Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (3) : 222-231     DOI: 10.1007/s11515-016-1400-8
REVIEW |
Metabolomics in Schizophrenia and Major Depressive Disorder
Iva Petrovchich2,Alexandra Sosinsky3,Anish Konde4,Abigail Archibald5,David Henderson6,Mirjana Maletic-Savatic7,Snezana Milanovic1,*()
1. Massachusetts General Hospital, Department of Psychiatry, MGH Clinical Trials Network Institute, MGH Division of Global Psychiatry, MGH Depression Clinical and Research Program, Boston, MA 02114, USA
2. School of Nursing, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
3. Massachusetts General Hospital, Department of Psychiatry, MGH Center for Women’s Mental Health, Boston, MA 02114, USA
4. Louisiana State University Health Science Center, Department of Internal Medicine, Lafayette, LA 70112, USA
5. Massachusetts General Hospital, Department of Psychiatry, MGH Depression Clinical and Research Program, Boston, MA 02114, USA
6. Boston Medical Center, Department of Psychiatry, Boston, MA 02118, USA
7. Baylor College of Medicine, Neurology Research Institute, Houston, TX77030, USA
Download: PDF(187 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Defining pathophenotype, a systems level consequence of a disease genotype, together with environmental and stochastic influences, is an arduous task in psychiatry. It is also an appealing goal, given growing need for appreciation of brain disorders biological complexity, aspiration for diagnostic tests development and ambition to identify novel drug targets. Here, we focus on the Schizophrenia and Major Depressive Disorder and highlight recent advances in metabolomics research. As a systems biology tool, metabolomics holds a promise to take part in elucidating interactions between genes and environment, in complex behavioral traits and psychopathology risk translational research.

Keywords Schizophrenia      Major Depressive Disorder      omics      metabolomics      systems biology     
Corresponding Authors: Snezana Milanovic   
Just Accepted Date: 11 May 2016   Online First Date: 21 June 2016    Issue Date: 05 July 2016
 Cite this article:   
Iva Petrovchich,Alexandra Sosinsky,Anish Konde, et al. Metabolomics in Schizophrenia and Major Depressive Disorder[J]. Front. Biol., 2016, 11(3): 222-231.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-016-1400-8
http://journal.hep.com.cn/fib/EN/Y2016/V11/I3/222
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Iva Petrovchich
Alexandra Sosinsky
Anish Konde
Abigail Archibald
David Henderson
Mirjana Maletic-Savatic
Snezana Milanovic
1 Abrusán G (2012). Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia. Biol Direct, 7(1): 41
doi: 10.1186/1745-6150-7-41 pmid: 23176288
2 Alkondon M, Pereira E F, Yu P, Arruda E Z, Almeida L E, Guidetti P, Fawcett W P, Sapko M T, Randall W R, Schwarcz R, Tagle D A, Albuquerque E X (2004). Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via α7 nicotinic receptors in the hippocampus. J Neurosci, 24(19): 4635–4648
doi: 10.1523/JNEUROSCI.5631-03.2004 pmid: 15140935
3 Allen G I, Maletić-Savatić M (2011). Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics, 27 (21): 3029–3035
4 Andreou D, Söderman E, Axelsson T, Sedvall G C, Terenius L, Agartz I, Jönsson E G (2014). Polymorphisms in genes implicated in dopamine, serotonin and noradrenalin metabolism suggest association with cerebrospinal fluid monoamine metabolite concentrations in psychosis. Behav Brain Funct, 10(1): 26
doi: 10.1186/1744-9081-10-26 pmid: 25073638
5 Appleton K M, Rogers P J, Ness A R (2008). Is there a role for n-3 long-chain polyunsaturated fatty acids in the regulation of mood and behaviour? A review of the evidence to date from epidemiological studies, clinical studies and intervention trials. Nutr Res Rev, 21(1): 13–41
doi: 10.1017/S0954422408998620 pmid: 19079852
6 Arai M, Yuzawa H, Nohara I, Ohnishi T, Obata N, Iwayama Y, Haga S, Toyota T, Ujike H, Arai M, Ichikawa T, Nishida A, Tanaka Y, Furukawa A, Aikawa Y, Kuroda O, Niizato K, Izawa R, Nakamura K, Mori N, Matsuzawa D, Hashimoto K, Iyo M, Sora I, Matsushita M, Okazaki Y, Yoshikawa T, Miyata T, Itokawa M (2010). Enhanced carbonyl stress in a subpopulation of schizophrenia. Arch Gen Psychiatry, 67(6): 589–597
doi: 10.1001/archgenpsychiatry.2010.62 pmid: 20530008
7 Arnold J M, Choi W T, Sreekumar A, Maletić-Savatić M(2015). Analytical strategies for studying stem cell metabolism, Front Biol, 10 (2): 141–153
8 Asberg M, Bertilsson L, Mårtensson B, Scalia-Tomba G P, Thorén P, Träskman-Bendz L (1984). CSF monoamine metabolites in melancholia. ActaPsychiatrScand, 69(3): 201–219
doi: 10.1111/j.1600-0447.1984.tb02488.x pmid: 6201041
9 Ashcroft G W, Crawford T B, Eccleston D, Sharman D F, MacDougall E J, Stanton J B, Binns J K (1966). 5-hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet, 2(7472): 1049–1052
pmid: 4162505
10 Bernstein H G, Bogerts B, Keilhoff G (2005). The many faces of nitric oxide in schizophrenia. A review. Schizophr Res, 78(1): 69–86
doi: 10.1016/j.schres.2005.05.019 pmid: 16005189
11 Bitanihirwe B K, Woo T U (2011). Oxidative stress in schizophrenia: an integrated approach. NeurosciBiobehav Rev, 35(3): 878–893
doi: 10.1016/j.neubiorev.2010.10.008 pmid: 20974172
12 Botas A, Campbell H M,Han X , Maletic-Savatic M(2015). Metabolomics of neurodegenerative diseases, Int Rev Neurobiol, 122: 53–80
13 Bowers M BJr (1973). 5-Hydroxyindoleacetic acid (5HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacologia, 28(4): 309–318
doi: 10.1007/BF00422751 pmid: 4572012
14 Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014). Increased l1 retrotransposition in the neuronal genome in schizophrenia. Neuron, 81(2): 306–313
doi: 10.1016/j.neuron.2013.10.053 pmid: 24389010
15 Cantoni G L, Mudd S H, Andreoli V (1989). Affective disorders and S-adenosylmethionine: a new hypothesis. Trends Neurosci, 12(9): 319–324
doi: 10.1016/0166-2236(89)90038-6 pmid: 2480671
16 Capuron L, Neurauter G, Musselman D L, Lawson D H, Nemeroff C B, Fuchs D, Miller A H (2003). Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry, 54(9): 906–914
doi: 10.1016/S0006-3223(03)00173-2 pmid: 14573318
17 Cherlyn S Y, Woon P S, Liu J J, Ong W Y, Tsai G C, Sim K (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev, 34(6): 958–977
doi: 10.1016/j.neubiorev.2010.01.002 pmid: 20060416
18 Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka H, La Rosa P, Puech A, Tahri N, Cohen-Akenine A, Delabrosse S, Lissarrague S, Picard F P, Maurice K, Essioux L, Millasseau P, Grel P, Debailleul V, Simon A M, Caterina D, Dufaure I, Malekzadeh K, Belova M, Luan J J, Bouillot M, Sambucy J L, Primas G, Saumier M, Boubkiri N, Martin-Saumier S, Nasroune M, Peixoto H, Delaye A, Pinchot V, Bastucci M, Guillou S, Chevillon M, Sainz-Fuertes R, Meguenni S, Aurich-Costa J, Cherif D, Gimalac A, Van Duijn C, Gauvreau D, Ouellette G, Fortier I, Raelson J, Sherbatich T, Riazanskaia N, Rogaev E, Raeymaekers P, Aerssens J, Konings F, Luyten W, Macciardi F, Sham P C, Straub R E, Weinberger D R, Cohen N, Cohen D (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A, 99(21): 13675–13680
doi: 10.1073/pnas.182412499 pmid: 12364586
19 Craft S, Watson G S (2004). Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol, 3(3): 169–178
doi: 10.1016/S1474-4422(04)00681-7 pmid: 14980532
20 Domino E F, Krause R R (1974). Free and bound serum tryptophan in drug-free normal controls and chronic schizophrenic patients. Biol Psychiatry, 8(3): 265–279
pmid: 4604492
21 Erhardt S, Blennow K, Nordin C, Skogh E, Lindström L H, Engberg G (2001). Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett, 313(1-2): 96–98
doi: 10.1016/S0304-3940(01)02242-X pmid: 11684348
22 Evrony G D, Lee E, Mehta B K, Benjamini Y, Johnson R M, Cai X, Yang L, Haseley P, Lehmann H S, Park P J, Walsh C A (2015). Cell lineage analysis in human brain using endogenous retroelements. Neuron, 85(1): 49–59
doi: 10.1016/j.neuron.2014.12.028 pmid: 25569347
23 Ferentinos P, Dikeos D (2012). Genetic correlates of medical comorbidity associated with schizophrenia and treatment with antipsychotics. Curr Opin Psychiatry, 25(5): 381–390
doi: 10.1097/YCO.0b013e3283568537 pmid: 22842659
24 Fernández-Novoa L, Cacabelos R (2001). Histamine function in brain disorders. Behav Brain Res, 124(2): 213–233
doi: 10.1016/S0166-4328(01)00215-7 pmid: 11640975
25 Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, Nishikiori M, Seki A, Ichiba H, Watanabe Y, Hongo S, Utsunomiya M, Nakatani M, Sadamoto K, Yoshio T (2014). Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One, 9(7): e101652
doi: 10.1371/journal.pone.0101652 pmid: 25004141
26 Garelis E, Gillin J C, Wyatt R J, Neff N (1975). Elevated blood serotonin concentration in unmedicated chronic schizophrenic patients. Am J Psychiatry, 132(2): 184–186
doi: 10.1176/ajp.132.2.184 pmid: 234204
27 Gattaz W F, Brunner J, Schmitt A, Maras A (1994). Accelerated breakdown of membrane phospholipids in schizophrenia—implications for the hypofrontality hypothesis. Fortschr Neurol Psychiatr, 62(12): 489–496
doi: 10.1055/s-2007-1002352 pmid: 7835820
28 Gattaz W F, Hübner C V, Nevalainen T J, Thuren T, Kinnunen P K (1990). Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry, 28(6): 495–501
pmid: 2223919
29 Gattaz W F, Köllisch M, Thuren T, Virtanen J A, Kinnunen P K J (1987). Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry, 22(4): 421–426
doi: 10.1016/0006-3223(87)90164-8 pmid: 3567258
30 Gillin J C, Kaplan J A, Wyatt R J (1976). Clinical effects of tryptophan in chronic schizophrenic patients. Biol Psychiatry, 11(5): 635–639
pmid: 786384
31 Glinsky G V (2015). Transposable elements and DNA methylation create in embryonic stem cells human-specific regulatory sequences associated with distal enhancers and noncoding RNAs. Genome Biol Evol, 7(6): 1432–1454
doi: 10.1093/gbe/evv081 pmid: 25956794
32 Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, Deppen P, Preisig M, Ruiz V, Steullet P, Tosic M, Werge T, Cuénod M, Do K Q (2007). Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci U S A, 104(42): 16621–16626
doi: 10.1073/pnas.0706778104 pmid: 17921251
33 Hashimoto K, Fukushima T, Shimizu E, Komatsu N, Watanabe H, Shinoda N, Nakazato M, Kumakiri C, Okada S, Hasegawa H, Imai K, Iyo M (2003). Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry, 60(6): 572–576
doi: 10.1001/archpsyc.60.6.572 pmid: 12796220
34 Hashimoto K, Shimizu E, Iyo M (2005). Dysfunction of glia-neuron communication in pathophysiology of schizophrenia. Curr Psychiatry Rev, 1(2): 151–163
doi: 10.2174/1573400054065569
35 He Y, Yu Z, Giegling I, Xie L, Hartmann A M, Prehn C, Adamski J, Kahn R, Li Y, Illig T, Wang-Sattler R, Rujescu D (2012). Schizophrenia shows a unique metabolomics signature in plasma. Transl Psychiatry, 2(8): e149
doi: 10.1038/tp.2012.76 pmid: 22892715
36 Hernández-Benítez R, Vangipuram S D, Ramos-Mandujano G, Lyman W D, Pasantes-Morales H (2013). Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci, 35(1): 40–49
doi: 10.1159/000346900 pmid: 23466467
37 Hilmas C, Pereira E F, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque E X (2001). The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non-α7 nicotinic receptor expression: physiopathological implications. J Neurosci, 21(19): 7463–7473
pmid: 11567036
38 Hosak L (2013). New findings in the genetics of schizophrenia. World J Psychiatry, 3(3): 57–61
doi: 10.5498/wjp.v3.i3.57 pmid: 24255876
39 Inoue K, Okamoto M, Shibato J, Lee M C, Matsui T, Rakwal R, Soya H (2015). Long-term mild, rather than intense, exercise enhances adult hippocampal neurogenesis and greatly changes the transcriptomic profile of the hippocampus. PLoS One, 10(6): e0128720
doi: 10.1371/journal.pone.0128720 pmid: 26061528
40 Iwayama Y, Hattori E, Maekawa M, Yamada K, Toyota T, Ohnishi T, Iwata Y, Tsuchiya K J, Sugihara G, Kikuchi M, Hashimoto K, Iyo M, Inada T, Kunugi H, Ozaki N, Iwata N, Nanko S, Iwamoto K, Okazaki Y, Kato T, Yoshikawa T (2010). Association analyses between brain-expressed fatty-acid binding protein (FABP) genes and schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet, 153B(2): 484–493
pmid: 19554614
41 Jackman H, Luchins D, Meltzer H Y (1983). Platelet serotonin levels in schizophrenia: relationship to race and psychopathology. Biol Psychiatry, 18(8): 887–902
pmid: 6615945
42 Joseph M H, Owen F, Baker H F, Bourne R C (1977). Platelet serotonin concentration and monoamine oxidase activity in unmedicated chronic schizophrenic and in schizoaffective patients. Psychol Med, 7(1): 159–162
doi: 10.1017/S0033291700023230 pmid: 859953
43 Kaddurah-Daouk R, Yuan P, Boyle S H, Matson W, Wang Z, Zeng Z B, Zhu H, Dougherty G G, Yao J K, Chen G, Guitart X, Carlson P J, Neumeister A, Zarate C, Krishnan R R, Manji H K, Drevets W (2012). Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep, 2(667): 667
pmid: 22993692
44 Kempf L, Nicodemus K K, Kolachana B, Vakkalanka R, Verchinski B A, Egan M F, Straub R E, Mattay V A, Callicott J H, Weinberger D R, Meyer-Lindenberg A (2008). Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function. PLoS Genet, 4(11): e1000252
doi: 10.1371/journal.pgen.1000252 pmid: 18989458
45 Kolakowska T, Molyneux S G (1987). Platelet serotonin concentration in schizophrenic patients. Am J Psychiatry, 144(2): 232–234
doi: 10.1176/ajp.144.2.232 pmid: 3812796
46 Kotronen A, Velagapudi V R, Yetukuri L, Westerbacka J, Bergholm R, Ekroos K, Makkonen J, Taskinen M R, Oresic M, Yki-Järvinen H (2009). Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia, 52(4): 684–690
doi: 10.1007/s00125-009-1282-2 pmid: 19214471
47 Kotronen A, Yki-Järvinen H (2008). Fatty liver: a novel component of the metabolic syndrome. Arterioscler Thromb Vasc Biol, 28(1): 27–38
doi: 10.1161/ATVBAHA.107.147538 pmid: 17690317
48 Lee L H, Shui G, Farooqui A A, Wenk M R, Tan C H, Ong W Y (2009). Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids? Int J Neuropsychopharmacol, 12(7): 953–964
doi: 10.1017/S146114570900995X pmid: 19203412
49 Liu H, Heath S C, Sobin C, Roos J L, Galke B L, Blundell M L, Lenane M, Robertson B, Wijsman E M, Rapoport J L, Gogos J A, Karayiorgou M (2002). Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci U S A, 99(6): 3717–3722
doi: 10.1073/pnas.042700699 pmid: 11891283
50 Liu X, Zheng P, Zhao X, Zhang Y, Hu C, Li J, Zhao J, Zhou J, Xie P, Xu G (2015). Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res, 14(5): 2322–2330
doi: 10.1021/acs.jproteome.5b00144 pmid: 25784130
51 Luykx J J, Bakker S C, Lentjes E, Neeleman M, Strengman E, Mentink L, DeYoung J, de Jong S, Sul J H, Eskin E, van Eijk K, van Setten J, Buizer-Voskamp J E, Cantor R M, Lu A, van Amerongen M, van Dongen E P, Keijzers P, Kappen T, Borgdorff P, Bruins P, Derks E M, Kahn R S, Ophoff R A (2014). Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Mol Psychiatry, 19(2): 228–234
doi: 10.1038/mp.2012.183 pmid: 23319000
52 Madeira C, Freitas M E, Vargas-Lopes C, Wolosker H, Panizzutti R (2008). Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res, 101(1-3): 76–83
doi: 10.1016/j.schres.2008.02.002 pmid: 18378121
53 Maekawa M, Owada Y, Yoshikawa T (2011). Role of polyunsaturated fatty acids and fatty acid binding protein in the pathogenesis of schizophrenia. Curr Pharm Des, 17(2): 168–175
doi: 10.2174/138161211795049615 pmid: 21355837
54 Maletić-Savatić M, Vingara L K, Manganas L N, Li Y, Zhang S, Sierra A, Hazel R, Smith D, Wagshul M E, Henn F, Krupp L, Enikolopov G, Benveniste H, Djurić P M, Pelczer I (2008). Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol, 73:389–401
55 Manowitz P, Gilmour D G, Racevskis J (1973). Low plasma tryptophan levels in recently hospitalized schizophrenics. Biol Psychiatry, 6(2): 109–118
pmid: 4709128
56 Martins-de-Souza D (2014). Proteomics, metabolomics, and protein interactomics in the characterization of the molecular features of major depressive disorder. Dialogues Clin Neurosci, 16(1): 63–73
pmid: 24733971
57 Middleton F A, Mirnics K, Pierri J N, Lewis D A, Levitt P (2002). Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci, 22(7): 2718–2729
pmid: 11923437
58 Milanovic S M, Thermenos H W, Goldstein J M, Brown A, Gabrieli S W, Makris N, Tsuang M T, Buka S L, Seidman L J(2011). Medial prefrontal cortical activation during working memory differentiates schizophrenia and bipolar psychotic patients: a pilot fMRI study. Schizophr Res, 129(2-3): 208–210
59 Moon M L, Joesting J J, Lawson M A, Chiu G S, Blevins N A, Kwakwa K A, Freund G G (2014). The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice. Metabolism, 63(9): 1131–1140
doi: 10.1016/j.metabol.2014.06.002 pmid: 25016520
60 Moreno F A, Parkinson D, Palmer C, Castro W L, Misiaszek J, El Khoury A, Mathé A A, Wright R, Delgado P L (2010). CSF neurochemicals during tryptophan depletion in individuals with remitted depression and healthy controls. Eur Neuropsychopharmacol, 20(1): 18–24
doi: 10.1016/j.euroneuro.2009.10.003 pmid: 19896342
61 Mück-Seler D, Jakovljević M, Deanović Z (1988). Time course of schizophrenia and platelet 5-HT level. Biol Psychiatry, 23(3): 243–251
doi: 10.1016/0006-3223(88)90035-2 pmid: 2892541
62 Nichenametla S N, Ellison I, Calcagnotto A, Lazarus P, Muscat J E, Richie J P Jr (2008). Functional significance of the GAG trinucleotide-repeat polymorphism in the gene for the catalytic subunit of gamma-glutamylcysteine ligase. Free Radic Biol Med, 45(5): 645–650
doi: 10.1016/j.freeradbiomed.2008.05.012 pmid: 18549827
63 Nunes A F, Amaral J D, Lo A C, Fonseca M B, Viana R J, Callaerts-Vegh Z, D’Hooge R, Rodrigues C M (2012). TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-β deposition in APP/PS1 mice. Mol Neurobiol, 45(3): 440–454
doi: 10.1007/s12035-012-8256-y pmid: 22438081
64 Olney J W, Farber N B (1995). Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry, 52(12): 998–1007
doi: 10.1001/archpsyc.1995.03950240016004 pmid: 7492260
65 Orešič M, Tang J, Seppänen-Laakso T, Mattila I, Saarni S E, Saarni S I, Lönnqvist J, Sysi-Aho M, Hyötyläinen T, Perälä J, Suvisaari J (2011). Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med, 3(3): 19
doi: 10.1186/gm233 pmid: 21429189
66 Paoletti L, Elena C, Domizi P, Banchio C (2011). Role of phosphatidylcholine during neuronal differentiation. IUBMB Life, 63(9): 714–720
pmid: 21818839
67 Park H R, Kim J Y, Park K Y, Lee J (2011). Lipotoxicity of palmitic Acid on neural progenitor cells and hippocampal neurogenesis. Toxicol Res, 27(2): 103–110
doi: 10.5487/TR.2011.27.2.103 pmid: 24278558
68 Payne I R, Walsh E M, Whittenburg E J (1974). Relationship of dietary tryptophan and niacin to tryptophan metabolism in schizophrenics and nonschizophrenics. Am J Clin Nutr, 27(6): 565–571
pmid: 4830078
69 Peterson C, Vannucci M, KarakasC, Choi W, Ma L, Maletic-Savatic M(2013). Inferring metabolic networks using the Bayesian adaptive graphical lasso with informative priors. Stat Interface, 6(4): 547–558
70 Prell G D, Green J P, Kaufmann C A, Khandelwal J K, Morrishow A M, Kirch D G, Linnoila M, Wyatt R J (1995). Histamine metabolites in cerebrospinal fluid of patients with chronic schizophrenia: their relationships to levels of other aminergic transmitters and ratings of symptoms. Schizophr Res, 14(2): 93–104
doi: 10.1016/0920-9964(94)00034-6 pmid: 7711000
71 Raffa M, Mechri A, Othman L B, Fendri C, Gaha L, Kerkeni A (2009). Decreased glutathione levels and antioxidant enzyme activities in untreated and treated schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry, 33(7): 1178–1183
doi: 10.1016/j.pnpbp.2009.06.018 pmid: 19576938
72 Ramos-Loyo J, Medina-Hernández V, Estarrón-Espinosa M, Canales-Aguirre A, Gómez-Pinedo U, Cerdán-Sánchez L F (2013). Sex differences in lipid peroxidation and fatty acid levels in recent onset schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry, 44: 154–161
doi: 10.1016/j.pnpbp.2013.02.007 pmid: 23421976
73 Reiter R J, Tan D X, Jou M J, Korkmaz A, Manchester L C, Paredes S D (2008). Biogenic amines in the reduction of oxidative stress: melatonin and its metabolites. Neuro Endocrinol Lett, 29(4): 391–398
pmid: 18766165
74 Santin L J, Bilbao A, Pedraza C, Matas-Rico E, López-Barroso D, Castilla-Ortega E, Sánchez-López J, Riquelme R, Varela-Nieto I, de la Villa P, Suardíaz M, Chun J, De Fonseca F R, Estivill-Torrús G (2009). Behavioral phenotype of maLPA1-null mice: increased anxiety-like behavior and spatial memory deficits. Genes Brain Behav, 8(8): 772–784
doi: 10.1111/j.1601-183X.2009.00524.x pmid: 19689455
75 Santos-Soto I J, Chorna N, Carballeira N M, Vélez-Bartolomei J G, Méndez-Merced A T, Chornyy A P, Peña de Ortiz S (2013). Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex. PLoS One, 8(12): e81459
doi: 10.1371/journal.pone.0081459 pmid: 24349072
76 Schell M J, Brady R O Jr, Molliver M E, Snyder S H (1997). D-serine as a neuromodulator: regional and developmental localizations in rat brain glia resemble NMDA receptors. J Neurosci, 17(5): 1604–1615
pmid: 9030620
77 Schwarcz R, Rassoulpour A, Wu H Q, Medoff D, Tamminga C A, Roberts R C (2001). Increased cortical kynurenate content in schizophrenia. Biol Psychiatry, 50(7): 521–530
doi: 10.1016/S0006-3223(01)01078-2 pmid: 11600105
78 Sekar A, Bialas A R, de Rivera H, Davis A, Hammond T R, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose S A, Handsaker R E, Daly M J, Carroll M C, Stevens B, McCarroll S A, and the Schizophrenia Working Group of the Psychiatric Genomics Consortium (2016). Schizophrenia risk from complex variation of complement component 4. Nature, 530(7589): 177–183
doi: 10.1038/nature16549 pmid: 26814963
79 Shimazu T, Hirschey M D, Newman J, He W, Shirakawa K, Le Moan N, Grueter C A, Lim H, Saunders L R, Stevens R D, Newgard C B, Farese R VJr, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339(6116): 211–214
doi: 10.1126/science.1227166 pmid: 23223453
80 Singer T, McConnell M J, Marchetto M C, Coufal N G, Gage F H (2010). LINE-1 retrotransposons: mediators of somatic variation in neuronal genomes? Trends Neurosci, 33(8): 345–354
doi: 10.1016/j.tins.2010.04.001 pmid: 20471112
81 Smith Q R (2000). Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr, 130(4SSuppl): 1016S–1022S
pmid: 10736373
82 Smoller J W (2016). The genetics of stress-related disorders: PTSD, depression, and anxiety disorders. Neuropsychopharmacology, 41(1): 297–319
doi: 10.1038/npp.2015.266 pmid: 26321314
83 Stahl S M, Woo D J, Mefford I N, Berger P A, Ciaranello R D (1983). Hyperserotonemia and platelet serotonin uptake and release in schizophrenia and affective disorders. Am J Psychiatry, 140(1): 26–30
doi: 10.1176/ajp.140.1.26 pmid: 6401198
84 Steffens D C, Jiang W, Krishnan K R, Karoly E D, Mitchell M W, O’Connor C M, Kaddurah-Daouk R (2010). Metabolomic differences in heart failure patients with and without major depression. J Geriatr Psychiatry Neurol, 23(2): 138–146
doi: 10.1177/0891988709358592 pmid: 20101071
85 Stone J M, Morrison P D, Pilowsky L S (2007). Glutamate and dopamine dysregulation in schizophrenia—a synthesis and selective review. J Psychopharmacol, 21(4): 440–452
doi: 10.1177/0269881106073126 pmid: 17259207
86 Stone T W (1993). Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev, 45(3): 309–379
pmid: 8248282
87 Stone W S, Faraone S V, Su J, Tarbox S I, Van Eerdewegh P, Tsuang M T (2004). Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet, 127B(1): 5–10
doi: 10.1002/ajmg.b.20132 pmid: 15108172
88 Tandon N, Bolo N R, Sanghavi K, Mathew I T, Francis A N, Stanley J A, Keshavan M S (2013). Brain metabolite alterations in young adults at familial high risk for schizophrenia using proton magnetic resonance spectroscopy. Schizophr Res, 148(1-3): 59–66
doi: 10.1016/j.schres.2013.05.024 pmid: 23791389
89 Tortorella A, Monteleone P, Fabrazzo M, Viggiano A, De Luca L, Maj M (2001). Plasma concentrations of amino acids in chronic schizophrenics treated with clozapine. Neuropsychobiology, 44(4): 167–171
doi: 10.1159/000054937 pmid: 11702015
90 UptonK r,GerhardtD J, Jesuadian J S, Richardson S R, Sánchez-Luque F J, Bodea G O, Ewing A D, Salvador-PalomequeC,van der Knaap M S, Brennan P M, Vanderver A, Faulkner G J(2015). Ubiquitous L1 mosaicism in hippocampal neurons. Cell, 161(2): 228–239
91 Vaz A R, Cunha C, Gomes C, Schmucki N, Barbosa M, Brites D (2015). Glycoursodeoxycholic acid reduces matrix metalloproteinase-9 and caspase-9 activation in a cellular model of superoxide dismutase-1 neurodegeneration. Mol Neurobiol, 51(3): 864–877
doi: 10.1007/s12035-014-8731-8 pmid: 24848512
92 Vingara L K, Yu H J,Wagshul M E , Serafin D,Christodoulou C , Pelczer I, Krupp L B, Maletić-Savatić M(2013). Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage, 82: 586–594
93 Wang S M, Han C, Lee S J, Patkar A A, Masand P S, Pae C U (2014). A review of current evidence for acetyl-l-carnitine in the treatment of depression. J Psychiatr Res, 53: 30–37
doi: 10.1016/j.jpsychires.2014.02.005 pmid: 24607292
94 Wang Z J, Li G M, Tang W L, Yin M (2006). Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharmacol Sin, 27(2): 145–150
doi: 10.1111/j.1745-7254.2006.00259.x pmid: 16412262
95 Weber H, Klamer D, Freudenberg F, Kittel-Schneider S, Rivero O, Scholz C J, Volkert J, Kopf J, Heupel J, Herterich S, Adolfsson R, Alttoa A, Post A, Grußendorf H, Kramer A, Gessner A, Schmidt B, Hempel S, Jacob C P, Sanjuán J, Moltó M D, Lesch K P, Freitag C M, Kent L, Reif A (2014). The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis. Eur Neuropsychopharmacol, 24(1): 65–85
doi: 10.1016/j.euroneuro.2013.09.005 pmid: 24220657
96 Whitfield-Gabrieli S, Thermenos H W, Milanovic S, Tsuang M T,Faraone S V, McCarley R W, Shenton M E, Green A I, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli J D, Seidman L J (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A. 106(4): 1279–1284
97 Wichers M C, Koek G H, Robaeys G, Verkerk R, Scharpé S, Maes M (2005). IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry, 10(6): 538–544
doi: 10.1038/sj.mp.4001600 pmid: 15494706
98 Woo H I, Chun M R, Yang J S, Lim S W, Kim M J, Kim S W, Myung W J, Kim D K, Lee S Y (2015). Plasma amino acid profiling in major depressive disorder treated with selective serotonin reuptake inhibitors. CNS Neurosci Ther, 21(5): 417–424
doi: 10.1111/cns.12372 pmid: 25611566
99 Wood P L (2014). Accumulation of N-acylphosphatidylserines and N-acylserines in the frontal cortex in schizophrenia. Neurotransmitter (Houst), 1(1): e263
pmid: 26120595
100 Wood P L, Holderman N R (2015). Dysfunctional glycosynapses in schizophrenia: disease and regional specificity. Schizophr Res, 166(1-3): 235–237
doi: 10.1016/j.schres.2015.05.017 pmid: 26004690
101 Wyatt R J, Vaughan T, Galanter M, Kaplan J, Green R (1972). Behavioral changes of chronic schizophrenic patients given L-5-hydroxytryptophan. Science, 177(4054): 1124–1126
doi: 10.1126/science.177.4054.1124 pmid: 4560057
102 Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L (2011). Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res, 10(12): 5433–5443
doi: 10.1021/pr2006796 pmid: 22007635
103 Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X, Qiu Y, Su M, Zhao A, Wang P, Yang P, Wu J, Feng G, He L, Jia W, Wan C (2013). Potential metabolite markers of schizophrenia. Mol Psychiatry, 18(1): 67–78
doi: 10.1038/mp.2011.131 pmid: 22024767
104 Yanik M, Vural H, Kocyigit A, Tutkun H, Zoroglu S S, Herken H, Savaş H A, Köylü A, Akyol O (2003). Is the arginine-nitric oxide pathway involved in the pathogenesis of schizophrenia? Neuropsychobiology, 47(2): 61–65
doi: 10.1159/000070010 pmid: 12707486
105 Yao J K, Dougherty G GJr, Reddy R D, Keshavan M S, Montrose D M, Matson W R, Rozen S, Krishnan R R, McEvoy J, Kaddurah-Daouk R (2010). Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry, 15(9): 938–953
doi: 10.1038/mp.2009.33 pmid: 19401681
106 Yao J K, Reddy R (2011). Oxidative stress in schizophrenia: pathogenetic and therapeutic implications. Antioxid Redox Signal, 15(7): 1999–2002
doi: 10.1089/ars.2010.3646 pmid: 21194354
107 Zheng P, Gao H C, Li Q, Shao W H, Zhang M L, Cheng K, Yang Y, Fan S H, Chen L, Fang L, Xie P (2012). Plasma metabonomics as a novel diagnostic approach for major depressive disorder. J Proteome Res, 11(3): 1741–1748
doi: 10.1021/pr2010082 pmid: 22239730
108 Zheng P, Wang Y, Chen L, Yang D, Meng H, Zhou D, Zhong J, Lei Y, Melgiri N D, Xie P (2013). Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics, 12(1): 207–214
doi: 10.1074/mcp.M112.021816 pmid: 23111923
Related articles from Frontiers Journals
[1] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[2] Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
[3] Pippa A. THOMSON, Elise L.V. MALAVASI, Ellen GRüNEWALD, Dinesh C. SOARES, Malgorzata BORKOWSKA, J. Kirsty MILLAR. DISC1 genetics, biology and psychiatric illness[J]. Front Biol, 2013, 8(1): 1-31.
[4] Xiao-Shan YUE, Amanda B. HUMMON. Mass spectrometry-based phosphoproteomics in cancer research[J]. Front Biol, 2012, 7(6): 566-586.
[5] Robert CUNNINGHAM, Di MA, Lingjun LI. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery[J]. Front Biol, 2012, 7(4): 313-335.
[6] P. CHELLAPANDI. Molecular evolution of methanogens based on their metabolic facets[J]. Front Biol, 2011, 6(6): 490-503.
[7] Lingli HE, Jing ZHAO, Man ZHAO, Chaoying HE. Current development and application of soybean genomics[J]. Front Biol, 2011, 6(4): 337-348.
[8] Guanghou SHUI. Systems level analysis of lipidome[J]. Front Biol, 2011, 6(3): 183-189.
[9] Wei HUANG, Lin WU, Guozhen LIU, Siqi LIU, . Protein microarray: A key approach of proteomics[J]. Front. Biol., 2010, 5(4): 331-338.
[10] Sining KANG, Sixue CHEN, Shaojun DAI. Proteomics characteristics of rice leaves in response to environmental factors[J]. Front Biol, 2010, 5(3): 246-254.
[11] Yingqing LU. Functional significance of genetic polymorphisms[J]. Front Biol Chin, 2009, 4(3): 266-270.
[12] Jianzhong LIU, Zhiming WENG, Yue WANG, Hui CHAO, Zongwan MAO. Metabolic engineering based on systems biology for chemicals production[J]. Front Biol Chin, 2009, 4(3): 260-265.
[13] ZHAO Xiaofeng, WANG Shu, SHI Xuemin, WEN Jingrong. Proteomics analysis of cerebral cortex in Wistar rats[J]. Front. Biol., 2008, 3(4): 419-427.
[14] LIU Wenjie, SU Jing, WANG Guizhong, WANG Sanying. Proteomic approach for acute-phase proteins of hemolymph and muscles in Scylla serrata challenged by a pathogenic bacterium[J]. Front. Biol., 2006, 1(3): 254-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed