Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (5) : 339-354     DOI: 10.1007/s11515-016-1416-0
Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells
Kyle R. Denton1,Chongchong Xu2,4,Harsh Shah3,Xue-Jun Li2,4()
1. Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
2. Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, IL 61107, USA
3. MD program, College of Medicine at Rockford, IL 61107, USA
4. Department of Bioengineering, University of Illinois at Chicago, IL 60607, USA
Download: PDF(980 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

BACKGROUND: Cortical motor neurons, also known as upper motor neurons, are large projection neurons whose axons convey signals to lower motor neurons to control the muscle movements. Degeneration of cortical motor neuron axons is implicated in several debilitating disorders including hereditary spastic paraplegia (HSP). Since the discovery of the first HSP gene, SPAST that encodes spastin, over 70 distinct genetic loci associated with HSP have been identified. How the mutations of these functionally diverse genes result in axonal degeneration and why certain axons are affected in HSP remain largely unknown. The development of induced pluripotent stem cell (iPSC) technology has provided researchers an excellent resource to generate patient-specific human neurons to model human neuropathological processes including axonal defects.

METHODS: In this article, we will first review the pathology and pathways affected in the common forms of HSP subtypes by searching the PubMed database. We will then summarize the findings and insights gained from studies using iPSC-based models, and discuss challenges and future directions.

RESULTS: HSPs, a heterogeneous group of genetic neurodegenerative disorders, exhibit similar pathological changes that result from retrograde axonal degeneration of cortical motor neurons. Recently, iPSCs have been generated from several common forms of HSP including SPG4, SPG3A, and SPG11 patients. Neurons derived from HSP iPSCs exhibit impaired neurite outgrowth, increased axonal swellings, and reduced axonal transport, recapitulating disease-specific axonal defects.

CONCLUSIONS: These patient-derived neurons offer a unique tool to study the pathogenic mechanisms and explore the treatments for rescuing axonal defects in HSP, as well as other diseases involving axonopathy.

Keywords HSP      axonal degeneration      pluripotent stem cells      spastin      atlastin-1     
Corresponding Authors: Xue-Jun Li   
Online First Date: 28 September 2016    Issue Date: 04 November 2016
 Cite this article:   
Kyle R. Denton,Chongchong Xu,Harsh Shah, et al. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
E-mail this article
E-mail Alert
Articles by authors
Kyle R. Denton
Chongchong Xu
Harsh Shah
Xue-Jun Li
Fig.1  Major pathways affected in HSP. Proteins involved in HSP have a wide range of cellular functions, however many of them cluster into several common cellular pathways. Spastin (for SPG4, the most common form of HSP) and atlastin-1 (for SPG3A, the most common early-onset form of HSP) are shown in red and discussed in detail. Modified from (Blackstone, 2012) with permission from the Annual Review of Neuroscience, Volume 35 by Annual Reviews.
Fig.2  Spastin isoforms and domains. The N terminus of the protein contains two domains important for protein–protein interactions, the hydrophobic region (HR) and the microtubule interacting and targeting (MIT) domains. The C terminus contains a microtubule binding domain (MBD) and an AAA ATPase domain, which allows spastin to interact and sever microtubules. Modified from (Blackstone et al., 2011) by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience, copyright 2011.
Fig.3  Atlasin-1 domains. Atlastin-1 consists of three main domains: the large GTPase domain, the middle linker domain, and two trans-membrane domains (TMDs). Each TMD partially inserts into ER lipid bilayers through hydrophobic wedging. At the C terminus is a KDEL ER retention (ERR) signal.
Fig.4  Establishment of iPSC-based SPG4 and SPG3A models that recapitulate disease-specific axonal phenotypes. (A, B) Immunostaining showing the expression of pluripotent protein NANOG and TRA-1-60 (A) by the iPSCs derived from a patient with intron 4 splice acceptor mutation (c.683-1G>T; panel B). (C) At 6 weeks after differentiation, telencephalic glutamatergic neurons (Tbr1+/βIII-tubulin+) were efficiently generated from WT (control) and SPG4 iPSCs. (D) Neurons derived from SPG4 iPSCs displayed swellings in Tau+ axons, while control neuron axons were mostly smooth with no swellings. (E, F) Increased formation of axonal swellings was also observed from telencephalic neurons derived from iPSCs of another patient with a C>T transition located in Exon 5 of the SPAST gene (amber mutation, E). (G) To examine fast axonal transport of mitochondria, cells were stained with MitoTracker Red CMXRos (Invitrogen). (H) Representative distance versus time kymographs over a 5 min recording. (I) Quantification of motile mitochondria in week 8 telencephalic neurons showed a significant decrease of motile mitochondria in SPG4 neurons compared to control neurons. Data presented as mean±SD. **P<0.01. (J) SPG3A fibroblast cells were successfully programmed to iPSCs that have typical ESC morphology. (K) As shown by the representative distance versus time kymographs, reduction of motile mitochondria was also observed in SPG3A iPSC-derived telencephalic neurons. Blue indicates Hoechst stained nuclei. Bars, 100 (A), 50 (C), 20 (D,F), 10 (G, H), and 5 (K) mm. Modified from references (Denton et al., 2014; Zhu et al., 2014).
Fig.5  Summary of major phenotypes observed in SPG4 and SPG3A iPSC-derived neurons. We observed length-dependent axonal swellings in SPG4 neurons, and neurite outgrowth abnormalities in SPG3A neurons. Reduced axonal transport was observed in both SPG4 and SPG3A neurons. These phenotypes were rescued following treatment with the microtubule-targeting drug vinblastine, linking alterations to microtubule dynamics in these forms of autosomal dominant HSP.
1 Ben-David U, Kopper O, Benvenisty N (2012). Expanding the boundaries of embryonic stem cells. Cell Stem Cell, 10(6): 666–677
doi: 10.1016/j.stem.2012.05.003 pmid: 22704506
2 Bilican B, Serio A, Barmada S J, Nishimura A L, Sullivan G J, Carrasco M, Phatnani H P, Puddifoot C A, Story D, Fletcher J, Park I H, Friedman B A, Daley G Q, Wyllie D J, Hardingham G E, Wilmut I, Finkbeiner S, Maniatis T, Shaw C E, Chandran S (2012). Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA, 109(15): 5803–5808
doi: 10.1073/pnas.1202922109 pmid: 22451909
3 Blackstone C (2012). Cellular pathways of hereditary spastic paraplegia. Annu Rev Neurosci, 35(1): 25–47
doi: 10.1146/annurev-neuro-062111-150400 pmid: 22540978
4 Blackstone C, O’Kane C J, Reid E (2011). Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci, 12(1): 31–42
pmid: 21139634
5 Boulting G L, Kiskinis E, Croft G F, Amoroso M W, Oakley D H, Wainger B J, Williams D J, Kahler D J, Yamaki M, Davidow L, Rodolfa C T, Dimos J T, Mikkilineni S, MacDermott A B, Woolf C J, Henderson C E, Wichterle H, Eggan K (2011). A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol, 29(3): 279–286
doi: 10.1038/nbt.1783 pmid: 21293464
6 Chen H, Chan D C (2009). Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet, 18(R2): R169–R176
doi: 10.1093/hmg/ddp326 pmid: 19808793
7 Claudiani P, Riano E, Errico A, Andolfi G, Rugarli E I (2005). Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res, 309(2): 358–369
doi: 10.1016/j.yexcr.2005.06.009 pmid: 16026783
8 Crosby A H, Proukakis C (2002). Is the transportation highway the right road for hereditary spastic paraplegia? Am J Hum Genet, 71(5): 1009–1016
doi: 10.1086/344206 pmid: 12355399
9 De Vos K J, Grierson A J, Ackerley S, Miller C C (2008). Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci, 31(1): 151–173
doi: 10.1146/annurev.neuro.31.061307.090711 pmid: 18558852
10 Deluca G C, Ebers G C, Esiri M M (2004). The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol, 30(6): 576–584
doi: 10.1111/j.1365-2990.2004.00587.x pmid: 15540998
11 Denton K R, Lei L, Grenier J, Rodionov V, Blackstone C, Li X J (2014). Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells, 32(2): 414–423
doi: 10.1002/stem.1569 pmid: 24123785
12 Dimos J T, Rodolfa K T, Niakan K K, Weisenthal L M, Mitsumoto H, Chung W, Croft G F, Saphier G, Leibel R, Goland R, Wichterle H, Henderson C E, Eggan K (2008). Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 321(5893): 1218–1221
doi: 10.1126/science.1158799 pmid: 18669821
13 Ebert A D, Yu J, Rose F F Jr, Mattis V B, Lorson C L, Thomson J A, Svendsen C N (2009). Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 457(7227): 277–280
doi: 10.1038/nature07677 pmid: 19098894
14 Errico A, Ballabio A, Rugarli E I (2002). Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet, 11(2): 153–163
doi: 10.1093/hmg/11.2.153 pmid: 11809724
15 Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
doi: 10.1038/292154a0 pmid: 7242681
16 Falk J, Rohde M, Bekhite M M, Neugebauer S, Hemmerich P, Kiehntopf M, Deufel T, Hübner C A, Beetz C (2014). Functional mutation analysis provides evidence for a role of REEP1 in lipid droplet biology. Hum Mutat, 35(4): 497–504
doi: 10.1002/humu.22521 pmid: 24478229
17 Fan Y, Wali G, Sutharsan R, Bellette B, Crane D I, Sue C M, Mackay-Sim A (2014). Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biol Open, 3(6): 494–502
doi: 10.1242/bio.20147641 pmid: 24857849
18 Fassier C, Hutt J A, Scholpp S, Lumsden A, Giros B, Nothias F, Schneider-Maunoury S, Houart C, Hazan J (2010). Zebrafish atlastin controls motility and spinal motor axon architecture via inhibition of the BMP pathway. Nat Neurosci, 13(11): 1380–1387
doi: 10.1038/nn.2662 pmid: 20935645
19 Fink J K (1993). Hereditary Spastic Paraplegia Overview. In: Pagon R A, Adam M P, Ardinger H H, Wallacc S E, Amemiya A, BeauL J H, Bird T D, Fong C T, Mefford H C, Smith R J H, Stephens K, Eds. Gene Reviews [Internet]. Seatlle (WA): University of Washington, Seattle 1993–2016
20 Fink J K (2003). Advances in the hereditary spastic paraplegias. Exp Neurol, 184(Suppl 1): S106–S110
doi: 10.1016/j.expneurol.2003.08.005 pmid: 14597333
21 Fink J K (2006). Hereditary spastic paraplegia. Curr Neurol Neurosci Rep, 6(1): 65–76
doi: 10.1007/s11910-996-0011-1 pmid: 16469273
22 Fonknechten N, Mavel D, Byrne P, Davoine C S, Cruaud C, Bönsch D, Samson D, Coutinho P, Hutchinson M, McMonagle P, Burgunder J M, Tartaglione A, Heinzlef O, Feki I, Deufel T, Parfrey N, Brice A, Fontaine B, Prud’homme J F, Weissenbach J, Dürr A, Hazan J (2000). Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet, 9(4): 637–644
doi: 10.1093/hmg/9.4.637 pmid: 10699187
23 Grove E A, Fukuchi-Shimogori T (2003). Generating the cerebral cortical area map. Annu Rev Neurosci, 26(1): 355–380
doi: 10.1146/annurev.neuro.26.041002.131137 pmid: 14527269
24 Guha P, Morgan J W, Mostoslavsky G, Rodrigues N P, Boyd A S (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4): 407–412
doi: 10.1016/j.stem.2013.01.006 pmid: 23352605
25 Guidubaldi A, Piano C, Santorelli F M, Silvestri G, Petracca M, Tessa A, Bentivoglio A R (2011). Novel mutations in SPG11 cause hereditary spastic paraplegia associated with early-onset levodopa-responsive Parkinsonism. Mov Disord, 26(3): 553–556
doi: 10.1002/mds.23552 pmid: 21381113
26 Hallett P J, Deleidi M, Astradsson A, Smith G A, Cooper O, Osborn T M, Sundberg M, Moore M A, Perez-Torres E, Brownell A L, Schumacher J M, Spealman R D, Isacson O (2015). Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16(3): 269–274
doi: 10.1016/j.stem.2015.01.018 pmid: 25732245
27 Halliwell B (2014). Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomed J, 37(3): 99–105
pmid: 24923566
28 Hanein S, Martin E, Boukhris A, Byrne P, Goizet C, Hamri A, Benomar A, Lossos A, Denora P, Fernandez J, Elleuch N, Forlani S, Durr A, Feki I, Hutchinson M, Santorelli F M, Mhiri C, Brice A, Stevanin G (2008). Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome. Am J Hum Genet, 82(4): 992–1002
doi: 10.1016/j.ajhg.2008.03.004 pmid: 18394578
29 Harding A E (1983). Classification of the hereditary ataxias and paraplegias. Lancet, 1(8334): 1151–1155
doi: 10.1016/S0140-6736(83)92879-9 pmid: 6133167
30 Harding A E (1993). Hereditary spastic paraplegias. Semin Neurol, 13(4): 333–336
doi: 10.1055/s-2008-1041143 pmid: 8146482
31 Havlicek S, Kohl Z, Mishra H K, Prots I, Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto M C, Aigner S, Sticht H, Groemer T W, Hehr U, Lampert A, Schlötzer-Schrehardt U, Winkler J, Gage F H, Winner B (2014). Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons. Hum Mol Genet, 23(10): 2527–2541
doi: 10.1093/hmg/ddt644 pmid: 24381312
32 Hazan J, Fonknechten N, Mavel D, Paternotte C, Samson D, Artiguenave F, Davoine C S, Cruaud C, Dürr A, Wincker P, Brottier P, Cattolico L, Barbe V, Burgunder J M, Prud’homme J F, Brice A, Fontaine B, Heilig B, Weissenbach J (1999). Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet, 23(3): 296–303
doi: 10.1038/15472 pmid: 10610178
33 Hedera P, Eldevik O P, Maly P, Rainier S, Fink J K (2005). Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology, 47(10): 730–734
doi: 10.1007/s00234-005-1415-3 pmid: 16143870
34 Hirst J, Borner G H, Edgar J, Hein M Y, Mann M, Buchholz F, Antrobus R, Robinson M S (2013). Interaction between AP-5 and the hereditary spastic paraplegia proteins SPG11 and SPG15. Mol Biol Cell, 24(16): 2558–2569
doi: 10.1091/mbc.E13-03-0170 pmid: 23825025
35 Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol, 29(8): 731–734
doi: 10.1038/nbt.1927 pmid: 21738127
36 Hollenbeck P J (2005). Mitochondria and neurotransmission: evacuating the synapse. Neuron, 47(3): 331–333
doi: 10.1016/j.neuron.2005.07.017 pmid: 16055057
37 Hu J, Shibata Y, Zhu P P, Voss C, Rismanchi N, Prinz W A, Rapoport T A, Blackstone C (2009). A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell, 138(3): 549–561
doi: 10.1016/j.cell.2009.05.025 pmid: 19665976
38 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
doi: 10.1126/science.1225829 pmid: 22745249
39 Kanekura K, Suzuki H, Aiso S, Matsuoka M (2009). ER stress and unfolded protein response in amyotrophic lateral sclerosis. Mol Neurobiol, 39(2): 81–89
doi: 10.1007/s12035-009-8054-3 pmid: 19184563
40 Kasher P R, De Vos K J, Wharton S B, Manser C, Bennett E J, Bingley M, Wood J D, Milner R, McDermott C J, Miller C C, Shaw P J, Grierson A J (2009). Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem, 110(1): 34–44
doi: 10.1111/j.1471-4159.2009.06104.x pmid: 19453301
41 Kiskinis E, Eggan K (2010). Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest, 120(1): 51–59
doi: 10.1172/JCI40553 pmid: 20051636
42 Kiskinis E, Sandoe J, Williams L A, Bo