and other
features of the tissue, as well as integration of multitude of
approaches for phenotypic characterization.

Recently, NMR and MS have started to be linked both
instrumentally and experimentally. For analysis of a given
sample, NMR is used first to provide quality control and basis
content of untargeted metabolites, followed by MS for
targeted analysis. The adoption of the combined approach is
envisioned as a major accelerator of metabolomics field, not
only for basic research but also for hands-on clinical
applications. With new analytical methodologies, such as
statistical heterospectroscopy (SHY), direct cross-correlation
of chemical shifts (NMR) and m/z data (MS) can provide both
structural and metabolic information (Coen et al., 2008),
highly enhancing the utility of combined platforms for
metabolomics research.

Ion mobility spectrometry (IMS) has long been con-
sidered an important analytical technique for detection of
trace levels of analytes. In basic terms, IMS is a gas-phase
electrophoretic separation of ions carried out in the presence
of a neutral gas, under the influence of an electric field. In the
past few decades, several research groups have coupled IMS
to mass spectrometry (MS) to obtain a separation dimension
based on the ion-neutral collision cross-section, which
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complements the m/z separation of MS. IM-MS provides at
least four tangible benefits over conventional MS instrumen-
tation: (i) improved dynamic range, in terms of both
concentration and mass range, (ii) enhanced identification
capabilities by differentiating analytes of different molecular
class (e.g. nucleic acids, peptides, and lipids), (iii) in contrast
with conventional scanning MS/MS approaches, IM-MS/MS
can fragment all precursor ions simultaneously, and (iv) IM-
MS provides further analytical dimensionality by increasing
peak capacity and throughput through providing ultrafast
(ms-ms) 2D separations in an infusion experiment or in
concert with LC-MS methods (Sowell et al., 2004; Castro-
Perez et al., 2011; Zinnel et al., 2012).

Capillary electrophoresis-mass spectrometry. Capillary
electrophoresis (CE) when combined with QQQ or Q-TOF-
based mass spectrometry, offers high separation efficiency,
high speed, and economy of sample size. The coupling of CE
with MS combines the extremely high resolving power and
structural information in one system. In CE-MS, analytes are
identified both by their differential separation and their
molecular masses and/or fragmentation patterns (Nevedoms-
kaya et al., 2010; Takeuchi et al., 2013). This technology
requires very small sample size, making it useful for
applications such as cancer stem cell analysis or metabolo-
mics of subsets of stem cells obtained from a given tissue.

Gas chromatography-flame ionization detection/mass
spectrometry (GC-FID/MS) is another analytical method
which shows promise in the field of metabolomics. In GC/
FID-MS, samples are first separated on the GC via
temperature gradient. Then, as analytes elute from the GC,
they are simultaneously sent to the FID and MS instruments.
FID provides an excellent means of precise quantification,
which relies on the detection of ions formed during
combustion where the abundance of ions is directly
proportional to the concentration of the analyte coming
from the GC. When coupled with the spectral information
originating from the MS, this analytical method provides
accurate identification and quantification. This platform has
been useful in the quantification of lipid species found in
biofluids such as plasma and urine (Fancy et al., 2006; Zhang
et al., 2011).

The “metabolomic phenotyping microarrays” are based
on the premise that cells utilize metabolites in various
biochemical pathways and generate reducing equivalents in
the form of NADH or NADPH. These reducing equivalents
can be quantified using a tetrazolium dye and reflect the
biochemical reactome for the particular metabolite (Putluri et
al., 2011). There are at least 14 different substrate plates
available that can measure the flux through carbohydrate and
amino acid/dipeptide pathways as well as utilization of ions
(Bochner et al., 2011; Luo et al., 2012). Stem cells with
various experimental conditions may be cultured with these
small molecules, and the fluctuations in the cellular
metabolism of each respective small molecule can be detected
by chemometric changes with an energy-rich NADH redox

dye. Although the Phenotype MicroArrays for mammalian
cells system can screen through various metabolites, more
targeted assays are also developed.

A Seahorse analyzer (XF 24) enables detailed analysis of
mitochondrial biogenesis and mitochondrial dysfunction
associated with oxidative stress and altered substrate utiliza-
tion. It is a fully integrated, multi-well instrument that
measures the oxygen consumption and H+ production of the
cells in real-time, using disposable cartridge containing the
probes and assay kits. It simultaneously measures oxygen
consumption rate and extracellular acidification rate in as
little as five minutes. With just a small number of cells, XF
analyzer can measure the effects of up to four compounds on
cellular metabolism, glycolysis, respiratory capacity, mito-
chondrial dysfunction, fatty acid oxidation and cell signaling.
As mitochondrial changes underlie metabolic and cellular
switches from pluripotent to differentiated states and vice
versa, this technology may be strongly considered for specific
studies of stem cell state transitions.

Technologies for studies of metabolism
in vivo

The correlate of NMR is proton magnetic resonance
spectroscopy (1H-MRS), used to detect and quantify a
small number of metabolites in the living tissue (Soares and
Law, 2009): N-acetylaspartate (NAA), a marker of neurons
whose major peak resonates at 2.02 ppm; Creatine, resonating
at 3.02 ppm, an energy metabolite considered to be stable and
thus used as a house-keeping metabolite for normalization;
Choline, resonating at 3.23 ppm and considered a marker of
glial cells and membrane turnover, and Myoinositol, a marker
of astrocytes which resonates at 3.56 ppm. Other metabolites
commonly detected include alanine, lactate, glutamate,
glutamine, glucose, GABA, and some macromolecular
proteins and lipids (Soares and Law, 2009). The major issue
with MRS is very low sensitivity, and its utility has been
limited by analytical methods that focus on independently
evaluated metabolites and require prior knowledge about
which metabolites to examine.

Nevertheless, fatty acid moiety resonating at 1.28 ppm has
been associated with NPCs in the human hippocampus
(Manganas et al., 2007). Initially discovered in rodent NPCs,
by high-field NMR (Manganas et al., 2007), the fatty acid
enrichment appears to reflect increased amounts of mobile
lipids necessary for the function of these cells (Knobloch et
al., 2013). The identity of the 1.28 ppm metabolite remains
unknown. Although it most likely contains a fatty acid
component (Manganas et al., 2007), its exact molecular
nature has not yet been determined and its functional
significance for neurogenesis awaits further studies. Recent
reports indicate that the 1.28 ppm and adjacent resonances
may also be associated with apoptosis. A similar signal
resonating at 1.30 ppm has been also reported in apoptotic rat
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gliomas in vivo (Liimatainen et al., 2008), and more recent
studies have found that the 1.28 ppm signal in cultured NPCs
increased during conditions that favored quiescence and
apoptosis (Ramm et al., 2011). Apoptosis is common in the
hippocampal neurogenic niche, as vast amounts of newborn
cells die during critical periods of survival (Sierra et al.,
2010). Thus, whether the 1.28 ppm peak detected in living
brains originates from living or apoptotic NPCs remains to be
determined and more research is necessary to unequivocally
establish whether the 1.28 ppm spectral peak is a marker of
neurogenesis with clinical value.

In addition to targeted MRS analysis, an untargeted,
metabolomics type of analysis is also possible using MRS
(Vingara et al., 2013). Metabolomic-type analysis can
overcome signal distortions that can occur with MRS,
providing previously unavailable information about living
tissue, in vivo. Unlike other quantification tools, metabolomic
analysis of the full resolution spectra has the advantage of not
requiring a priori knowledge such as the line shapes of the
metabolite resonances. Therefore, the resonances identified
are not limited to the user’s input criteria, and changes in
small resonances can be extracted (Vingara et al., 2013). The
untargeted metabolomics analysis can be used for compre-
hensive noninvasive tissue profiling of diseased and healthy
tissue in vivo, as it captures in a single analysis metabolic
alterations that otherwise require several independent studies.
This analytical platform has not yet been applied for studies
of stem cells. Nevertheless, in vivo metabolomics could be
extended to studies of stem cells in any organ and particularly
cancer stem cells, to model disease subtype, progression, or
for treatment monitoring. In addition to being valuable for
creating more patient-specific assessments such methodolo-
gies can also provide insight into the stem cell pathology.

Biochemical assays can theoretically be translated to in
vivo studies. Fluorination of a metabolite of interest is used in
studies involving Positron Emission Tomography (PET)
(Buchsbaum and Hazlett, 1998). Such technique is limited
by the metabolism of the small molecule in question and gives
limited spatial information of 4 to 5 mm range. For stem cells,
the utility of a particular technique is limited by the
resolution, which requires resolution in a μm ranges. More
advances in label-free microscopy methods of metabolic
detection have given single cell resolution, which have
allowed detection of stem cells in vivo. Using two-photon
fluorescent microscopy, live rodent imaging can be done to
distinguish metabolic markers of stem cells (Quinn et al.,
2013; Stringari et al., 2015). As an example, two-photon
excitation fluorescence can detect NADH and the second
harmonic generation can detect collagen (Stringari et al.,
2015). These two excitation parameters can be detected
simultaneously using the same objective, thus giving single-
cell resolution images. Using this method, the fluxes of
NADH/NAD+ ratio can be determined, thus reflecting the
glycolytic/oxidative phosphorylation ratio of various cell
types. Since stem cells have more glycolytic characteristics,

such technique is utilized to detect stem cells in vivo. In
addition, Raman Scattering Spectroscopy is another label-free
method that can be used in conjunction with other microscopy
modalities to study lipid metabolism in stem cells. Recently
developed modalities, such as Coherent Anti-Stokes Raman
Scattering (CARS) microscopy and Stimulated Raman
Scattering (SRS) microscopy, can be used for chemical
imaging, as they allow visualization of certain classes of
molecules such as lipids, at the sub-cellular level. These
technologies are based on the vibration of a specific chemical
group, which permits high-resolution imaging of individual
molecules in vivo (Folick et al., 2011; Yu et al., 2014).

Metabolomics studies: Sample preparation

Appropriate collection, handling, and storage of the samples
is critical to metabolomics analyses, as the methods are
sensitive to small changes in the metabolite profile that may
be introduced through poor sample handling procedures.
With the exception of systems specifically equipped with a
magic angle-spinning probe for tissue analysis (Duarte et al.,
2009), all classic high resolution NMR as well as MS-based
analytical methods require homogeneous liquid samples (Wu
et al., 2008). Therefore, cell lysis and extraction is necessary
to obtain samples adapted to liquid analytical spectroscopic
techniques. These preparations are often the most labor
intensive and rate-limiting steps in metabolomics as they
require accuracy and reproducibility as well as robustness.
There is a significant body of literature dedicated to
optimizing metabolomic extraction methods (Mushtaq et
al., 2014; Ser et al., 2015). A general extraction protocol will
involve some form of quenching to cease metabolic activity,
followed by metabolite extraction with a mixed solvent (i.e.
methanol:chloroform:water). Depending on the source mate-
rial (i.e cultured cells, tissue, biofluids, etc.) and types of
metabolites to be investigated (i.e. lipids, amino acids, etc.),
the sample extraction methods will differ, typically by
varying the ratio of aqueous and organic solvents as well as
pH of the buffer.

Sample preparation for MS-based examination of
metabolome (unbiased and targeted). Optimally, at least
25 mg of tissues or 5 million cells is necessary for the mass
spectrometry-based metabolomic profiling. The process of
metabolite extraction for these samples involves the intro-
duction of an equimolar mixture of standard compounds
followed by homogenization of the specimen. Subsequently,
the metabolites in the homogenate are extracted using
sequential application of aqueous (chilled water) and organic
(chilled methanol and chloroform) solvents in the ratio
1:4:3:1 (water:methanol:chloroform:water) (Sana et al.,
2008). The extract is deproteinized and the filtrate, containing
metabolites, dried under vacuum and re-suspended in the
injection solvent (Putluri et al., 2011). An equimolar mixture
of the standard compounds and/or a characterized tissue
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sample (when examining cell line or tissue-based extracts) or
a urine or plasma sample (when examining biofluids), is
extracted and analyzed in tandem with the experimental
samples. Each of the controls needs to be included multiple
times in the randomization scheme to ensure that sample
preparation and analytical variability are constantly mon-
itored. Further, each sample needs to be followed by at least
two blank runs to prevent any carryover of metabolites
between samples. For LC-MS, the polar, mid-polar, and some
of the non-polar compounds are separated using aqueous
normal phase or reverse phase chromatographic separation.
For GC-MS, the samples are re-dried under vacuum
desiccation for a minimum of 24 h prior to being derivatized.
Derivatization is a metabolite-dependent process and the
modifying agent is selected based on the chemistry of the
compound to be assessed. The quality control procedure prior
to sample analysis involves locking the retention time using
d27-myristic acid (Kind and Fiehn, 2009; Kind et al., 2009).
For lipidomics studies, samples need to undergo additionally
prepared because lipids represent a large class of molecules
and as such, there are variations how to successfully prepare
various classes of lipids. Identification of the individual
species is based on their chromatographic, ion mobility drift
times, and mass spectral characteristics and comparison to
those of chemically defined standards.

Sample preparation for NMR-based examination of
metabolome. NMR provides largely untargeted analysis of
metabolites in given samples, using 1D-NMR and 1H-, 13C-,
31P-, and 15N-nuclei assessments. Samples are prepared based
on the experimental design. The aqueous extracts are
obtained in 500 uL of reconstitution buffer with 1mM TSP
as an internal standard. The organic extracts are reconstituted
in 500 uL of CDCl3 with 0.03% TMS as an internal standard.
The NMR acquisition then involves locking to the solvent
and shimming to achieve optimal line-shape. Specific pulse-
sequences are applied depending on the experimental
hypothesis. Typically, 1D 1H NMR includes zgpr, noesypr1d
(for single solvent suppression) and lc1pnf2 (for double-
solvent suppression. Typical 2D NMR comprises COSY and

TOCSY sequences. Hetero nuclear experiments include
1H-13C HSQC and HMBC sequences. The obtained data are
analyzed and the set of metabolites is determined. In dubious
cases, the specific metabolites can be validated by spike-in
experiments.

Metabolomics: Techniques

Biochemical perturbations can occur due to changes in
steady-state levels of metabolites, alterations in the rate of
pathway activity or both (Fig. 2). With this consideration,
metabolomics applications are broadly divided into two
branches of analysis: steady-state profiling and metabolic flux
analysis.

Steady-state profiling

Steady-state profiling yields a static snapshot of the relative
abundances of individual metabolite pools between biologic
states (i.e. differentiated vs undifferentiated stem cells). This
can easily be applied to fresh or frozen tissue, and can yield
quantitative or semiquantitative data. Although this is a
relatively new area in the field of stem cell research, several
recent findings highlight the potential for new discovery using
these techniques. Notably, proliferating NPCs possess
elevated mobile lipids (MLs) and a distinct lipogenic state
important for neurogenesis, as demonstrated by both mass
spectrometry and NMR metabolomics (Manganas et al.,
2007; Knobloch et al., 2013). Additionally, an MS-based
analysis has shown that the distribution of phosphatidylcho-
lines and phosphatidylethanolamines, components of MLs, is
significantly altered between embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs), suggesting that
differences in lipid metabolism, among others, may be linked
to important regulatory differences underlying ESC and iPSC
biology (Meissen et al., 2012). Interestingly, there have also
been reports that MLs are elevated in glioblastoma cancer
stem cells; however, as different groups have published

Figure 2 Metabolomics can be used to either (A) detect and quantify metabolites directly or (B) follow isotopically labeled carbons to
determine metabolic pathway activity.
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conflicting results, it remains to be seen whether MLs are a
marker of stemness or apoptosis (Ramm et al., 2011;
Loewenbrück et al., 2011; Guidoni et al., 2014). In addition
to lipogenesis, there are important studies outlining changes
in energy metabolism between differentiated cells and stem
cells (Fig. 3). Through the use of MS-based and NMR-based
methods, ESCs, iPSCs, and long-term hematopoietic stem
cells (LT-HSCs) have all been reported to shift away from
oxidative phosphorylation toward glycolysis (Folmes et al.,
2011; Panopoulos et al., 2012), a metabolic alteration akin to
the Warburg Effect often observed in cancer (Warburg, 1956).
Additionally, a large body of literature exists demonstrating
that stem cells of all kinds show elevated levels of the amino
acids glycine, alanine, and others (Urenjak et al., 1993;
Griffin et al., 2002; Kulak et al., 2010), and it has been
reported that mouse ESCs are highly dependent on threonine
metabolism (Wang et al., 2009). MS-based metabolomics has
identified that mouse ESCs possess more unsaturated
molecules such as arachidonic acid and diacylglyercol
compared to their differentiated progeny (Yanes et al.,
2010). Knowing the differences in metabolic profiles as a
function of stem cell type, potency, and state will be the key
for determining how metabolic properties of stem cells, and
particularly adult stem cells, are connected to quiescence and
proliferation, differentiation capacity and age-related changes
(Rando, 2006). Toward this goal, while steady-state profiling
can be used to nominate which metabolic compartments are

significantly altered in stem cells, it can be difficult to
pinpoint the source of the metabolic alterations without
kinetic data, such as those obtained using metabolic flux
analysis.

Metabolic flux analysis

Metabolic flux analysis is used to gather knowledge on
metabolic pathway kinetics (Dass, 2007). With the high
degree of interconnectivity between biochemical pathways,
as well as the reversible nature of pathways or reactomes, a
metabolite could participate in multiple pathways as well as
function as a substrate or product within a pathway. The fate
of the metabolite in each pathway and its nature of
participation in different pathways define the flux or kinetics
for the given metabolite. When put in a global perspective,
individual metabolite fluxes together define the biochemical
activity of a cell which in turn describes the physiological
state of that cell. Hence, flux describes the dynamic nature of
the biochemical pathway and is a key component in
mechanistic underpinnings of cellular function.

Flux analysis can be accomplished by a range of
technology platforms based on MS, NMR and non-MS-
based methods (Dass, 2007). These define flux or pathway
activity in cell lines, animal models and patients, and thus
support basic and clinical translational research. Flux in

Figure 3 Metabolomic and flux analysis studies have demonstrated that pluripotent stem cells (PSCs) have increased dependence on
glyolytic flux compared differentiated counterparts which exhibit increased mitochondrial oxidation. There are multiple hypotheses for
why this occurs, such as PSCs minimize glucose oxidation in order to provide anabolic precursors to fuel self-renewal, or that ROS-
induced stress may promote differentiation.
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pathways pertaining to a metabolite is a function of multitude
of variables that include expression level of enzymes, affinity
constants of the enzyme for the metabolite, rate of transport of
the metabolite between various compartments of the cell and
from outside, presence of inhibitors etc. Thus, the platform
chosen for flux analysis needs to measure rates of synthesis,
breakdown, utilization, and uptake of metabolite as well as
corresponding rates of energy production, oxygen consump-
tion etc. This is typically done through the use of isotopically-
labeled tracer metabolites (e.g. glucose, glutamine, etc.)
which are fed to cells in culture and allowed to be metabolized
for a given time. When the cells are extracted, the relative
amount of the isotopic label which became incorporated into
downstream metabolites can be quantified and used to
calculate the kinetic rate of the pathway, or flux. This data
are then input into a model of the metabolic pathway to derive
estimates of pathway activity (Antoniewicz et al., 2007;
Zamboni et al., 2009).

At this time, there are very few published reports utilizing
metabolic flux analyses to study stem cell metabolism (Turner
et al., 2008; Sepúlveda et al., 2010; Yanes et al., 2010), apart
to reinforce the importance of energy metabolism discovered
via steady-state profiling. Given the observations of altered
lipids and amino acids from steady-state profiling, there are
many opportunities to apply metabolic flux analysis and
phenotyping microarrays to further understand the role of
metabolism in stem cell biology.

Single cell metabolomics

In addition to a common, population-based systems biology
methods, single cell ‘omics’ studies are slowly starting to
emerge (Zenobi, 2013). The need for such studies comes from
a large heterogeneity of cell populations, particularly
common confounder when studying stem cells. Namely, in
any given preparation of a stem cell culture or a tissue
enriched in stem cells, these cells can be found in a variety of
different states – from quiescent, to any cell cycle stage, to
different degrees of differentiating lineages. Thus, single cell
investigations are very relevant to discern metabolic proper-
ties of each state of the cell. For single cell metabolomics,
mass spectrometry is the platform of choice because of its
detection sensitivity – the concentration of metabolites needs
to be in attomole range (Amantonico et al., 2008; Heinemann
and Zenobi, 2011). Several approaches are being developed,
including nano-electrospray ionization, microfluidic chips
and sample arrays for monodispersed sample droplets as
sample sources for MS data acquisition (Urban et al., 2010).
Detection of single cell metabolites is also a focus of
emerging imaging mass spectrometry, which may achieve
spatial resolution at the micron level (Secondary Ion Mass
Spectrometry, SIMS) (Klerk et al., 2010). While this
technology remains qualitative, it provides additional data
relevant for molecular phenotyping in a variety of experi-

mental conditions. These approaches may indeed prove
invaluable for studies of stem cell metabolism, for detection
of minute changes that ultimately lead to differentiation as
well as those that lead to continuous proliferation as seen in
cancer.

Metabolomics data analysis

Similar to other ‘omics’ data, such as genomics, transcrip-
tomics, proteomics etc., metabolomic data pose special
challenges for data analysis because they are high dimen-
sional, acquired by multiple analytical methods, have some
degree of missing data, and some degree of collinearity,
nonlinearity, and non-normality, all of which need to be
accounted for to achieve meaningful data interpretation. An
additional challenge of metabolomics analysis is that the
number and the identity of metabolites in the sample are
unknown, which makes the power calculations very difficult.

In principle, the analysis of metabolomics data should start
with an unsupervised method, such as Principal Component
Analysis (PCA), that can identify outliers and the main source
of variability. Since multivariate analysis methods such as
PCA are based on variance, i.e., they seek out the greatest
variance of the data, the variables need to be centered and
scaled to reduce the bias placed on large variables (Craig et
al., 2006). As with most analytical data, a large peak will
exhibit a greater absolute variance than a small peak. To
minimize this effect, the standard in metabolomics is to apply
unit-variance or Pareto scaling. Once the outliers are
identified and eliminated, supervised multivariate methods
for pattern separation, such as Partial Least-Squares Regres-
sion (PLS) and Orthogonal PLS (OPLS), are employed to
explore class differences and highlight explanatory spectral
variables (Goodacre et al., 2004; Dunn et al., 2005;
Weckwerth and Morgenthal, 2005; Coen et al., 2008; Allen
and Maletic-Savatic, 2011). The dimensionality of the data
can also be reduced to simple linear combinations that assist
in identification of the metabolites that provide the largest
variability (Allen et al., 2014). Variables that contribute to
clustering of experimental groups are identified based on
loadings plots. These variables then need to be annotated as
the respective metabolites. SIMCA-P software (Umetrix,
Malmö, Sweden) is commonly used for multivariate, pattern
analysis in metabolomics, and AMIX package (Bruker, Inc.)
provides similar paradigms. When using multivariate ana-
lyses, one needs to be aware that they suffer from over-fitting
and thus, validation is obligatory. To build and validate the
PLS or OPLS models for class discrimination and prediction,
the data need to be randomly divided into a training set and a
test set. The test set is excluded from model construction, and
the model is used to predict class membership of the data in
the test set. Typically, cross-validation approaches are used in
which a proportion of the data (for example, every 10th
sample) is removed, and the model is built with the remaining
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training set. This procedure is repeated many times until each
sample has been in the test set exactly once. The accuracy of
the model on the test samples gives an estimate of the
predictive power and the robustness of the model to
perturbations of the data (Castaldi et al., 2011; Ioannidis
and Khoury, 2011).

Once multivariate analysis and statistical threshold (Bon-
feronni, false discovery rate etc.) are done, the next step in
analysis is metabolite identification and quantification. This
part depends on the acquisition method used and can be done
either as targeted analysis by mass spectrometry or by query
of metabolomic databases for candidate metabolite identifica-
tion, such as the Human Metabolome Database (HMDB;
Wishart et al., 2007; Ulrich et al., 2008). In addition, several
computational algorithms have been developed for deducing
metabolite identities from NMR data. Statistical Total
Correlation Spectroscopy (STOCSY), designed for NMR
data analysis, explores correlations among the intensities of
various peaks across the whole spectrum, and interprets the
original data set as a two dimensional pseudo-spectrum.
STOCSY algorithms improve not only the assignment of
compounds in a biologic mixture, but also provide potential
molecular connections for analyzing metabolic pathways.
However, the interpretation of STOCSY data are not always
straightforward (Blaise et al., 2010), and the existence of
many different STOCSYalgorithms indicates the scope of the
challenge. Statistical diffusion-ordered spectroscopy (S-
DOSY) uses signal intensity variations under different pulsed
field gradient conditions to identify metabolites and requires
sophisticated data filtering procedure when peak overlap
exists in the sample (Smith et al., 2007). Iterative-STOCSY
(I-STOCSY) calculates correlations from a “driver” peak and
recursively finds correlated peaks to form nodes, the
connectivity among which are then used to explore the
inter- and intra-metabolite connections (Sands et al., 2011).
However, parts of nodes generated in I-STOCSYalgorithm to
identify a specific metabolite can be missed due to peak
overlap (Sands et al., 2011). Grouping procedures which
utilize STOCSYare also numerous. Cluster analysis statistical
spectroscopy (CLASSY) employs correlation matrix of peaks
and an intersection matrix context to determine local clusters
and consequently explore the intra and intermetabolite
connections by hierarchical clustering of those local clusters
(Robinette et al., 2009). Statistical recoupling of variables
(SRV) groups variables by scanning the covariance/correla-
tion landscape and combines the grouped variables (clusters)
to superclusters according to the correlation strength among
those clusters. STOCSY is then applied on the superclusters
to help metabolite identification (Blaise et al., 2010).
However, SRV clusters may be misled when overlapped
peaks introduce variations that are not structural (Blaise et al.,
2009). Recently published STOCSY-scaling method scales
the spectra by designed functions to decrease the contribution
of metabolites that have dominant intensities, such as glucose,
to explore and identify metabolites that are covered at these

regions (Maher et al., 2012). However, artificial correlation
caused by peak overlap can also lead to undesired suppression
of signals that actually should not be suppressed or lead to
failing to suppress the targeted signals (Maher et al., 2012).
As metabolite identification and quantification is mandatory
for further analysis, many times it requires validation by
experimental spike-in confirmation.

Finally, identified metabolites can be explored in the
context of metabolic networks, through existing databases
such as KEGG, Gene Spring, Ingenuity Pathway Analysis,
and GeneGO, and freely-available software such as Gene Set
Enrichment Analysis (GSEA), among others.

These approaches emerged as it was recognized that
identifying a list of differentially expressed metabolites that
may play a significant role in a biologic process most often
fails to provide mechanistic insights into the underlying
biology of the condition under study. Hence, attention has
shifted from lists of molecules to sets of functionally related
coordinated alterations that constitute pathways or biopro-
cesses, which in concert orchestrate the underlying biology at
cellular or organismal level. In other words, this so called
pathway-centric approach results in reduction of data
dimensionality while preserving the interaction between the
components within an experiment (Glazko and Emmert-
Streib, 2009; Peterson et al., 2013). There are different
approaches to define pathways using metabolomics data, some
of which involve mapping metabolites to existing pathway
maps and rely on enrichment methods, while others are much
more sophisticated in that they explore enrichments across
larger compendia of molecular processes assembled within
databases without the prerequisite for pre-defined pathway
maps. Eventually, the networks need to be visualized to allow
the user to consider related pathways which cannot be readily
inferred from the given profile. Network visualization can be
achieved using Cytoscape with its app/plug-in KEGGscape
(http://apps.cytoscape.org/apps/keggscape) (Nishida et al.,
2014). Overall, the analytical path from data acquisition to
network discovery in metabolomics involves numerous steps,
computational and statistical analysis, as well as bioinfor-
matics approaches necessary to produce accurate and
biologically meaningful data.

Conclusion and future considerations

Undeniably, studies of metabolism of stem cells are critical
for gaining insights into their fate and function. The metabolic
phenotypes seen in stem cells and their progeny correlate to
the energy demands for proliferation, lineage specification,
and quiescence. Different cell states require specific meta-
bolic programs to support the unique bioenergetics demands
underlying their specialized functions. A variety of platforms
and techniques are now available to delve deeper into the
stem cell metabolism. The growing interest in metabolomics
of stem cells as it pertains to both biology and pathology
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holds substantial promise for future discoveries in this
relatively new field of science.
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