Please wait a minute...

Frontiers in Biology

Front. Biol.    2018, Vol. 13 Issue (6) : 418-424     https://doi.org/10.1007/s11515-018-1523-1
RESEARCH ARTICLE |
Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design
Sanjeeb Kumar Mandal, Nupur Ojha, Nilanjana Das()
Bioremediation Laboratory, Department of Bio-Medical Sciences, School of Bio Sciences and Technology, VIT (Vellore Institute of Technology), Vellore-632014, Tamil Nadu, India
Download: PDF(920 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Benzo[ghi]perylene (BghiP), a polycyclic aromatic hydrocarbon (PAH) containing six fused benzene rings is considered as priority pollutant because of its carcinogenicity, mutagenicity and acute toxicity.

METHODS: The synthesis of ZnO nanoparticles was done following the standard method. Biosurfactant production by yeast consortium YC04 in MSM was confirmed by various tests viz. drop collapse test, methylene blue agar plate method and emulsification test (E24) using the standard procedures. Efficiency of YC04 was tested to remediate BghiP in presence of ZnO nanoparticles and produced biosurfactant in the growth medium.

RESULTS: Response surface methodology (RSM), 3-level five variables Box-Behnken design (BBD) was employed to optimize the factors viz. pH 7.0, temperature 30°C, shaking speed 130 rpm, inoculum dosage 3% and ZnO nanoparticles concentration 2 g/L after a period of 6 days of incubation for the enhanced degradation of BghiP (63.83±0.01%). It was well in close agreement with the predicated value obtained by RSM model yield (63.83±0.08%). Analysis of variance (ANOVA) showed F-value of 51.70, R2 of 0.9764, probability of<0.0001 and coefficient of variation of 1.25% confirmed the validity of the model. Degradation of BghiP was assessed using GC-MS and FTIR analysis. Kinetic study demonstrated that BghiP degradation fitted first order kinetic model.

CONCLUSIONS: To the best of our knowledge, this is the first report on process optimization toward nanobioremediation of BghiP using yeast consortium in presence of ZnO nanoparticles and produced biosurfactant in medium.

Keywords biodegradation      bioremediation      optimization      pollutants      yeasts     
Corresponding Authors: Nilanjana Das   
Online First Date: 26 October 2018    Issue Date: 30 November 2018
 Cite this article:   
Sanjeeb Kumar Mandal,Nupur Ojha,Nilanjana Das. Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design[J]. Front. Biol., 2018, 13(6): 418-424.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-018-1523-1
http://journal.hep.com.cn/fib/EN/Y2018/V13/I6/418
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sanjeeb Kumar Mandal
Nupur Ojha
Nilanjana Das
Fig.1  Biodegradation studies of benzo[ghi]perylene (BghiP) using yeast consortium YC04 through instrumental analysis. (A) GC-MS analysis of BghiP degradation under different sets of condition after 6 days of incubation; (B) FT-IR spectrum of BghiP before and after degradation in pres-ence of ZnO nanoparticle and biosurfactant.
Fig.2  3-D interactions between the different variables for the response (BghiP biodegradation %). (A) pH vs. ZnO nanoparticles (AE); (B) Tem-perature vs. Dosage (BD); (C) Shaking speed vs. ZnO nanoparticles (CE); (D) D. Dosage vs. ZnO nanoparticles (DE); (E) Normal plot of residuals; (F) Predicted vs. actual plot.
1 Agarry S E, Aremu M O, Aworanti O A (2013). Kinetic modelling and half-life study on enhanced soil bioremediation of bonny light crude oil amended with crop and animal-derived organic wastes. J Pet Environ Biotechnol, 4(02): 137
https://doi.org/10.4172/2157-7463.1000137
2 Arulazhagan P, Vasudevan N, Yeom I T (2010). Biodegradation of polycyclic aromatic hydrocarbon by a halotolerant bacterial consortium isolated from marine environment. Int J Environ Sci Technol, 7(4): 639–652
https://doi.org/10.1007/BF03326174
3 Bahia F M, de Almeida G C, de Andrade L P, Campos C G, Queiroz L R, da Silva R L V, Abdelnur P V, Corrêa J R, Bettiga M, Parachin N S (2018). Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae. Sci Rep, 8(1): 2905
https://doi.org/10.1038/s41598-018-21230-2 pmid: 29440668
4 Bodour A A, Guerrero-Barajas C, Jiorle B V, Malcomson M E, Paull A K, Somogyi A, Trinh L N, Bates R B, Maier R M (2004). Structure and characterization of flavolipids, a novel class of biosurfactants produced by Flavobacterium sp. strain MTN11. Appl Environ Microbiol, 70(1): 114–120
https://doi.org/10.1128/AEM.70.1.114-120.2004 pmid: 14711632
5 Bodour A A, Miller-Maier R M (1998). Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods, 32(3): 273–280
https://doi.org/10.1016/S0167-7012(98)00031-1
6 Capellos C, Bielski B H (1972). Kinetic systems: mathematical description of chemical kinetics in solution. New York, USA:Wiley-Inter science.
7 Cerniglia C E (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2-3): 351–368
https://doi.org/10.1007/BF00129093
8 Cuny P, Faucet J, Acquaviva M, Bertrand J C, Gilewicz M (1999). Enhanced biodegradation of phenanthrene by a marine bacterium in presence of a synthetic surfactant. Lett Appl Microbiol, 29(4): 242–245
https://doi.org/10.1046/j.1365-2672.1999.00623.x pmid: 10583752
9 EFSA (2008). Polycyclic aromatic hydrocarbons in food scientific opinion of the panel on contaminants in the food chain. EFSA J, 724: 1–114
10 El-Sheshtawy H S, Ahmed W (2017). Bioremediation of crude oil by Bacillus licheniformis in the presence of different concentration nanoparticles and produced biosurfactant. Int J Environ Sci Technol, 14(8): 1603–1614
https://doi.org/10.1007/s13762-016-1190-1
11 García-Delgado C, Alfaro-Barta I, Eymar E (2015). Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil. J Hazard Mater, 285: 259–266
https://doi.org/10.1016/j.jhazmat.2014.12.002 pmid: 25506817
12 Habs M, Jahn S A A, Schmähl D (1984). Carcinogenic activity of condensate from coloquint seeds (Citrullus colocynthis) after chronic epicutaneous administration to mice. J Cancer Res Clin Oncol, 108(1): 154–156
https://doi.org/10.1007/BF00390988 pmid: 6746706
13 Haghighat S, Akhavan A, Assadi M M, Pasdar S H (2008). Ability of indigenous Bacillus licheniformis and Bacillus subtilis in microbial EOR. Int J Environ Sci Technol, 5: 385–390
https://doi.org/10.1007/BF03326033
14 Hesham A E L, Wang Z, Zhang Y, Zhang J, Lv W, Yang M (2006). Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol, 56(2): 109–112
https://doi.org/10.1007/BF03174990
15 Ibrahim H M M (2018). Characterization of biosurfactants produced by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 from used engine oil-contaminated soil. Egypt J Petrol, 27(1): 21–29
https://doi.org/10.1016/j.ejpe.2016.12.005
16 Jianlong W, Xiangchun Q, Liping H, Yi Q, Hegemann W (2002). Microbial degradation of quinoline by immobilized cells of Burkholderia pickettii. Water Res, 36(9): 2288–2296
https://doi.org/10.1016/S0043-1354(01)00457-2 pmid: 12108721
17 Jin X, Tian W, Liu Q, Qiao K, Zhao J, Gong X (2017). Biodegradation of the benzo[a]pyrene-contaminated sediment of the Jiaozhou Bay wetland using Pseudomonas sp. immobilization. Mar Pollut Bull, 117(1-2): 283–290
https://doi.org/10.1016/j.marpolbul.2017.02.001 pmid: 28187968
18 Kumar H, Rani R (2013). Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. Int Lett Chem Phys Astron, 19: 26–36
https://doi.org/10.18052/www.scipress.com/ILCPA.19.26
19 Litt G, Almquist G (2009). An investigation of CuO/Fe2O3 catalysts for the gas-phase oxidation of ethanol. Appl Catal B, 90(1-2): 10–17
https://doi.org/10.1016/j.apcatb.2009.02.001
20 Mandal S K, Das N (2018). Biodegradation of perylene and benzo[ghi]perylene (5–6 rings) using yeast consortium: kinetic study, enzyme analysis and degradation pathway. J Environ Biol, 39(1): 5–15
https://doi.org/10.22438/jeb/39/1/MRN-540
21 Mishra S, Singh S N, Pande V (2014). Bacteria induced degradation of fluoranthene in minimal salt medium mediated by catabolic enzymes in vitro condition. Bioresour Technol, 164: 299–308
https://doi.org/10.1016/j.biortech.2014.04.076 pmid: 24862007
22 Mueller-Spitz S R, Crawford K D (2014). Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135. Lett Appl Microbiol, 58(4): 330–337
https://doi.org/10.1111/lam.12205 pmid: 24286199
23 Ooi B G, Mulisa A, Kim H Y, Chong N S (2003). Methods development for the detection of trace metabolites from the biodegradation of polycyclic aromatic hydrocarbons by yeasts. J Tenn Acad Sci, 78: 65–75
24 Patowary K, Kalita M C, Deka S (2015). Degradation of polyaromatic hydrocarbons (PAHs) employing biosurfactant producing Pseudomonas aeruginosa KS3. Indian J Biotechnol, 14: 208–215
25 Ren H, Zanma S, Urano N, Endo H, Mineki S, Hayashi T (2004). Pyrene decomposing yeasts collected from sea water of Tokyo Bay. Nippon Suisan Gakkaishi, 70(5): 687–692
https://doi.org/10.2331/suisan.70.687
26 Safaei-Ghomi J, Ghasemzadeh M A (2017). Zinc oxide nanoparticle promoted highly efficient one pot three-component synthesis of 2,3-disubstituted benzofurans. Arab J Chem, 10: S1774–S1780
https://doi.org/10.1016/j.arabjc.2013.06.030
27 Satpute S K, Bhawsar B D, Dhakephalkar P K, Chopade B A (2008). Assessment of different screening methods for selecting biosurfactant producing marine bacteria. Indian J Mar Sci, 37: 243–250
28 Seo J S, Keum Y S, Harada R M, Li Q X (2007). Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Agric Food Chem, 55(14): 5383–5389
https://doi.org/10.1021/jf0637630 pmid: 17552538
29 Shin K H, Cha D K (2008). Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere, 72(2): 257–262
https://doi.org/10.1016/j.chemosphere.2008.01.043 pmid: 18331753
30 Su X M, Bamba A M, Zhang S, Zhang Y G, Hashmi M Z, Lin H J, Ding L X (2018). Revealing potential functions of VBNC bacteria in polycyclic aromatic hydrocarbons biodegradation. Lett Appl Microbiol, 66(4): 277–283
https://doi.org/10.1111/lam.12853 pmid: 29350767
31 Tuleva B K, Ivanov G R, Christova N E (2002). Biosurfactant production by a new Pseduomonas putida strain. Z. Naturforsch, 57c(3-4): 356–360
https://doi.org/10.1515/znc-2002-3-426
32 Wei H, Le Z, Xiaojun L, Zongqiang G, Yongwei Y, Zhi L (2015). Influence of Mucor mucedo immobilized to corncob in remediation of pyrene contaminated agricultural soil. Environ Eng Res, 20(2): 149–154
https://doi.org/10.4491/eer.2015.013
33 Wilson S C, Jones K C (1993). Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut, 81(3): 229–249
https://doi.org/10.1016/0269-7491(93)90206-4 pmid: 15091809
34 Winquist E, Björklöf K, Schultz E, Räsänen M, Salonen K, Anasonye F, Cajthaml T, Steffen K T, Jørgensen K S, Tuomela M (2014). Bioremediation of PAH-contaminated soil with fungi- from laboratory to field scale. Int Biodeter Biodegr, 86: 238–247
https://doi.org/10.1016/j.ibiod.2013.09.012
35 Zaragoza-Ojeda M, Eguía-Aguilar P, Perezpeña-Díazconti M, Arenas-Huertero F (2016). Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line. Toxicol Lett, 256: 64–76
https://doi.org/10.1016/j.toxlet.2016.05.023 pmid: 27234499
36 Zhang X, Zhang N, Fu H, Chen T, Liu S, Zheng S, Zhang J (2017). Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor. Bioresour Technol, 243: 93–99
https://doi.org/10.1016/j.biortech.2017.06.052 pmid: 28668561
Related articles from Frontiers Journals
[1] Moni Philip Jacob Kizhakedathil, Subathra Devi Chandrasekaran. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology[J]. Front. Biol., 2018, 13(2): 123-129.
[2] Dhamodharan Duraikannu, Subathra Devi Chandrasekaran. Optimization and modeling studies on the production of a new fibrinolytic protease using Streptomyces radiopugnans_VITSD8[J]. Front. Biol., 2018, 13(1): 70-77.
[3] Teetam Ghosal, Nikita Augustine, Ashwini Siddapur, Vaishnavi Babu, Merlyn Keziah Samuel, Subathra Devi Chandrasekaran. Strain improvement, optimization and purification studies for enhanced production of streptokinase from Streptococcus uberis TNA-M1[J]. Front. Biol., 2017, 12(5): 376-384.
[4] Arooj Arshad, Bisma Ashraf, Iftikhar Ali, Nazia Jamil. Biosynthesis of polyhydroxyalkanoates from styrene by Enterobacter spp. isolated from polluted environment[J]. Front. Biol., 2017, 12(3): 210-218.
[5] R. FOSSION, D. A. HARTASáNCHEZ, O. RESENDIS-ANTONIO, A. FRANK. Criticality, adaptability and early-warning signals in time series in a discrete quasispecies model[J]. Front Biol, 2013, 8(2): 247-259.
[6] Benyang Wang, Fuhe Luo, Xuening Zhen, Shixiao Yu. Quantitative method for identifying networks of minimum priority sites for protection of rare and endangered plant species in Guangdong, China[J]. Front Biol Chin, 2009, 4(1): 117-123.
[7] HOU Shuyu, DUO Miao, ZHANG Qingmin, ZHANG Yang, SUN Hongwen. Optimized cultivation of highly-efficient degradation bacterial strains and their degradation ability towards pyrene[J]. Front. Biol., 2007, 2(4): 387-390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed