Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (5) : 366-375     DOI: 10.1007/s11515-016-1422-2
REVIEW |
Finding neoepitopes in mouse models of personalized cancer immunotherapy
Sahar Al Seesi1,2,Alok Das Mohapatra1,Arpita Pawashe1,Ion I. Mandoiu2,Fei Duan1()
1. Department of Immunology and Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut Cancer Center, Farmington, CT 06030, USA
2. Department of Computer Science & Engineering, University of Connecticut, Storrs, CT 06269, USA
Download: PDF(451 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Cancer immunotherapy uses one’s own immune system to fight cancerous cells. As immune system is hard-wired to distinguish self and non-self, cancer immunotherapy is predicted to target cancerous cells specifically, therefore is less toxic than chemotherapy and radiation therapy, two major treatments for cancer. Cancer immunologists have spent decades to search for the specific targets in cancerous cells.

METHODS: Due to the recent advances in high throughput sequencing and bioinformatics, evidence has merged that the neoantigens in cancerous cells are probably the cancer-specific targets that lead to the destruction of cancer. We will review the transplantable murine tumor models for cancer immunotherapy and the bioinformatics tools used to navigate mouse genome to identify tumor-rejecting neoantigens.

RESULTS: Several groups have independently identified point mutations that can be recognized by T cells of host immune system. It is consistent with the note that the formation of peptide-MHC I-TCR complex is critical to activate T cells. Both anchor residue and TCR-facing residue mutations have been reported. While TCR-facing residue mutations may directly activate specific T cells, anchor residue mutations improve the binding of peptides to MHC I molecules, which increases the presentation of peptides and the T cell activation indirectly.

CONCLUSIONS: Our work indicates that the affinity of neoepitopes for MHC I is not a predictor for anti-tumor immune responses in mice. Instead differential agretopic index (DAI), the numerical difference of epitope-MHC I affinities between the mutated and un-mutated sequences is a significant predictor. A similar bioinformatics pipeline has been developed to generate personalized vaccines to treat human ovarian cancer in a Phase I clinical trial.

Keywords cancer immunotherapy      tumor antigens      neoantigens      neoepitopes      differential agretopic index (DAI)      RNA-Seq      single nucleotide variant (SNV)     
Corresponding Authors: Fei Duan   
Online First Date: 17 October 2016    Issue Date: 04 November 2016
 Cite this article:   
Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe, et al. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-016-1422-2
http://journal.hep.com.cn/fib/EN/Y2016/V11/I5/366
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sahar Al Seesi
Alok Das Mohapatra
Arpita Pawashe
Ion I. Mandoiu
Fei Duan
Advantages of transplantable murine tumor model Disadvantages of transplantable murine tumor models
Transplantable mouse tumor models allow rapid and reliable tumor growth. Rapid growth of tumor might prevent normal interaction between tumor cells and immune system.
They can be efficiently used to evaluate in both prophylactic and therapeutic models (in terms of altered tumor growth). Tissue damage associated with injection and death of tumor cells might induce inflammation and alter immune response to tumors.
Induced expression of model antigens (such as ovalbumin) or viral gene products in tumor cell lines permit better understanding of anti-tumor immune response. The intrinsic immunogenicity and tumor microenvironment of transplantable tumor cell lines shows wide variation from poorly immunogenic (e.g. B16 melanomas), moderately immunogenic (EL4 T lymphomas) and immunogenic (methylcholanthrene induced fibrosarcomas).
Models for various cancer types (e.g. melanoma, lymphoma, sarcoma, colon carcinoma etc.) are available. They serve as a weaker model of natural tumor microenvironment. (This limitation can be overcome to some extent by orthotropic injections).
Tab.1  The advantages and disadvantages of transplantable murine tumor models
Fig.1  Read quality control. Raw sequencing reads are examined for low quality bases and low quality reads. Low quality bases at the reads’ ends are trimmed. Reads containing a large percentage of low quality bases are discarded. Duplicate reads are also discarded. Duplicate reads are the results of sequencing protocol bias and may lead to false positive calls.
Fig.2  Mapping decision tree. This figure illustrates the effect of different factors on choosing a read aligner and setting the mapping parameters. Factors include the sequencing technology and platform, as well as the question being studied.
1 Al Seesi S, Tiagueu Y T, Zelikovsky A, Măndoiu I I (2014). Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates. BMC Genomics, 15(8 Suppl 8): S2
doi: 10.1186/1471-2164-15-S8-S2 pmid: 25435284
2 Basombrio M A (1970).Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res, 30(10): 2458–262
3 Bentley D R, Balasubramanian S, Swerdlow H P, Smith G P, Milton J, Brown C G, Hall K P, Evers D J, Barnes C L, Bignell H R, Boutell J M, Bryant J, Carter R J, Keira Cheetham R, Cox A J, Ellis D J, Flatbush M R, Gormley N A, Humphray S J, Irving L J, Karbelashvili M S, Kirk S M, Li H, Liu X, Maisinger K S, Murray L J, Obradovic B, Ost T, Parkinson M L, Pratt M R, Rasolonjatovo I M, Reed M T, Rigatti R, Rodighiero C, Ross M T, Sabot A, Sankar S V, Scally A, Schroth G P, Smith M E, Smith V P, Spiridou A, Torrance P E, Tzonev S S, Vermaas E H, Walter K, Wu X, Zhang L, Alam M D, Anastasi C, Aniebo I C, Bailey D M, Bancarz I R, Banerjee S, Barbour S G, Baybayan P A, Benoit V A, Benson K F, Bevis C, Black P J, Boodhun A, Brennan J S, Bridgham J A, Brown R C, Brown A A, Buermann D H, Bundu A A, Burrows J C, Carter N P, Castillo N, Chiara E, Catenazzi MChang S, Neil Cooley R, Crake N R, Dada O O, Diakoumakos K D, Dominguez-Fernandez B, Earnshaw D J, Egbujor U C, Elmore D W, Etchin S S, Ewan M R, Fedurco M, Fraser L J, Fuentes Fajardo K V, Scott Furey W, George D, Gietzen K J, Goddard C P, Golda G S, Granieri P A, Green D E, Gustafson D L, Hansen N F, Harnish K, Haudenschild C D, Heyer N I, Hims M M, Ho J T, Horgan A M, Hoschler K, Hurwitz S, Ivanov D V, Johnson M Q, James T, Huw Jones T A, Kang G D, Kerelska T H, Kersey A D, Khrebtukova I, Kindwall A P, Kingsbury Z, Kokko-Gonzales P I, Kumar A, Laurent M A, Lawley C T, Lee S E, Lee X, Liao A K, Loch J A, Lok M, Luo S, Mammen R M, Martin J W, McCauley P G, McNitt P, Mehta P, Moon K W, Mullens J W, Newington T, Ning Z, Ling Ng B, Novo S M, O’Neill M J, Osborne M A, Osnowski A, Ostadan O, Paraschos L L, Pickering L, Pike A C, Pike A C, Chris Pinkard D, Pliskin D P, Podhasky J, Quijano V J, Raczy C, Rae V H, Rawlings S R, Chiva Rodriguez A, Roe P M, Rogers J, Rogert Bacigalupo M C, Romanov N, Romieu A, Roth R K, Rourke N J, Ruediger S T, Rusman E, Sanches-Kuiper R M, Schenker M R, Seoane J M, Shaw R J, Shiver M K, Short S W, Sizto N L, Sluis J P, Smith M A, Ernest Sohna Sohna J, Spence E J, Stevens K, Sutton N, Szajkowski L, Tregidgo C L, Turcatti G, Vandevondele S, Verhovsky Y, Virk S M, Wakelin S, Walcott G C, Wang J, Worsley G J, Yan J, Yau L, Zuerlein M, Rogers J, Mullikin J C, Hurles M E, McCooke N J, West J S, Oaks F L, Lundberg P L, Klenerman D, Durbin R, Smith A J (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456(7218): 53–59
doi: 10.1038/nature07517 pmid: 18987734
4 Berman J N, Chiu P P L, Dellaire G (2014). Preclinical animal models for cancer genomics..In: Dellair G, Berman J N, Arceci R J, eds Cancer Genomics: from Bench to Personalized Medicine, Elsevier Inc., 110–126
5 Bielas J H, Loeb K R, Rubin B P, True L D, Loeb L A (2006). From the Cover: Human cancers express a mutator phenotype. Proc Natl Acad Sci USA, 103(48):18238–18242
6 Blanchard T, Srivastava P K, Duan F (2013). Vaccines against advanced melanoma. Clin Dermatol, 31(2): 179–190
doi: 10.1016/j.clindermatol.2012.08.005 pmid: 23438381
7 Boland J F, Chung C C, Roberson D, Mitchell J, Zhang X, Im K M, He J, Chanock S J, Yeager M, Dean M (2013). The new sequencer on the block: comparison of Life Technology’s Proton sequencer to an Illumina HiSeq for whole-exome sequencing. Hum Genet, 132(10): 1153–1163
doi: 10.1007/s00439-013-1321-4 pmid: 23757002
8 Bolger A M, Lohse M, Usadel B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114–2120
doi: 10.1093/bioinformatics/btu170 pmid: 24695404
9 Boon T, van der Bruggen P (1996). Human tumor antigens recognized by T lymphocytes. J Exp Med, 183(3): 725–729
doi: 10.1084/jem.183.3.725 pmid: 8642276
10 Castle J C, Kreiter S, Diekmann J, Löwer M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C, Koslowski M, Kuhn A N, Britten C M, Huber C, Türeci O, Sahin U (2012). Exploiting the mutanome for tumor vaccination. Cancer Res, 72(5): 1081–1091
doi: 10.1158/0008-5472.CAN-11-3722 pmid: 22237626
11 Cheon D J, Orsulic S (2011). Mouse models of cancer. Annu Rev Pathol, 6(1): 95–119
doi: 10.1146/annurev.pathol.3.121806.154244 pmid: 20936938
12 Dranoff G (2012). Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol, 12(1): 61–66
pmid: 22134155
13 Duan F, Duitama J, Al Seesi S, Ayres C M, Corcelli S A, Pawashe A P, Blanchard T, McMahon D, Sidney J, Sette A, Baker B M, Mandoiu I I, Srivastava P K (2014). Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med, 211(11): 2231–2248
doi: 10.1084/jem.20141308 pmid: 25245761
14 Duan F, Lin Y, Liu C, Engelhorn M E, Cohen A D, Curran M, Sakaguchi S, Merghoub T, Terzulli S, Wolchok J D, Houghton A N (2009). Immune rejection of mouse tumors expressing mutated self. Cancer Res, 69(8): 3545–3553
doi: 10.1158/0008-5472.CAN-08-2779 pmid: 19351857
15 Duitama J, Srivastava P K, Măndoiu I I (2012). Towards accurate detection and genotyping of expressed variants from whole transcriptome sequencing data. BMC Genomics, 13(2 Suppl 2): S6
doi: 10.1186/1471-2164-13-S2-S6 pmid: 22537301
16 Feng J, Meyer C A, Wang Q, Liu J S, Shirley Liu X, Zhang Y (2012). GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics, 28(21): 2782–2788
doi: 10.1093/bioinformatics/bts515 pmid: 22923299
17 Foley E J (1953). Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res, 13(12): 835–837
pmid: 13116120
18 Gubin M M, Zhang X, Schuster H, Caron E, Ward J P, Noguchi T, Ivanova Y, Hundal J, Arthur C D, Krebber W J, Mulder G E, Toebes M, Vesely M D, Lam S S, Korman A J, Allison J P, Freeman G J, Sharpe A H, Pearce E L, Schumacher T N, Aebersold R, Rammensee H G, Melief C J, Mardis E R, Gillanders W E, Artyomov M N, Schreiber R D (2014). Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 515(7528): 577–581
doi: 10.1038/nature13988 pmid: 25428507
19 Kim D, Langmead B, Salzberg S L (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12(4): 357–360
doi: 10.1038/nmeth.3317 pmid: 25751142
20 Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3): R25
doi: 10.1186/gb-2009-10-3-r25 pmid: 19261174
21 Larsen M V, Lundegaard C, Lamberth K, Buus S, Lund O, Nielsen M (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1): 424
doi: 10.1186/1471-2105-8-424 pmid: 17973982
22 Li B, Dewey C N (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1): 323
doi: 10.1186/1471-2105-12-323 pmid: 21816040
23 Liu J, Blake S J, Smyth M J, Teng M W (2014). Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin Transl Immunology, 3(8): e22
doi: 10.1038/cti.2014.18 pmid: 25505970
24 Lundegaard C, Lund O, Nielsen M (2008). Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics, 24(11): 1397–1398
doi: 10.1093/bioinformatics/btn128 pmid: 18413329
25 Lurquin C, Van Pel A, Mariamé B, De Plaen E, Szikora J P, Janssens C, Reddehase M J, Lejeune J, Boon T (1989). Structure of the gene of tum- transplantation antigen P91A: the mutated exon encodes a peptide recognized with Ld by cytolytic T cells. Cell, 58(2): 293–303
doi: 10.1016/0092-8674(89)90844-1 pmid: 2568889
26 Matsushita H, Vesely M D, Koboldt D C, Rickert C G, Uppaluri R, Magrini V J, Arthur C D, White J M, Chen Y S, Shea L K, Hundal J, Wendl M C, Demeter R, Wylie T, Allison J P, Smyth M J, Old L J, Mardis E R, Schreiber R D (2012). Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature, 482(7385): 400–404
doi: 10.1038/nature10755 pmid: 22318521
27 McGranahan N, Furness A J, Rosenthal R, Ramskov S, Lyngaa R, Saini S K, Jamal-Hanjani M, Wilson G A, Birkbak N J, Hiley C T, Watkins T B, Shafi S, Murugaesu N, Mitter R, Akarca A U, Linares J, Marafioti T, Henry J Y, Van Allen E M, Miao D, Schilling B, Schadendorf D, Garraway L A, Makarov V, Rizvi N A, Snyder A, Hellmann M D, Merghoub T, Wolchok J D, Shukla S A, Wu C J, Peggs K S, Chan T A, Hadrup S R, Quezada S A, Swanton C (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 351(6280): 1463–1469
doi: 10.1126/science.aaf1490 pmid: 26940869
28 McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 20(9): 1297–1303
doi: 10.1101/gr.107524.110 pmid: 20644199
29 Monach P A, Meredith S C, Siegel C T, Schreiber H (1995). A unique tumor antigen produced by a single amino acid substitution. Immunity, 2(1): 45–59
doi: 10.1016/1074-7613(95)90078-0 pmid: 7600302
30 Nicolae M, Mangul S, Măndoiu I I, Zelikovsky A (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol, 6(1): 9
doi: 10.1186/1748-7188-6-9 pmid: 21504602
31 Noguchi Y, Chen Y T, Old L J (1994). A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA, 91(8): 3171–3175
doi: 10.1073/pnas.91.8.3171 pmid: 7909159
32 Nowell P C (1976). The clonal evolution of tumor cell populations. Science, 194(4260): 23–28
doi: 10.1126/science.959840 pmid: 959840
33 Pandey V, Nutter R C, Prediger E ( 2008).Applied Biosystems SOLiD™ System: Ligation-Based Sequencing. In: Janitz M, ed. Next Generation Genome Sequencing. Wiley-VCH Verlag GmbH & Co. KGaA. p. 29–42
34 Prehn R T, Main J M (1957). Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst, 18(6): 769–778
pmid: 13502695
35 Roberts A, Trapnell C, Donaghey J, Rinn J L, Pachter L (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol, 12(3): R22
doi: 10.1186/gb-2011-12-3-r22 pmid: 21410973
36 Robinson M D, McCarthy D J, Smyth G K (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1): 139–140
doi: 10.1093/bioinformatics/btp616 pmid: 19910308
37 Schmieder R, Edwards R (2011). Quality control and preprocessing of metagenomic datasets. Bioinformatics, 27(6): 863–864
doi: 10.1093/bioinformatics/btr026 pmid: 21278185
38 Schuler M M, Nastke M D, Stevanovikć S (2007). SYFPEITHI: database for searching and T-cell epitope prediction. Methods Mol Biol, 409: 75–93
doi: 10.1007/978-1-60327-118-9_5 pmid: 18449993
39 Srivastava P K (2015). Neoepitopes of Cancers: Looking Back, Looking Ahead. Cancer Immunol Res, 3(9): 969–977
doi: 10.1158/2326-6066.CIR-15-0134 pmid: 26342008
40 Thomas R K, Nickerson E, Simons J F, Jänne P A, Tengs T, Yuza Y, Garraway L A, LaFramboise T, Lee J C, Shah K, O’Neill K, Sasaki H, Lindeman N, Wong K K, Borras A M, Gutmann E J, Dragnev K H, DeBiasi R, Chen T H, Glatt K A, Greulich H, Desany B, Lubeski C K, Brockman W, Alvarez P, Hutchison S K, Leamon J H, Ronan M T, Turenchalk G S, Egholm M, Sellers W R, Rothberg J M, Meyerson M (2006). Sensitive mutation detection in heterogeneous cancer specimens by massively parallel picoliter reactor sequencing. Nat Med, 12(7): 852–855
doi: 10.1038/nm1437 pmid: 16799556
41 Tian S, Maile R, Collins E J, Frelinger J A (2007). CD8+ T cell activation is governed by TCR-peptide/MHC affinity, not dissociation rate. J Immunol, 179(5): 2952–2960
doi: 10.4049/jimmunol.179.5.2952 pmid: 17709510
42 Trapnell C, Pachter L, Salzberg S L (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25(9): 1105–1111
doi: 10.1093/bioinformatics/btp120 pmid: 19289445
43 Yadav M, Jhunjhunwala S, Phung Q T, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung T K, Fritsche J, Weinschenk T, Modrusan Z, Mellman I, Lill J R, Delamarre L (2014). Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature, 515(7528): 572–576
doi: 10.1038/nature14001 pmid: 25428506
44 Yates L R, Campbell P J (2012). Evolution of the cancer genome. Nat Rev Genet, 13(11): 795–806
doi: 10.1038/nrg3317 pmid: 23044827
Related articles from Frontiers Journals
[1] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed