Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (3) : 182-192     DOI: 10.1007/s11515-016-1412-4
REVIEW |
Stress, hippocampal neurogenesis and cognition: functional correlations
Paul J. Lucassen1,*(),Charlotte A. Oomen1,2
1. Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
2. Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Download: PDF(222 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The brain of many species including humans, harbors stem cells that continue to generate new neurons up into adulthood. This form of structural plasticity occurs in a limited number of brain regions, i.e. the subventricular zone and the hippocampal dentate gyrus and is regulated by environmental and hormonal factors. In this minireview, we provide an overview of the effects of stress and glucocorticoid hormones on adult hippocampal neurogenesis and discuss how these effects may be relevant for cognitive function and possibly, brain disease. While its exact functional role remains elusive, adult neurogenesis has been implicated in learning and memory, fear and mood regulation and recently, adult-born neurons were found to be involved in specific cognitive functions such as pattern separation (i.e. the ability to form unique memory representations) and cognitive flexibility. The process of adult neurogenesis is influenced by several factors; whereas e.g. exercise stimulates, exposure to stress and stress hormones generally inhibit neurogenesis. Effects of acute, mild stress are generally short-lasting and recover quickly, but chronic or severe forms of stress can induce lasting reductions in adult neurogenesis. Some of the inhibitory effects of stress can be rescued by exercise, by allowing a period of recovery from stress, by drugs that target the stress system, or by some, but not all, antidepressants. Stress may, partly through its effects on adult neurogenesis, alter structure and plasticity of the hippocampal circuit. This can lead to subsequent changes in stress responsivity and aspects of memory processing, which may be particularly relevant for stress related psychopathology or brain diseases that involve perturbed memory processing.

Keywords adult neurogenesis      stem cells      hippocampus      stress      memory      pattern separation      cognition     
Corresponding Authors: Paul J. Lucassen   
Online First Date: 28 June 2016    Issue Date: 05 July 2016
 Cite this article:   
Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-016-1412-4
http://journal.hep.com.cn/fib/EN/Y2016/V11/I3/182
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Paul J. Lucassen
Charlotte A. Oomen
1 Abrous D N, Koehl M, Le Moal M (2005). Adult neurogenesis: from precursors to network and physiology. Physiol Rev, 85(2): 523–569
doi: 10.1152/physrev.00055.2003 pmid: 15788705
2 Aimone J B, Deng W, Gage F H (2010). Adult neurogenesis: integrating theories and separating functions. Trends Cogn Sci, 14(7): 325–337
doi: 10.1016/j.tics.2010.04.003 pmid: 20471301
3 Aimone J B, Wiles J, Gage F H (2009). Computational influence of adult neurogenesis on memory encoding. Neuron, 61(2): 187–202
doi: 10.1016/j.neuron.2008.11.026 pmid: 19186162
4 Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrié P (2004). Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry, 9(3): 278–286, 224
doi: 10.1038/sj.mp.4001464 pmid: 14699428
5 Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain P A, Milanesi E, Rybka J, Berry A, Cirulli F, Thuret S, Price J, Riva M A, Gennarelli M, Pariante C M (2013). Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology, 38(5): 872–883
doi: 10.1038/npp.2012.253 pmid: 23303060
6 Arruda-Carvalho M, Sakaguchi M, Akers K G, Josselyn S A, Frankland P W (2011). Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci, 31(42): 15113–15127
doi: 10.1523/JNEUROSCI.3432-11.2011 pmid: 22016545
7 Balu D T, Lucki I (2009). Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev, 33(3): 232–252
doi: 10.1016/j.neubiorev.2008.08.007 pmid: 18786562
8 Banasr M, Duman R S (2007). Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets, 6(5): 311–320
doi: 10.2174/187152707783220929 pmid: 18045159
9 Becker S (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus, 15(6): 722–738
doi: 10.1002/hipo.20095 pmid: 15986407
10 Bekinschtein P, Kent B A, Oomen C A, Clemenson G D, Gage F H, Saksida L M, Bussey T J (2014). Brain-derived neurotrophic factor interacts with adult-born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus, 24(8): 905–911
11 Bekinschtein P, Kent B A, Oomen C A, Clemenson G D, Jr., Gage F H, Saksida L M, Bussey T J (2013). BDNF in the Dentate Gyrus Is Required for Consolidation of “Pattern-Separated” Memories. Cell Reports, 5: 1–10
12 Bekinschtein P, Oomen C A, Saksida L M, Bussey T J (2011). Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin Cell Dev Biol, 22(5): 536–542
doi: 10.1016/j.semcdb.2011.07.002 pmid: 21767656
13 Ben Abdallah N M, Filipkowski R K, Pruschy M, Jaholkowski P, Winkler J, Kaczmarek L, Lipp H P (2013). Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice. Behav Brain Res, 252: 275–286
doi: 10.1016/j.bbr.2013.05.034 pmid: 23714078
14 Besnard A, Sahay A (2016). Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology, 41(1): 24–44
doi: 10.1038/npp.2015.167 pmid: 26068726
15 Binder E B, Bradley R G, Liu W, Epstein M P, Deveau T C, Mercer K B, Tang Y, Gillespie C F, Heim C M, Nemeroff C B, Schwartz A C, Cubells J F, Ressler K J (2008). Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA, 299(11): 1291–1305
doi: 10.1001/jama.299.11.1291 pmid: 18349090
16 Boku S, Toda H, Nakagawa S, Kato A, Inoue T, Koyama T, Hiroi N, Kusumi I (2015). Neonatal maternal separation alters the capacity of adult neural precursor cells to differentiate into neurons via methylation of retinoic acid receptor gene promoter. Biol Psychiatry, 77(4): 335–344
doi: 10.1016/j.biopsych.2014.07.008 pmid: 25127741
17 Bruel-Jungerman E, Lucassen P J, Francis F (2011). Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res, 221(2): 379–388
doi: 10.1016/j.bbr.2011.01.021 pmid: 21272598
18 Burghardt N S, Park E H, Hen R, Fenton A A (2012). Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus, 22(9): 1795–1808
doi: 10.1002/hipo.22013 pmid: 22431384
19 Chetty S, Friedman A R, Taravosh-Lahn K, Kirby E D, Mirescu C, Guo F, Krupik D, Nicholas A, Geraghty A C, Krishnamurthy A, Tsai M K, Covarrubias D, Wong A T, Francis D D, Sapolsky R M, Palmer T D, Pleasure D, Kaufer D (2014). Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Mol Psychiatry, 19(12): 1275–1283
doi: 10.1038/mp.2013.190 pmid: 24514565
20 Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210–213
doi: 10.1126/science.1173215 pmid: 19590004
21 Creer D J, Romberg C, Saksida L M, van Praag H, Bussey T J (2010). Running enhances spatial pattern separation in mice. Proc Natl Acad Sci USA, 107(5): 2367–2372
doi: 10.1073/pnas.0911725107 pmid: 20133882
22 Czéh B, Lucassen P J (2007). What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci, 257(5): 250–260
doi: 10.1007/s00406-007-0728-0 pmid: 17401728
23 Czéh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006). Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology, 31(8): 1616–1626
doi: 10.1038/sj.npp.1300982 pmid: 16395301
24 Czéh B, Welt T, Fischer A K, Erhardt A, Schmitt W, Müller M B, Toschi N, Fuchs E, Keck M E (2002). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry, 52(11): 1057–1065
doi: 10.1016/S0006-3223(02)01457-9 pmid: 12460689
25 Dagyte G, Van der Zee E A, Postema F, Luiten P G, Den Boer J A, Trentani A, Meerlo P (2009). Chronic but not acute foot-shock stress leads to temporary suppression of cell proliferation in rat hippocampus. Neuroscience, 162(4): 904–913
doi: 10.1016/j.neuroscience.2009.05.053 pmid: 19482059
26 Datson N A, Speksnijder N, Mayer J L, Steenbergen P J, Korobko O, Goeman J, de Kloet E R, Joëls M, Lucassen P J (2012). The transcriptional response to chronic stress and glucocorticoid receptor blockade in the hippocampal dentate gyrus. Hippocampus, 22(2): 359–371
doi: 10.1002/hipo.20905 pmid: 21184481
27 de Kloet E R, Joëls M, Holsboer F (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci, 6(6): 463–475
doi: 10.1038/nrn1683 pmid: 15891777
28 Djavadian R L (2004). Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals. Acta Neurobiol Exp (Wars), 64(2): 189–200
pmid: 15366252
29 Domínguez-Escribà L, Hernández-Rabaza V, Soriano-Navarro M, Barcia J A, Romero F J, García-Verdugo J M, Canales J J (2006). Chronic cocaine exposure impairs progenitor proliferation but spares survival and maturation of neural precursors in adult rat dentate gyrus. Eur J Neurosci, 24(2): 586–594
doi: 10.1111/j.1460-9568.2006.04924.x pmid: 16903860
30 Dranovsky A, Hen R (2006). Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry, 59(12): 1136–1143
doi: 10.1016/j.biopsych.2006.03.082 pmid: 16797263
31 Droste S K, Gesing A, Ulbricht S, Müller M B, Linthorst A C, Reul J M (2003). Effects of long-term voluntary exercise on the mouse hypothalamic-pituitary-adrenocortical axis. Endocrinology, 144(7): 3012–3023
doi: 10.1210/en.2003-0097 pmid: 12810557
32 Ehninger D, Kempermann G (2006). Paradoxical effects of learning the Morris water maze on adult hippocampal neurogenesis in mice may be explained by a combination of stress and physical activity. Genes Brain Behav, 5(1): 29–39
doi: 10.1111/j.1601-183X.2005.00129.x pmid: 16436186
33 Erdmann G, Berger S, Schütz G (2008). Genetic dissection of glucocorticoid receptor function in the mouse brain. J Neuroendocrinol, 20(6): 655–659
doi: 10.1111/j.1365-2826.2008.01717.x pmid: 18513206
34 Fitzsimons C P, Herbert J, Schouten M, Meijer O C, Lucassen P J, Lightman S (2016). Circadian and Ultradian Glucocorticoid Rhythmicity: Implications for the Effects of Glucocorticoids on Neural Stem Cells and Adult Hippocampal Neurogenesis. Front Neuroendocrinol, (In press)
doi: 10.1016/j.yfrne.2016.05.001 pmid: 27234350
35 Fitzsimons C P, van Hooijdonk L W, Schouten M, Zalachoras I, Brinks V, Zheng T, Schouten T G, Saaltink D J, Dijkmans T, Steindler D A, Verhaagen J, Verbeek F J, Lucassen P J, de Kloet E R, Meijer O C, Karst H, Joels M, Oitzl M S, Vreugdenhil E (2013). Knockdown of the glucocorticoid receptor alters functional integration of newborn neurons in the adult hippocampus and impairs fear-motivated behavior. Mol Psychiatry, 18(9): 993–1005
doi: 10.1038/mp.2012.123 pmid: 22925833
36 Galea L A (2008). Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain Res Brain Res Rev, 57(2): 332–341
doi: 10.1016/j.brainresrev.2007.05.008 pmid: 17669502
37 Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G (2004). Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell, 3(6): 363–371
doi: 10.1111/j.1474-9728.2004.00130.x pmid: 15569353
38 Garthe A, Behr J, Kempermann G (2009). Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS ONE, 4(5): e5464
doi: 10.1371/journal.pone.0005464 pmid: 19421325
39 Garthe A, Huang Z, Kaczmarek L, Filipkowski R K, Kempermann G (2014). Not all water mazes are created equal: cyclin D2 knockout mice with constitutively suppressed adult hippocampal neurogenesis do show specific spatial learning deficits. Genes Brain Behav, 13(4): 357–364
doi: 10.1111/gbb.12130 pmid: 24602283
40 Ge S, Yang C H, Hsu K S, Ming G L, Song H (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4): 559–566
doi: 10.1016/j.neuron.2007.05.002 pmid: 17521569
41 Gould E (2007). How widespread is adult neurogenesis in mammals? Nat Rev Neurosci, 8(6): 481–488
doi: 10.1038/nrn2147 pmid: 17514200
42 Gould E, Beylin A, Tanapat P, Reeves A, Shors T J (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci, 2(3): 260–265
doi: 10.1038/6365 pmid: 10195219
43 Gould E, McEwen B S, Tanapat P, Galea L A, Fuchs E (1997). Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci, 17(7): 2492–2498
pmid: 9065509
44 Groves J O, Leslie I, Huang G J, McHugh S B, Taylor A, Mott R, Munafò M, Bannerman D M, Flint J (2013). Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model. PLoS Genet, 9(9): e1003718
doi: 10.1371/journal.pgen.1003718 pmid: 24039591
44a Gu Y, Arruda-Carvalho M, Wang J, Janoschka S R, Josselyn S A, Frankland P W, Ge S (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 36(15): 1700–1706
45 Guadagno J, Swan P, Shaikh R, Cregan S P (2015). Microglia-derived IL-1beta triggers p53-mediated cell cycle arrest and apoptosis in neural precursor cells. Cell death & disease, 6: e1779
46 Hanson N D, Owens M J, Boss-Williams K A, Weiss J M, Nemeroff C B (2011a). Several stressors fail to reduce adult hippocampal neurogenesis. Psychoneuroendocrinology, 36(10): 1520–1529
doi: 10.1016/j.psyneuen.2011.04.006 pmid: 21600697
47 Hanson N D, Owens M J, Nemeroff C B (2011b). Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology, 36(13): 2589–2602
doi: 10.1038/npp.2011.220 pmid: 21937982
48 Harris A P, Holmes M C, de Kloet E R, Chapman K E, Seckl J R (2013). Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology, 38(5): 648–658
doi: 10.1016/j.psyneuen.2012.08.007 pmid: 22980941
49 Heine V M, Maslam S, Joëls M, Lucassen P J (2004a). Increased P27KIP1 protein expression in the dentate gyrus of chronically stressed rats indicates G1 arrest involvement. Neuroscience, 129(3): 593–601
doi: 10.1016/j.neuroscience.2004.07.048 pmid: 15541881
50 Heine V M, Maslam S, Joëls M, Lucassen P J (2004b). Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging, 25(3): 361–375
doi: 10.1016/S0197-4580(03)00090-3 pmid: 15123342
51 Heine V M, Maslam S, Zareno J, Joëls M, Lucassen P J (2004c). Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible. Eur J Neurosci, 19(1): 131–144
doi: 10.1046/j.1460-9568.2003.03100.x pmid: 14750971
52 Heine V M, Zareno J, Maslam S, Joëls M, Lucassen P J (2005). Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci, 21(5): 1304–1314
doi: 10.1111/j.1460-9568.2005.03951.x pmid: 15813940
53 Hill A S, Sahay A, Hen R (2015). Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology, 40(10): 2368–2378
doi: 10.1038/npp.2015.85 pmid: 25833129
54 Hinwood M, Morandini J, Day T A, Walker F R (2012). Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex, 22(6): 1442–1454
doi: 10.1093/cercor/bhr229 pmid: 21878486
55 Holmes M M, Galea L A, Mistlberger R E, Kempermann G (2004). Adult hippocampal neurogenesis and voluntary running activity: circadian and dose-dependent effects. J Neurosci Res, 76(2): 216–222
doi: 10.1002/jnr.20039 pmid: 15048919
56 Hu P, Oomen C, van Dam A M, Wester J, Zhou J N, Joëls M, Lucassen P J (2012). A single-day treatment with mifepristone is sufficient to normalize chronic glucocorticoid induced suppression of hippocampal cell proliferation. PLoS ONE, 7(9): e46224
doi: 10.1371/journal.pone.0046224 pmid: 23049985
57 Hu P, Wang Y, Liu J, Meng F T, Qi X R, Chen L, van Dam A M, Joëls M, Lucassen P J, Zhou J N (2016). Chronic retinoic acid treatment suppresses adult hippocampal neurogenesis, in close correlation with depressive-like behavior. Hippocampus: n/a
doi: 10.1002/hipo.22574 pmid: 26860546
58 Jayatissa M N, Bisgaard C, Tingström A, Papp M, Wiborg O (2006). Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology, 31(11): 2395–2404
doi: 10.1038/sj.npp.1301041 pmid: 16482085
59 Jayatissa M N, Henningsen K, West M J, Wiborg O (2009). Decreased cell proliferation in the dentate gyrus does not associate with development of anhedonic-like symptoms in rats. Brain Res, 1290: 133–141
doi: 10.1016/j.brainres.2009.07.001 pmid: 19595674
60 Jessberger S, Gage F H (2014). Adult neurogenesis: bridging the gap between mice and humans. Trends Cell Biol, 24(10): 558–563
doi: 10.1016/j.tcb.2014.07.003 pmid: 25124338
61 Joca S R, Ferreira F R, Guimarães F S (2007). Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress, 10(3): 227–249
doi: 10.1080/10253890701223130 pmid: 17613938
62 Joëls M, Baram T Z (2009). The neuro-symphony of stress. Nat Rev Neurosci, 10(6): 459–466
pmid: 19339973
63 Joëls M, Pu Z, Wiegert O, Oitzl M S, Krugers H J (2006). Learning under stress: how does it work? Trends Cogn Sci, 10(4): 152–158
doi: 10.1016/j.tics.2006.02.002 pmid: 16513410
64 Joëls M, Sarabdjitsingh R A, Karst H (2012). Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev, 64(4): 901–938
doi: 10.1124/pr.112.005892 pmid: 23023031
65 Kanatsou S, Fearey B C, Kuil L E, Lucassen P J, Harris A P, Seckl J R, Krugers H, Joels M (2015). Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity. PLoS ONE, 10(11): e0142012
doi: 10.1371/journal.pone.0142012 pmid: 26600250
66 Kannangara T S, Lucero M J, Gil-Mohapel J, Drapala R J, Simpson J M, Christie B R, van Praag H (2011). Running reduces stress and enhances cell genesis in aged mice. Neurobiol Aging, 32(12): 2279–2286
doi: 10.1016/j.neurobiolaging.2009.12.025 pmid: 20106549
67 Karst H, Berger S, Erdmann G, Schütz G, Joëls M (2010). Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci USA, 107(32): 14449–14454
doi: 10.1073/pnas.0914381107 pmid: 20663957
68 Kempermann G (2012). New neurons for ‘survival of the fittest’. Nat Rev Neurosci, 13(10): 727–736
pmid: 22948073
69 Kempermann G, Fabel K, Ehninger D, Babu H, Leal-Galicia P, Garthe A, Wolf S A (2010). Why and how physical activity promotes experience-induced brain plasticity. Front Neurosci, 4: 189
doi: 10.3389/fnins.2010.00189 pmid: 21151782
70 Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012a). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
doi: 10.1038/nn.3262 pmid: 23187693
71 Kheirbek M A, Tannenholz L, Hen R (2012b). NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination. J Neurosci, 32(25): 8696–8702
doi: 10.1523/JNEUROSCI.1692-12.2012 pmid: 22723709
72 Koolhaas J M, Bartolomucci A, Buwalda B, de Boer S F, Flügge G, Korte S M, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E (2011). Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev, 35(5): 1291–1301
doi: 10.1016/j.neubiorev.2011.02.003 pmid: 21316391
73 Kreisel T, Frank M G, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta M V, Maier S F, Yirmiya R (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry, 19(6): 699–709
doi: 10.1038/mp.2013.155 pmid: 24342992
74 Kretz O, Reichardt H M, Schütz G, Bock R (1999). Corticotropin-releasing hormone expression is the major target for glucocorticoid feedback-control at the hypothalamic level. Brain Res, 818(2): 488–491
doi: 10.1016/S0006-8993(98)01277-3 pmid: 10082835
75 Krugers H J, Goltstein P M, van der Linden S, Joëls M (2006). Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. Eur J Neurosci, 23(11): 3051–3055
doi: 10.1111/j.1460-9568.2006.04842.x pmid: 16819994
76 Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027–2033
pmid: 8604047
77 Lagace D C, Donovan M H, DeCarolis N A, Farnbauch L A, Malhotra S, Berton O, Nestler E J, Krishnan V, Eisch A J (2010). Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc Natl Acad Sci USA, 107(9): 4436–4441
doi: 10.1073/pnas.0910072107 pmid: 20176946
78 Lehmann M L, Brachman R A, Martinowich K, Schloesser R J, Herkenham M (2013). Glucocorticoids orchestrate divergent effects on mood through adult neurogenesis. J Neurosci, 33(7): 2961–2972
doi: 10.1523/JNEUROSCI.3878-12.2013 pmid: 23407954
79 Lemaire V, Koehl M, Le Moal M, Abrous D N (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA, 97(20): 11032–11037
doi: 10.1073/pnas.97.20.11032 pmid: 11005874
80 Levine S (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30(10): 939–946
doi: 10.1016/j.psyneuen.2005.03.013 pmid: 15958281
81 Levone B R, Cryan J F, O'Leary O F (2015). Role of adult hippocampal neurogenesis in stress resilience. Neurobiology of Stress 1. Neurobiol Stress, 1: 147–155
doi: 10.1016/j.ynstr.2014.11.003
82 Liston C, Cichon J M, Jeanneteau F, Jia Z, Chao M V, Gan W B (2013). Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci, 16(6): 698–705
doi: 10.1038/nn.3387 pmid: 23624512
83 Llorens-Martín M, Jurado-Arjona J, Bolós M, Pallas-Bazarra N, Ávila J (2016). Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus. Brain Behav Immun, 53: 242–254
doi: 10.1016/j.bbi.2015.12.019 pmid: 26724574
84 Lucassen P J, Fitzsimons C P, Korosi A, Joels M, Belzung C, Abrous D N (2013a). Stressing new neurons into depression? Mol Psychiatry, 18(4): 396–397
doi: 10.1038/mp.2012.39 pmid: 22547116
85 Lucassen P J, Meerlo P, Naylor A S, van Dam A M, Dayer A G, Fuchs E, Oomen C A, Czéh B (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. Eur Neuropsychopharmacol, 20(1): 1–17
doi: 10.1016/j.euroneuro.2009.08.003 pmid: 19748235
86 Lucassen P J, Naninck E F, van Goudoever J B, Fitzsimons C, Joels M, Korosi A (2013b). Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci, 36(11): 621–631
doi: 10.1016/j.tins.2013.08.002 pmid: 23998452
87 Lucassen P J, Pruessner J, Sousa N, Almeida O F, Van Dam A M, Rajkowska G, Swaab D F, Czéh B (2014). Neuropathology of stress. Acta Neuropathol, 127(1): 109–135
doi: 10.1007/s00401-013-1223-5 pmid: 24318124
88 Lyons D M, Buckmaster P S, Lee A G, Wu C, Mitra R, Duffey L M, Buckmaster C L, Her S, Patel P D, Schatzberg A F (2010). Stress coping stimulates hippocampal neurogenesis in adult monkeys. Proc Natl Acad Sci USA, 107(33): 14823–14827
doi: 10.1073/pnas.0914568107 pmid: 20675584
89 Mahmoud R, Wainwright S R, Galea L A (2016). Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. Front Neuroendocrinol,
90 Mak G K, Weiss S (2010). Paternal recognition of adult offspring mediated by newly generated CNS neurons. Nat Neurosci, 13: 753–758
doi: 10.1016/j·yfrne.2016.03.002<
91 Malberg J E, Duman R S (2003). Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology, 28(9): 1562–1571
doi: 10.1038/sj.npp.1300234 pmid: 12838272
92 Marlatt M W, Potter M C, Lucassen P J, van Praag H (2012). Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol, 72(6): 943–952
doi: 10.1002/dneu.22009 pmid: 22252978
93 Mayer J L, Klumpers L, Maslam S, de Kloet E R, Joëls M, Lucassen P J (2006). Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol, 18(8): 629–631
doi: 10.1111/j.1365-2826.2006.01455.x pmid: 16867184
94 Meaney M J, Szyf M, Seckl J R (2007). Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends Mol Med, 13(7): 269–277
doi: 10.1016/j.molmed.2007.05.003 pmid: 17544850
95 Medina A, Seasholtz A F, Sharma V, Burke S, Bunney W Jr, Myers R M, Schatzberg A, Akil H, Watson S J (2013). Glucocorticoid and mineralocorticoid receptor expression in the human hippocampus in major depressive disorder. J Psychiatr Res, 47(3): 307–314
doi: 10.1016/j.jpsychires.2012.11.002 pmid: 23219281
96 Miller J A, Nathanson J, Franjic D, Shim S, Dalley R A, Shapouri S, Smith K A, Sunkin S M, Bernard A, Bennett J L, Lee C K, Hawrylycz M J, Jones A R, Amaral D G, Šestan N, Gage F H, Lein E S (2013). Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development, 140(22): 4633–4644
doi: 10.1242/dev.097212 pmid: 24154525
97 Mirescu C, Gould E (2006). Stress and adult neurogenesis. Hippocampus, 16(3): 233–238
doi: 10.1002/hipo.20155 pmid: 16411244
98 Mitra R, Sundlass K, Parker K J, Schatzberg A F, Lyons D M (2006). Social stress-related behavior affects hippocampal cell proliferation in mice. Physiol Behav, 89(2): 123–127
doi: 10.1016/j.physbeh.2006.05.047 pmid: 16837015
99 Montaron M F, Drapeau E, Dupret D, Kitchener P, Aurousseau C, Le Moal M, Piazza P V, Abrous D N (2006). Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging, 27(4): 645–654
doi: 10.1016/j.neurobiolaging.2005.02.014 pmid: 15953661
100 Montaron M F, Koehl M, Lemaire V, Drapeau E, Abrous D N, Le Moal M (2004). Environmentally induced long-term structural changes: cues for functional orientation and vulnerabilities. Neurotox Res, 6(7-8): 571–580
doi: 10.1007/BF03033453 pmid: 15639789
101 Montaron M F, Piazza P V, Aurousseau C, Urani A, Le Moal M, Abrous D N (2003). Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. Eur J Neurosci, 18(11): 3105–3111
doi: 10.1111/j.1460-9568.2003.03048.x pmid: 14656306
102 Morris G P, Clark I A, Zinn R, Vissel B (2013). Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem, 105: 40–53
doi: 10.1016/j.nlm.2013.07.002 pmid: 23850597
103 Nacher J, McEwen B S (2006). The role of N-methyl-D-asparate receptors in neurogenesis. Hippocampus, 16(3): 267–270
doi: 10.1002/hipo.20160 pmid: 16425227
104 Nishijima T, Llorens-Martín M, Tejeda G S, Inoue K, Yamamura Y, Soya H, Trejo J L, Torres-Alemán I (2013). Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice. Behav Brain Res, 245: 34–41
doi: 10.1016/j.bbr.2013.02.009 pmid: 23428744
105 O’Leary O F, Cryan J F (2014). A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci, 35(12): 675–687
doi: 10.1016/j.tips.2014.09.011 pmid: 25455365
106 O’Leary O F, O’Connor R M, Cryan J F (2012). Lithium-induced effects on adult hippocampal neurogenesis are topographically segregated along the dorso-ventral axis of stressed mice. Neuropharmacology, 62(1): 247–255
doi: 10.1016/j.neuropharm.2011.07.015 pmid: 21803056
107 Oomen C A, Bekinschtein P, Kent B A, Saksida L M, Bussey T J (2014). Adult hippocampal neurogenesis and its role in cognition. Wiley Interdiscip Rev Cogn Sci, 5(5): 573–587
doi: 10.1002/wcs.1304 pmid: 26308746
108 Oomen C A, Girardi C E, Cahyadi R, Verbeek E C, Krugers H, Joëls M, Lucassen P J (2009). Opposite effects of early maternal deprivation on neurogenesis in male versus female rats. PLoS ONE, 4(1): e3675
doi: 10.1371/journal.pone.0003675 pmid: 19180242
109 Oomen C A, Mayer J L, de Kloet E R, Joëls M, Lucassen P J (2007). Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress. Eur J Neurosci, 26(12): 3395–3401
doi: 10.1111/j.1460-9568.2007.05972.x pmid: 18052970
110 Palmer T D, Willhoite A R, Gage F H (2000). Vascular niche for adult hippocampal neurogenesis. J Comp Neurol, 425(4): 479–494
doi: 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3 pmid: 10975875
111 Parihar V K, Hattiangady B, Kuruba R, Shuai B, Shetty A K (2011). Predictable chronic mild stress improves mood, hippocampal neurogenesis and memory. Mol Psychiatry, 16(2): 171–183
doi: 10.1038/mp.2009.130 pmid: 20010892
112 Perera T D, Dwork A J, Keegan K A, Thirumangalakudi L, Lipira C M, Joyce N, Lange C, Higley J D, Rosoklija G, Hen R, Sackeim H A, Coplan J D (2011). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS ONE, 6(4): e17600
doi: 10.1371/journal.pone.0017600 pmid: 21525974
113 Pham K, McEwen B S, Ledoux J E, Nader K (2005). Fear learning transiently impairs hippocampal cell proliferation. Neuroscience, 130(1): 17–24
doi: 10.1016/j.neuroscience.2004.09.015 pmid: 15561421
114 Pham K, Nacher J, Hof P R, McEwen B S (2003). Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci, 17(4): 879–886
doi: 10.1046/j.1460-9568.2003.02513.x pmid: 12603278
115 Qi X R, Kamphuis W, Wang S, Wang Q, Lucassen P J, Zhou J N, Swaab D F (2013). Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology, 38(6): 863–870
doi: 10.1016/j.psyneuen.2012.09.014 pmid: 23137715
116 Qian X, Droste S K, Lightman S L, Reul J M, Linthorst A C (2012). Circadian and ultradian rhythms of free glucocorticoid hormone are highly synchronized between the blood, the subcutaneous tissue, and the brain. Endocrinology, 153(9): 4346–4353
doi: 10.1210/en.2012-1484 pmid: 22822164
117 Revest J M, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza P V, Abrous D N (2009). Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry, 14(10): 959–967
doi: 10.1038/mp.2009.15 pmid: 19255582
118 Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, Zink M, Hörtnagl H, Flor H, Henn F A, Schütz G, Gass P (2005). Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci, 25(26): 6243–6250
doi: 10.1523/JNEUROSCI.0736-05.2005 pmid: 15987954
119 Sahay A, Hen R (2007). Adult hippocampal neurogenesis in depression. Nat Neurosci, 10(9): 1110–1115
doi: 10.1038/nn1969 pmid: 17726477
120 Sahay A, Scobie K N, Hill A S, O’Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011a). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472(7344): 466–470
doi: 10.1038/nature09817 pmid: 21460835
121 Sahay A, Wilson D A, Hen R (2011b). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron, 70(4): 582–588
doi: 10.1016/j.neuron.2011.05.012 pmid: 21609817
122 Sampedro-Piquero P, Begega A, Arias J L (2014). Increase of glucocorticoid receptor expression after environmental enrichment: relations to spatial memory, exploration and anxiety-related behaviors. Physiol Behav, 129: 118–129
doi: 10.1016/j.physbeh.2014.02.048 pmid: 24582669
123 Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805–809
doi: 10.1126/science.1083328 pmid: 12907793
124 Sapolsky R M, Uno H, Rebert C S, Finch C E (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci, 10(9): 2897–2902
pmid: 2398367
125 Sarabdjitsingh R A, Conway-Campbell B L, Leggett J D, Waite E J, Meijer O C, de Kloet E R, Lightman S L (2010). Stress responsiveness varies over the ultradian glucocorticoid cycle in a brain-region-specific manner. Endocrinology, 151(11): 5369–5379
doi: 10.1210/en.2010-0832 pmid: 20861228
126 Sarabdjitsingh R A, Jezequel J, Pasricha N, Mikasova L, Kerkhofs A, Karst H, Groc L, Joëls M (2014). Ultradian corticosterone pulses balance glutamatergic transmission and synaptic plasticity. Proc Natl Acad Sci USA, 111(39): 14265–14270
doi: 10.1073/pnas.1411216111 pmid: 25225407
127 Sarabdjitsingh R A, Joëls M, de Kloet E R (2012). Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiol Behav, 106(1): 73–80
doi: 10.1016/j.physbeh.2011.09.017 pmid: 21971364
128 Saxe M D, Battaglia F, Wang J W, Malleret G, David D J, Monckton J E, Garcia A D, Sofroniew M V, Kandel E R, Santarelli L, Hen R, Drew M R (2006). Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA, 103(46): 17501–17506
doi: 10.1073/pnas.0607207103 pmid: 17088541
129 Schloesser R J, Lehmann M, Martinowich K, Manji H K, Herkenham M (2010). Environmental enrichment requires adult neurogenesis to facilitate the recovery from psychosocial stress. Mol Psychiatry, 15(12): 1152–1163
doi: 10.1038/mp.2010.34 pmid: 20308988
130 Schmidt H D, Duman R S (2007). The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol, 18(5-6): 391–418
doi: 10.1097/FBP.0b013e3282ee2aa8 pmid: 17762509
131 Schoenfeld T J, Cameron H A (2015). Adult neurogenesis and mental illness. Neuropsychopharmacology, 40(1): 113–128
doi: 10.1038/npp.2014.230 pmid: 25178407
132 Schoenfeld T J, Gould E (2013). Differential effects of stress and glucocorticoids on adult neurogenesis. Curr Top Behav Neurosci, 15: 139–164
doi: 10.1007/7854_2012_233 pmid: 23670817
133 Schouten M, Buijink M R, Lucassen P J, Fitzsimons C P (2012). New Neurons in Aging Brains: Molecular Control by Small Non-Coding RNAs. Front Neurosci, 6: 25
doi: 10.3389/fnins.2012.00025 pmid: 22363255
134 Schwabe L, Joëls M, Roozendaal B, Wolf O T, Oitzl M S (2012). Stress effects on memory: an update and integration. Neurosci Biobehav Rev, 36(7): 1740–1749
doi: 10.1016/j.neubiorev.2011.07.002 pmid: 21771612
135 Seo D O, Carillo M A, Chih-Hsiung Lim S, Tanaka K F, Drew M R (2015). Adult Hippocampal Neurogenesis Modulates Fear Learning through Associative and Nonassociative Mechanisms. J Neurosci, 35(32): 11330–11345
doi: 10.1523/JNEUROSCI.0483-15.2015 pmid: 26269640
136 Shors T J, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001). Neurogenesis in the adult is involved in the formation of trace memories. Nature, 410(6826): 372–376
doi: 10.1038/35066584 pmid: 11268214
137 Shors T J, Townsend D A, Zhao M, Kozorovitskiy Y, Gould E (2002). Neurogenesis may relate to some but not all types of hippocampal-dependent learning. Hippocampus, 12(5): 578–584
doi: 10.1002/hipo.10103 pmid: 12440573
138 Sierra A, Beccari S, Diaz-Aparicio I, Encinas J M, Comeau S, Tremblay M E (2014). Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast, 2014: 610343
doi: 10.1155/2014/610343 pmid: 24772353
139 Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483–495
doi: 10.1016/j.stem.2010.08.014 pmid: 20887954
140 Simon M, Czéh B, Fuchs E (2005). Age-dependent susceptibility of adult hippocampal cell proliferation to chronic psychosocial stress. Brain Res, 1049(2): 244–248
doi: 10.1016/j.brainres.2005.05.006 pmid: 15950198
141 Snyder J S, Glover L R, Sanzone K M, Kamhi J F, Cameron H A (2009). The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus, 19(10): 898–906
doi: 10.1002/hipo.20552 pmid: 19156854
142 Snyder J S, Grigereit L, Russo A, Seib D R, Brewer M, Pickel J, Cameron H A (2016). A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis. eNeuro, 3(3): e0064-16.2016 1–13
143 Snyder J S, Hong N S, McDonald R J, Wojtowicz J M (2005). A role for adult neurogenesis in spatial long-term memory. Neuroscience, 130(4): 843–852
doi: 10.1016/j.neuroscience.2004.10.009 pmid: 15652983
144 Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361): 458–461
doi: 10.1038/nature10287 pmid: 21814201
145 Sousa N (2016). The dynamics of the stress neuromatrix. Mol Psychiatry, 21(3): 302–312
doi: 10.1038/mp.2015.196 pmid: 26754952
146 Sultan S, Li L, Moss J, Petrelli F, Cassé F, Gebara E, Lopatar J, Pfrieger F W, Bezzi P, Bischofberger J, Toni N (2015). Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron, 88(5): 957–972
doi: 10.1016/j.neuron.2015.10.037 pmid: 26606999
147 Surget A, Tanti A, Leonardo E D, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C (2011). Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry, 16(12): 1177–1188
doi: 10.1038/mp.2011.48 pmid: 21537331
148 Swaab D F, Bao A M, Lucassen P J (2005). The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev, 4(2): 141–194
doi: 10.1016/j.arr.2005.03.003 pmid: 15996533
149 Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, An Y, Kitaichi Y, Inoue T, Koyama T, Kusumi I (2014). The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry, 50: 116–124
doi: 10.1016/j.pnpbp.2013.12.011 pmid: 24374069
150 Tanapat P, Galea L A, Gould E (1998). Stress inhibits the proliferation of granule cell precursors in the developing dentate gyrus. Int J Dev Neurosci, 16(3-4): 235–239
doi: 10.1016/S0736-5748(98)00029-X pmid: 9785120
151 Tanti A, Belzung C (2013). Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience, 252: 234–252
doi: 10.1016/j.neuroscience.2013.08.017 pmid: 23973415
152 Tanti A, Rainer Q, Minier F, Surget A, Belzung C (2012). Differential environmental regulation of neurogenesis along the septo-temporal axis of the hippocampus. Neuropharmacology, 63(3): 374–384
doi: 10.1016/j.neuropharm.2012.04.022 pmid: 22561281
153 Tasker J G (2006). Rapid glucocorticoid actions in the hypothalamus as a mechanism of homeostatic integration. Obesity (Silver Spring), 14(Suppl 5): 259S–265S
doi: 10.1038/oby.2006.320 pmid: 17021378
154 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907
doi: 10.1038/nn.2156 pmid: 18622400
155 Tronel S, Belnoue L, Grosjean N, Revest J M, Piazza P V, Koehl M, Abrous D N (2012). Adult-born neurons are necessary for extended contextual discrimination. Hippocampus, 22(2): 292–298
doi: 10.1002/hipo.20895 pmid: 21049483
156 Ursin H, Eriksen H R (2004). The cognitive activation theory of stress. Psychoneuroendocrinology, 29(5): 567–592
doi: 10.1016/S0306-4530(03)00091-X pmid: 15041082
157 Vallières L, Campbell I L, Gage F H, Sawchenko P E (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci, 22(2): 486–492
pmid: 11784794
158 Van Bokhoven P, Oomen C A, Hoogendijk W J, Smit A B, Lucassen P J, Spijker S (2011). Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur J Neurosci, 33(10): 1833–1840
doi: 10.1111/j.1460-9568.2011.07668.x pmid: 21488984
159 Van der Borght K, Meerlo P, Luiten P G, Eggen B J, Van der Zee E A (2005). Effects of active shock avoidance learning on hippocampal neurogenesis and plasma levels of corticosterone. Behav Brain Res, 157(1): 23–30
doi: 10.1016/j.bbr.2004.06.004 pmid: 15617767
160 van Praag H, Christie B R, Sejnowski T J, Gage F H (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA, 96(23): 13427–13431
doi: 10.1073/pnas.96.23.13427 pmid: 10557337
161 van Praag H, Kempermann G, Gage F H (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266–270
doi: 10.1038/6368 pmid: 10195220
162 Veena J, Srikumar B N, Mahati K, Bhagya V, Raju T R, Shankaranarayana Rao B S (2009). Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. J Neurosci Res, 87(4): 831–843
doi: 10.1002/jnr.21907 pmid: 19006089
163 Vinkers C H, Joëls M, Milaneschi Y, Kahn R S, Penninx B W, Boks M P (2014). Stress exposure across the life span cumulatively increases depression risk and is moderated by neuroticism. Depress Anxiety, 31(9): 737–745
doi: 10.1002/da.22262 pmid: 24753162
164 Vivar C, Potter M C, Choi J, Lee J Y, Stringer T P, Callaway E M, Gage F H, Suh H, van Praag H (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun, 3: 1107
doi: 10.1038/ncomms2101 pmid: 23033083
165 Vivar C, Potter M C, van Praag H (2013). All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci, 15: 189–210
doi: 10.1007/7854_2012_220 pmid: 22847651
166 Vivinetto A L, Suárez M M, Rivarola M A (2013). Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behav Brain Res, 240: 110–118
doi: 10.1016/j.bbr.2012.11.014 pmid: 23195113
167 Vollmayr B, Simonis C, Weber S, Gass P, Henn F (2003). Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness. Biol Psychiatry, 54(10): 1035–1040
doi: 10.1016/S0006-3223(03)00527-4 pmid: 14625145
168 Wang Q, Joels M, Swaab D F, Lucassen P J (2012). Hippocampal GR expression is increased in elderly depressed females. Neuropharmacology, 62(1): 527–533
doi: 10.1016/j.neuropharm.2011.09.014 pmid: 21945289
169 Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, Swaab D F, Lucassen P J (2013). Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging, 34(6): 1662–1673
doi: 10.1016/j.neurobiolaging.2012.11.019 pmid: 23290588
170 Wei Q, Hebda-Bauer E K, Pletsch A, Luo J, Hoversten M T, Osetek A J, Evans S J, Watson S J, Seasholtz A F, Akil H (2007). Overexpressing the glucocorticoid receptor in forebrain causes an aging-like neuroendocrine phenotype and mild cognitive dysfunction. J Neurosci, 27(33): 8836–8844
doi: 10.1523/JNEUROSCI.0910-07.2007 pmid: 17699665
171 Westenbroek C, Den Boer J A, Veenhuis M, Ter Horst G J (2004). Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res Bull, 64(4): 303–308
doi: 10.1016/j.brainresbull.2004.08.006 pmid: 15561464
172 Wilson C B, Ebenezer P J, McLaughlin L D, Francis J (2014). Predator exposure/psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS ONE, 9(2): e89104
doi: 10.1371/journal.pone.0089104 pmid: 24551226
173 Winocur G, Wojtowicz J M, Sekeres M, Snyder J S, Wang S (2006). Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 16(3): 296–304
doi: 10.1002/hipo.20163 pmid: 16411241
174 Wojtowicz J M, Askew M L, Winocur G (2008). The effects of running and of inhibiting adult neurogenesis on learning and memory in rats. Eur J Neurosci, 27(6): 1494–1502
doi: 10.1111/j.1460-9568.2008.06128.x pmid: 18364025
175 Wong E Y, Herbert J (2004). The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci, 20(10): 2491–2498
doi: 10.1111/j.1460-9568.2004.03717.x pmid: 15548194
176 Wong E Y, Herbert J (2005). Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur J Neurosci, 22(4): 785–792
doi: 10.1111/j.1460-9568.2005.04277.x pmid: 16115202
177 Wong E Y, Herbert J (2006). Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience, 137(1): 83–92
doi: 10.1016/j.neuroscience.2005.08.073 pmid: 16289354
178 Wu M V, Shamy J L, Bedi G, Choi C W, Wall M M, Arango V, Boldrini M, Foltin R W, Hen R (2014). Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharmacology, 39(8): 1861–1871
doi: 10.1038/npp.2014.33 pmid: 24518288
179 Yu S, Patchev A V, Wu Y, Lu J, Holsboer F, Zhang J Z, Sousa N, Almeida O F (2010). Depletion of the neural precursor cell pool by glucocorticoids. Ann Neurol, 67(1): 21–30
doi: 10.1002/ana.21812 pmid: 20186952
180 Yun S, Donovan M H, Ross M N, Richardson D R, Reister R, Farnbauch L A, Fischer S J, Riethmacher D, Gershenfeld H K, Lagace D C, Eisch A J (2016). Stress-Induced Anxiety- and Depressive-Like Phenotype Associated with Transient Reduction in Neurogenesis in Adult Nestin-CreERT2/Diphtheria Toxin Fragment A Transgenic Mice. PLoS ONE, 11(1): e0147256
doi: 10.1371/journal.pone.0147256 pmid: 26795203
181 Zhang C L, Zou Y, He W, Gage F H, Evans R M (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 451(7181): 1004–1007
doi: 10.1038/nature06562 pmid: 18235445
182 Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
doi: 10.1016/j.cell.2008.01.033 pmid: 18295581
Related articles from Frontiers Journals
[1] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[2] Kyle R. Denton,Chongchong Xu,Harsh Shah,Xue-Jun Li. Modeling axonal defects in hereditary spastic paraplegia with human pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 339-354.
[3] Gabrielle Rushing,Rebecca A. Ihrie. Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone[J]. Front. Biol., 2016, 11(4): 261-284.
[4] Charlotte M. Ermine,Jordan L. Wright,Clare L. Parish,Davor Stanic,Lachlan H. Thompson. Combined immunohistochemical and retrograde tracing reveals little evidence of innervation of the rat dentate gyrus by midbrain dopamine neurons[J]. Front. Biol., 2016, 11(3): 246-255.
[5] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[6] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[7] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[8] Jin He. Function of Polycomb repressive complexes in stem cells[J]. Front. Biol., 2016, 11(2): 65-74.
[9] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[10] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[11] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[12] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[13] Stuart J. Grice,Ji-Long Liu. A SteMNess perspective of survival motor neuron function: splicing factors in stem cell biology and disease[J]. Front. Biol., 2015, 10(4): 297-309.
[14] Cristina V. Dieni,Adam J. Wieckert,Linda Overstreet-Wadiche. Development of glutamatergic innervation during maturation of adult-born neurons[J]. Front. Biol., 2015, 10(4): 310-320.
[15] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed