Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (4) : 305-310     DOI: 10.1007/s11515-016-1408-0
REVIEW |
Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia
Shirin Ferdowsi1,Shirin Azizidoost2,Nasim Ghafari3,Najmaldin Saki2,3,*()
1. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
2. Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3. Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Download: PDF(123 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Bone marrow mesenchymal stromal cells (BM-MSCs) are an essential cell type in the hematopoietic microenvironment. The question of whether MSCs from patients with different leukemias have cytogenetic abnormalities is controversial. In this study, we attempted to review the cytogenetic profiles of MSCs in patients with leukemia, and verify whether these profiles were related to different ex vivo culture conditions or to chronic or acute disease states. This information could be useful in clarifying the origin of MSCs and developing clinical applications for this cell type.

METHODS: A systematic literature search was performed using the PubMed search engine. Studies published over the past 15 years, i.e., between 1995 and January 2015, were considered for review. The following keywords were used: “cytogenetic,” “leukemia,” “bone marrow,” and “mesenchymal stromal cells.”

RESULTS: Some studies demonstrated that BM-MSCs are cytogenetically normal, whereas others provided evidence of aberrations in these cells.

CONCLUSIONS: Studying cytogenetic changes of MSCs in a variety of leukemias will help researchers understand the nature of these tumors and ensure the safety of human stem cells in clinical applications.

Keywords bone marrow      mesenchymal stromal cells      leukemia      cytogenetic      niche     
Corresponding Authors: Najmaldin Saki   
Just Accepted Date: 21 June 2016   Online First Date: 18 July 2016    Issue Date: 30 August 2016
 Cite this article:   
Shirin Ferdowsi,Shirin Azizidoost,Nasim Ghafari, et al. Cytogenetic changes of mesenchymal stem cells in the neoplastic bone marrow niche in leukemia[J]. Front. Biol., 2016, 11(4): 305-310.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-016-1408-0
http://journal.hep.com.cn/fib/EN/Y2016/V11/I4/305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shirin Ferdowsi
Shirin Azizidoost
Nasim Ghafari
Najmaldin Saki
Diagnosis Cytogenetic markers in MSCs Molecular change Reference
AML •t(1;2)(p32;q31), t(1;6)(p32;p12), del(7)(q11.2q32), del(7)(q22), t(3;20)(p13;p11.2), del(11)(q23), -X, del(13)(q12q22), inv(X)(q12p22), +5, -4, -X, -Y•t(2;11)(q33;q13), del(4)(q12q21), der(5;17)(p10;q10), del(7) (q22q34),-6, +8,+16,-18,-20,-22, dd(5)(q13)•t(1;10)(p36;p12), t(7;9)(q11.2;q34), t(7;10)(q11.2;q21), del(3)(p21), del(11)(q23),-22, del(8)(q11), +13, t(2;13),-12•t(3;9)(q25;q31), del(1)(q42) ↓ MCP-1,GM-CSF,IL-6 ↑ FOS,MYB Blau et al., 2007; Blau et al., 2011; Yeh et al., 2012; Huang et al., 2015
MDS •del(7)(q22), inv(X)(q12p22),+5, -4, -Y•der(7)t(1;7), del(17)(p11.2), t(4;7)(p14;q22), dic(6;16), -16,-17, t(7;19)(q22;q13), t(15;17)(q26;q12), t(1;3)(p12;q13), del(2)(q31), ?????↑ AURKA Blau et al., 2007, 2011
Pro-B-All •t(4;11) MLL-AF4 - - - - Menendez et al., 2009
CLL •Normal - - - - Campioni et al., 2012
ALL •Normal& der(13;14)(q10;q10) - - - - Campioni et al., 2012; Yeh et al., 2012
MPN •Loss 7pter-p22.2, loss 7p21.3, loss 7p21.3-p15.2, loss 7p12.3-p12.1, loss 7q11.22, gain 7q11.23-qter, Gain 7q22.1-qter, 5+, 7+, Loss 11q13.2-q13.4, loss 1q42.11-q44, loss 3p21.31-p11.1, loss 17q11.1-q11.2•Normal for JAK2V617F positive ↓G-CSF, IL-7 Pieri et al., 2008; Mercier et al., 2009; Avanzini et al., 2014
CML •Normal for t(9;22) - - - - Jootar et al., 2006; Carrara et al., 2007; Wöhrer et al., 2007
MM •Normal & Chromosomal loss at 4p14-4p13 and 3q13.13 ↑ AREG, DKK1, IL-1β↓IGF-1, SDF-1 Garayoa et al., 2009
Tab.1  Cytogenetic aberrations in BM-MSCs from leukemia patients.
1 Achille V, Mantelli M, Arrigo G, Novara F, Avanzini M A, Bernardo M E, Zuffardi O, Barosi G, Zecca M, Maccario R (2011). Cell-cycle phases and genetic profile of bone marrow-derived mesenchymal stromal cells expanded in vitro from healthy donors. J Cell Biochem, 112(7): 1817–1821
doi: 10.1002/jcb.23100 pmid: 21400572
2 Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne M N, Crinquette A, Dessoly J, Sciaini A K, Benbunan M, Chomienne C, Fermand J P, Marolleau J P, Larghero J (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1): 158–163
doi: 10.1038/sj.leu.2404466 pmid: 17096013
3 Avanzini M A, Bernardo M E, Novara F, Mantelli M, Poletto V, Villani L, Lenta E, Ingo D M, Achille V, Bonetti E, Massa M, Campanelli R, Fois G, Catarsi P, Gale R P, Moretta A, Aronica A, Maccario R, Acquafredda G, Lisini D, Zecca M, Zuffardi O, Locatelli F, Barosi G, Rosti V, the AGIMM Investigators (2014). Functional and genetic aberrations of in vitro-cultured marrow-derived mesenchymal stromal cells of patients with classical Philadelphia-negative myeloproliferative neoplasms. Leukemia, 28(8): 1742–1745
doi: 10.1038/leu.2014.97 pmid: 24618733
4 Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N (2014). Bone marrow neoplastic niche in leukemia. Hematology, 19(4): 232–238
doi: 10.1179/1607845413Y.0000000111 pmid: 23905984
5 Bacher U, Asenova S, Badbaran A, Zander A R, Alchalby H, Fehse B, Kröger N, Lange C, Ayuk F (2010). Bone marrow mesenchymal stromal cells remain of recipient origin after allogeneic SCT and do not harbor the JAK2V617F mutation in patients with myelofibrosis. Clin Exp Med, 10(3): 205–208
doi: 10.1007/s10238-009-0058-9 pmid: 19629639
6 Balakrishnan K, Burger J A, Quiroga M P, Henneberg M, Ayres M L, Wierda W G, Gandhi V (2010). Influence of bone marrow stromal microenvironment on forodesine-induced responses in CLL primary cells. Blood, 116(7): 1083–1091
doi: 10.1182/blood-2009-10-246199 pmid: 20442367
7 Bernasconi P (2008). Molecular pathways in myelodysplastic syndromes and acute myeloid leukemia: relationships and distinctions-a review. Br J Haematol, 142(5): 695–708
doi: 10.1111/j.1365-2141.2008.07245.x pmid: 18540941
8 Bhatia R, McGlave P B, Dewald G W, Blazar B R, Verfaillie C M (1995). Abnormal function of the bone marrow microenvironment in chronic myelogenous leukemia: role of malignant stromal macrophages. Blood, 85(12): 3636–3645
pmid: 7780147
9 Blau O, Baldus C D, Hofmann W K, Thiel G, Nolte F, Burmeister T, Türkmen S, Benlasfer O, Schümann E, Sindram A, Molkentin M, Mundlos S, Keilholz U, Thiel E, Blau I W (2011). Mesenchymal stromal cells of myelodysplastic syndrome and acute myeloid leukemia patients have distinct genetic abnormalities compared with leukemic blasts. Blood, 118(20): 5583–5592
doi: 10.1182/blood-2011-03-343467 pmid: 21948175
10 Blau O, Hofmann W K, Baldus C D, Thiel G, Serbent V, Schümann E, Thiel E, Blau I W (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol, 35(2): 221–229
doi: 10.1016/j.exphem.2006.10.012 pmid: 17258071
11 Borovski T, De Sousa E Melo F, Vermeulen L, Medema J P (2011). Cancer stem cell niche: the place to be. Cancer Res, 71(3): 634–639
doi: 10.1158/0008-5472.CAN-10-3220 pmid: 21266356
12 Campioni D, Bardi M A, Cavazzini F, Tammiso E, Pezzolo E, Pregnolato E, Volta E, Cuneo A, Lanza F (2012). Cytogenetic and molecular cytogenetic profile of bone marrow-derived mesenchymal stromal cells in chronic and acute lymphoproliferative disorders. Ann Hematol, 91(10): 1563–1577
doi: 10.1007/s00277-012-1500-8 pmid: 22696050
13 Carrara R C, Orellana M D, Fontes A M, Palma P V, Kashima S, Mendes M R, Coutinho M A, Voltarelli J C, Covas D T (2007). Mesenchymal stem cells from patients with chronic myeloid leukemia do not express BCR-ABL and have absence of chimerism after allogeneic bone marrow transplant. Braz J Med Biol Res, 40(1): 57–67
doi: 10.1590/S0100-879X2007000100008 pmid: 17224997
14 Choumerianou D M, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008). Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif, 41(6): 909–922
doi: 10.1111/j.1365-2184.2008.00559.x pmid: 19040569
15 Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007). Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia, 21(5): 1079–1088
pmid: 17344918
16 Dimitriou H, Linardakis E, Martimianaki G, Stiakaki E, Perdikogianni C H, Charbord P, Kalmanti M (2008). Properties and potential of bone marrow mesenchymal stromal cells from children with hematologic diseases. Cytotherapy, 10(2): 125–133
doi: 10.1080/14653240701851332 pmid: 18368591
17 Ferretti E, Bertolotto M, Deaglio S, Tripodo C, Ribatti D, Audrito V, Blengio F, Matis S, Zupo S, Rossi D, Ottonello L, Gaidano G, Malavasi F, Pistoia V, Corcione A (2011). A novel role of the CX3CR1/CX3CL1 system in the cross-talk between chronic lymphocytic leukemia cells and tumor microenvironment. Leukemia, 25(8): 1268–1277
doi: 10.1038/leu.2011.88 pmid: 21546901
18 Flores-Figueroa E, Arana-Trejo R M, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005). Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res, 29(2): 215–224
doi: 10.1016/j.leukres.2004.06.011 pmid: 15607371
19 Garayoa M, Garcia J L, Santamaría C, Garcia-Gomez A, Blanco J F, Pandiella A, Hernández J M, Sanchez-Guijo F M, del Cañizo M C, Gutiérrez N C, San Miguel J F (2009). Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia, 23(8): 1515–1527
doi: 10.1038/leu.2009.65 pmid: 19357701
20 Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L, Holy X, Gorin N C, Lopez M, Doucet C, Lataillade J J (2007). Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma, 48(10): 2032–2041
doi: 10.1080/10428190701593644 pmid: 17917971
21 Haniffa M A, Wang X N, Holtick U, Rae M, Isaacs J D, Dickinson A M, Hilkens C M, Collin M P (2007). Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol, 179(3): 1595–1604
doi: 10.4049/jimmunol.179.3.1595 pmid: 17641026
22 Huang J C, Basu S K, Zhao X, Chien S, Fang M, Oehler V G, Appelbaum F R, Becker P S (2015). Mesenchymal stromal cells derived from acute myeloid leukemia bone marrow exhibit aberrant cytogenetics and cytokine elaboration. Blood Cancer J, 5(4): e302
doi: 10.1038/bcj.2015.17 pmid: 25860293
23 James C (2008). The JAK2V617F mutation in polycythemia vera and other myeloproliferative disorders: one mutation for three diseases? ASH Education Program Book, 2008(1): 69–75
24 Jootar S, Pornprasertsud N, Petvises S, Rerkamnuaychoke B, Disthabanchong S, Pakakasama S, Ungkanont A, Hongeng S (2006). Bone marrow derived mesenchymal stem cells from chronic myeloid leukemia t(9;22) patients are devoid of Philadelphia chromosome and support cord blood stem cell expansion. Leuk Res, 30(12): 1493–1498
doi: 10.1016/j.leukres.2006.04.013 pmid: 16839603
25 Kastrinaki M C, Pontikoglou C, Klaus M, Stavroulaki E, Pavlaki K, Papadaki H A (2011). Biologic characteristics of bone marrow mesenchymal stem cells in myelodysplastic syndromes. Curr Stem Cell Res Ther, 6(2): 122–130
doi: 10.2174/157488811795495422 pmid: 20528751
26 Keating A (2006). Mesenchymal stromal cells. Curr Opin Hematol, 13(6): 419–425
doi: 10.1097/01.moh.0000245697.54887.6f pmid: 17053453
27 Kemp K, Morse R, Sanders K, Hows J, Donaldson C (2011). Alkylating chemotherapeutic agents cyclophosphamide and melphalan cause functional injury to human bone marrow-derived mesenchymal stem cells. Ann Hematol, 90(7): 777–789
doi: 10.1007/s00277-010-1141-8 pmid: 21234567
28 Klaus M, Stavroulaki E, Kastrinaki M C, Fragioudaki P, Giannikou K, Psyllaki M, Pontikoglou C, Tsoukatou D, Mamalaki C, Papadaki H A (2010). Reserves, functional, immunoregulatory, and cytogenetic properties of bone marrow mesenchymal stem cells in patients with myelodysplastic syndromes. Stem Cells Dev, 19(7): 1043–1054
doi: 10.1089/scd.2009.0286 pmid: 19788374
29 Lopez-Villar O, Garcia J L, Sanchez-Guijo F M, Robledo C, Villarón E M, Hernández-Campo P, Lopez-Holgado N, Diez-Campelo M, Barbado M V, Perez-Simon J A, Hernández-Rivas J M, San-Miguel J F, del Cañizo M C (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia, 23(4): 664–672
doi: 10.1038/leu.2008.361 pmid: 19151777
30 Mahtouk K, Hose D, Rème T, De Vos J, Jourdan M, Moreaux J, Fiol G, Raab M, Jourdan E, Grau V, Moos M, Goldschmidt H, Baudard M, Rossi J F, Cremer F W, Klein B (2005). Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene, 24(21): 3512–3524
doi: 10.1038/sj.onc.1208536 pmid: 15735670
31 Menendez P, Catalina P, Rodríguez R, Melen G J, Bueno C, Arriero M, García-Sánchez F, Lassaletta A, García-Sanz R, García-Castro J (2009). Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med, 206(13): 3131–3141
doi: 10.1084/jem.20091050 pmid: 19995953
32 Mercier F, Monczak Y, François M, Prchal J, Galipeau J (2009). Bone marrow mesenchymal stromal cells of patients with myeloproliferative disorders do not carry the JAK2-V617F mutation. Exp Hematol, 37(3): 416–420
doi: 10.1016/j.exphem.2008.11.008 pmid: 19135773
33 Mitsiades C S, McMillin D W, Klippel S, Hideshima T, Chauhan D, Richardson P G, Munshi N C, Anderson K C (2007). The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am, 21(6): 1007–1034, vii–viii
doi: 10.1016/j.hoc.2007.08.007 pmid: 17996586
34 Nussenzveig R H, Swierczek S I, Jelinek J, Gaikwad A, Liu E, Verstovsek S, Prchal J T (2007). Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol, 35(1): 32. e31–32,e39
35 Oliveira F M, Lucena-Araujo A R, Favarin M C, Palma P V, Rego E M, Falcão R P, Covas D T, Fontes A M (2013). Differential expression of AURKA and AURKB genes in bone marrow stromal mesenchymal cells of myelodysplastic syndrome: correlation with G-banding analysis and FISH. Exp Hematol, 41(2): 198–208
doi: 10.1016/j.exphem.2012.10.009 pmid: 23092930
36 Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9): 3160–3165
doi: 10.1182/blood-2004-12-4940 pmid: 16030194
37 Pieri L, Guglielmelli P, Bogani C, Bosi A, Vannucchi A M, Consortium M D R, and the Myeloproliferative Disorders Research Consortium (MPD-RC) (2008). Mesenchymal stem cells from JAK2(V617F) mutant patients with primary myelofibrosis do not harbor JAK2 mutant allele. Leuk Res, 32(3): 516–517
doi: 10.1016/j.leukres.2007.07.001 pmid: 17706283
38 Pimenova M A, Parovichnikova E N, Kokhno A V, Domracheva E V, Manakova T E, Mal’tseva IuS, Konnova M L, Shishigina L A, Savchenko V G (2013). Cytogenetic characteristics of hematopoietic and stromal progenitor cells in myelodysplastic syndrome. Ter Arkh, 85(7): 34–42
pmid: 24137945
39 Podar K, Richardson P G, Hideshima T, Chauhan D, Anderson K C (2007). The malignant clone and the bone-marrow environment. Best Pract Res Clin Haematol, 20(4): 597–612
doi: 10.1016/j.beha.2007.08.002 pmid: 18070708
40 Ramasamy R, Lam E W, Soeiro I, Tisato V, Bonnet D, Dazzi F (2007). Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia, 21(2): 304–310
doi: 10.1038/sj.leu.2404489 pmid: 17170725
41 Saki N, Abroun S, Farshdousti Hagh M, Asgharei F (2011). Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J, 13(3): 131–136
pmid: 23508881
42 Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014). New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol, 35(11): 10627–10633
doi: 10.1007/s13277-014-2610-9 pmid: 25234716
43 Soenen-Cornu V, Tourino C, Bonnet M L, Guillier M, Flamant S, Kotb R, Bernheim A, Bourhis J H, Preudhomme C, Fenaux P, Turhan A G (2005). Mesenchymal cells generated from patients with myelodysplastic syndromes are devoid of chromosomal clonal markers and support short- and long-term hematopoiesis in vitro. Oncogene, 24(15): 2441–2448
doi: 10.1038/sj.onc.1208405 pmid: 15735749
44 Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494
doi: 10.1056/NEJMoa030847 pmid: 14695408
45 Wallace S R, Oken M M, Lunetta K L, Panoskaltsis-Mortari A, Masellis A M (2001). Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer, 91(7): 1219–1230
doi: 10.1002/1097-0142(20010401)91:7<1219::AID-CNCR1122>3.0.CO;2-1 pmid: 11283920
46 Wöhrer S, Rabitsch W, Shehata M, Kondo R, Esterbauer H, Streubel B, Sillaber C, Raderer M, Jaeger U, Zielinski C, Valent P (2007). Mesenchymal stem cells in patients with chronic myelogenous leukaemia or bi-phenotypic Ph+ acute leukaemia are not related to the leukaemic clone. Anticancer Res, 27(6B): 3837–3841
pmid: 18225540
47 Yeh S P, Lo W J, Lin C L, Liao Y M, Lin C Y, Bai L Y, Liang J A, Chiu C F (2012). Anti-leukemic therapies induce cytogenetic changes of human bone marrow-derived mesenchymal stem cells. Ann Hematol, 91(2): 163–172
doi: 10.1007/s00277-011-1254-8 pmid: 21573981
48 Zdzisińska B, Bojarska-Junak A, Dmoszyńska A, Kandefer-Szerszeń M (2008). Abnormal cytokine production by bone marrow stromal cells of multiple myeloma patients in response to RPMI8226 myeloma cells. Arch Immunol Ther Exp (Warsz), 56(3): 207–221
doi: 10.1007/s00005-008-0022-5 pmid: 18512025
49 Zhan F, Huang Y, Colla S, Stewart J P, Hanamura I, Gupta S, Epstein J, Yaccoby S, Sawyer J, Burington B, Anaissie E, Hollmig K, Pineda-Roman M, Tricot G, van Rhee F, Walker R, Zangari M, Crowley J, Barlogie B, Shaughnessy J D Jr (2006). The molecular classification of multiple myeloma. Blood, 108(6): 2020–2028
doi: 10.1182/blood-2005-11-013458 pmid: 16728703
Related articles from Frontiers Journals
[1] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[2] Farzaneh Tavakoli,Kaveh Jaseb,Mohammad Ali Jalali Far,Masoud Soleimani,Elahe Khodadi,Najmaldin Saki. Evaluation of microRNA-146a expression in acute lymphoblastic leukemia[J]. Front. Biol., 2016, 11(1): 53-58.
[3] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[4] Yinghui HUANG, Xiaoxue QIU, Ji-Long CHEN. Identification of cancer stem cells: from leukemia to solid cancers[J]. Front Biol, 2010, 5(5): 407-416.
[5] TAO Yongsheng, ZHANG Zuxin, CHEN Yonglin, LI Lijia, ZHENG Yonglian. Technological exploration of BAC-FISH on mitotic chromosomes of maize[J]. Front. Biol., 2008, 3(4): 414-418.
[6] ZHOU Shurong, ZHANG Dayong. Neutral theory in community ecology[J]. Front. Biol., 2008, 3(1): 1-8.
[7] FU Heping, WU Xiaodong, YANG Zelong. Niche characteristics of rodents by diverse disturbance in Alashan desert, Inner Mongolia, China[J]. Front. Biol., 2007, 2(4): 456-462.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed