Please wait a minute...

Frontiers in Biology

Front. Biol.    2016, Vol. 11 Issue (2) : 85-95     DOI: 10.1007/s11515-016-1398-y
The epigenetics of CHARGE syndrome
Nina K. Latcheva1,2,Rupa Ghosh1,Daniel R. Marenda1,3,*()
1. Department of Biology, Drexel University, Philadelphia, PA 19104, USA
2. Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19129, USA
3. Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
Download: PDF(327 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In biology, we continue to appreciate the fact that the DNA sequence alone falls short when attempting to explain the intricate inheritance patterns for complex traits. This is particularly true for human disorders that appear to have simple genetic causes. The study of epigenetics, and the increased access to the epigenetic profiles of different tissues has begun to shed light on the genetic complexity of many basic biological processes, both physiological and pathological. Epigenetics refers to heritable changes in gene expression that are not due to alterations in the DNA sequence. Various mechanisms of epigenetic regulation exist, including DNA methylation and histone modification. The identification, and increased understanding of key players and mechanisms of epigenetic regulation have begun to provide significant insight into the underlying origins of various human genetic disorders. One such disorder is CHARGE syndrome (OMIM 214800), which is a leading cause of deaf-blindness worldwide. A majority of CHARGE syndrome cases are caused by haploinsufficiency for the CHD7 gene, which encodes an ATP-dependent chromatin remodeling protein involved in the epigenetic regulation of gene expression. The CHD7 protein has been highly conserved throughout evolution, and research into the function of CHD7 homologs in multiple model systems has increased our understanding of this family of proteins, and epigenetic mechanisms in general. Here we provide a review of CHARGE syndrome, and discuss the epigenetic functions of CHD7 in humans and CHD7 homologs in model organisms.

Keywords Drosophila      Kismet      CHD7      CHARGE syndrome      chromatin remodeling     
Corresponding Authors: Daniel R. Marenda   
Just Accepted Date: 25 April 2016   Online First Date: 09 May 2016    Issue Date: 17 May 2016
 Cite this article:   
Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
E-mail this article
E-mail Alert
Articles by authors
Nina K. Latcheva
Rupa Ghosh
Daniel R. Marenda
Fig.1  Homology between Chd7 proteins in model organisms. Schematic representation of conserved Chd7 proteins in model organisms used to study CHARGE syndrome. Percent value indicates homology to human CHD7. Green is chromodomain; blue is ATPase domain; purple is Switching-defective protein 3, Adaptor 2, Nuclear receptor co-repressor, Transcription factor (TF)IIIB (SANT)-Slide domain; dark gray is Brahma and Kismet (BRK) domain; yellow is DEAD-like helicase (DEXDc) domain; red is helicase superfamily C-terminal (HELICc) domain.
1 Aalfs J D, Kingston R E (2000). What does ʻchromatin remodelingʼ mean? Trends Biochem Sci, 25(11): 548–555
doi: 10.1016/S0968-0004(00)01689-3
2 Allen M D, Religa T L, Freund S M, Bycroft M (2007). Solution structure of the BRK domains from CHD7. J Mol Biol, 371(5): 1135–1140
doi: 10.1016/j.jmb.2007.06.007
3 Allis C D, Berger S L, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007). New nomenclature for chromatin-modifying enzymes. Cell, 131(4): 633–636
doi: 10.1016/j.cell.2007.10.039
4 Bajpai R, Chen D A, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang C P, Zhao Y, Swigut T, Wysocka J (2010). CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature, 463(7283): 958–962
doi: 10.1038/nature08733
5 Balasubramanian D, Akhtar-Zaidi B, Song L, Bartels C F, Veigl M, Beard L, Myeroff L, Guda K, Lutterbaugh J, Willis J, Crawford G E, Markowitz S D, Scacheri P C (2012). H3K4me3 inversely correlates with DNA methylation at a large class of non-CpG-island-containing start sites. Genome Med, 4(5): 47
doi: 10.1186/gm346
6 Balow S A, Pierce L X, Zentner G E, Conrad P A, Davis S, Sabaawy H E, McDermott B MJr, Scacheri P C (2013). Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome. Dev Biol, 382(1): 57–69
doi: 10.1016/j.ydbio.2013.07.026
7 Basson M A, van Ravenswaaij-Arts C (2015). Functional Insights into Chromatin remodelling from studies on CHARGE syndrome. Trends Genet, 31(10): 600–611
doi: 10.1016/j.tig.2015.05.009
8 Blake K D, Hartshorne T S, Lawand C, Dailor A N, Thelin J W (2008). Cranial nerve manifestations in CHARGE syndrome. Am J Med Genet A, 146A(5): 585–592
doi: 10.1002/ajmg.a.32179
9 Blake K D, Prasad C (2006). CHARGE syndrome. Orphanet J Rare Dis, 1(1): 34
doi: 10.1186/1750-1172-1-34
10 Bosman E A, Penn A C, Ambrose J C, Kettleborough R, Stemple D L, Steel K P (2005). Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet, 14(22): 3463–3476
doi: 10.1093/hmg/ddi375
11 Bouazoune K, Kingston R E (2012). Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA, 109(47): 19238–19243
doi: 10.1073/pnas.1213825109
12 Boyer L A, Latek R R, Peterson C L (2004). The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol, 5(2): 158–163
doi: 10.1038/nrm1314
13 Cavalli G, Paro R (1999). Epigenetic inheritance of active chromatin after removal of the main transactivator. Science, 286(5441): 955–958
doi: 10.1126/science.286.5441.955
14 Daubresse G, Deuring R, Moore L, Papoulas O, Zakrajsek I, Waldrip W R, Scott M P, Kennison J A, Tamkun J W (1999). The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development, 126(6): 1175–1187
15 de Lonlay-Debeney P, Cormier-Daire V, Amiel J, Abadie V, Odent S, Paupe A, Couderc S, Tellier A L, Bonnet D, Prieur M, Vekemans M, Munnich A, Lyonnet S (1997). Features of DiGeorge syndrome and CHARGE association in five patients. J Med Genet, 34(12): 986–989
doi: 10.1136/jmg.34.12.986
16 Dorighi K M, Tamkun J W (2013). The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in Drosophila. Development, 140(20): 4182–4192
doi: 10.1242/dev.095786
17 Engelen E, Akinci U, Bryne J C, Hou J, Gontan C, Moen M, Szumska D, Kockx C, van Ijcken W, Dekkers D H, Demmers J, Rijkers E J, Bhattacharya S, Philipsen S, Pevny L H, Grosveld F G, Rottier R J, Lenhard B, Poot R A (2011). Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes. Nat Genet, 43(6): 607–611
doi: 10.1038/ng.825
18 Fasulo B, Deuring R, Murawska M, Gause M, Dorighi K M, Schaaf C A, Dorsett D, Brehm A, Tamkun J W (2012). The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet, 8(8): e1002878
doi: 10.1371/journal.pgen.1002878
19 Feng W, Khan M A, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, Liu H K (2013). The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell, 13(1): 62–72
doi: 10.1016/j.stem.2013.05.002
20 Feng W, Liu H K (2013). Epigenetic regulation of neuronal fate determination: the role of CHD7. Cell Cycle, 12(24): 3707–3708
doi: 10.4161/cc.26876
21 Fraga M F, Ballestar E, Paz M F, Ropero S, Setien F, Ballestar M L, Heine-Suner D, Cigudosa J C, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector T D, Wu Y Z, Plass C, Esteller M (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 102(30): 10604–10609
doi: 10.1073/pnas.0500398102
22 Gangaraju V K, Bartholomew B (2007). Mechanisms of ATP dependent chromatin remodeling. Mutat Res, 618(1–2): 3–17
doi: 10.1016/j.mrfmmm.2006.08.015
23 Gao X, Gordon D, Zhang D, Browne R, Helms C, Gillum J, Weber S, Devroy S, Swaney S, Dobbs M, Morcuende J, Sheffield V, Lovett M, Bowcock A, Herring J, Wise C (2007). CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet, 80(5): 957–965
doi: 10.1086/513571
24 Ghosh R, Vegesna S, Safi R, Bao H, Zhang B, Marenda D R, Liebl F L (2014). Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction. PLoS ONE, 9(11): e113494
doi: 10.1371/journal.pone.0113494
25 Gregory L C, Gevers E F, Baker J, Kasia T, Chong K, Josifova D J, Caimari M, Bilan F, McCabe M J, Dattani M T (2013). Structural pituitary abnormalities associated with CHARGE syndrome. J Clin Endocrinol Metab, 98(4): E737–E743
doi: 10.1210/jc.2012-3467
26 He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, Clavairoly A, Frah M, Wang H, He X, Hmidan H, Jones B V, Witte D, Zalc B, Zhou X, Choo D I, Martin D M, Parras C, Lu Q R (2016). Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci, doi: 10.1038/nn.4258
27 Hurd E A, Adams M E, Layman W S, Swiderski D L, Beyer L A, Halsey K E, Benson J M, Gong T W, Dolan D F, Raphael Y, Martin D M (2011). Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome. Hear Res, 282(1–2): 184–195
doi: 10.1016/j.heares.2011.08.005
28 Hurd E A, Capers P L, Blauwkamp M N, Adams M E, Raphael Y, Poucher H K, Martin D M (2007). Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome, 18(2): 94–104
doi: 10.1007/s00335-006-0107-6
29 Hurd E A, Micucci J A, Reamer E N, Martin D M (2012). Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev, 129(9–12): 308–323
doi: 10.1016/j.mod.2012.06.002
30 Hurd E A, Poucher H K, Cheng K, Raphael Y, Martin D M (2010). The ATP-dependent chromatin remodeling enzyme CHD7 regulates pro-neural gene expression and neurogenesis in the inner ear. Development, 137(18): 3139–3150
doi: 10.1242/dev.047894
31 Jacobs-McDaniels N L, Albertson R C (2011). Chd7 plays a critical role in controlling left-right symmetry during zebrafish somitogenesis. Dev Dyn, 240(10): 2272–2280
doi: 10.1002/dvdy.22722
32 Janssen N, Bergman J E, Swertz M A, Tranebjaerg L, Lodahl M, Schoots J, Hofstra R M, van Ravenswaaij-Arts C M, Hoefsloot L H (2012). Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat, 33(8): 1149–1160
doi: 10.1002/humu.22086
33 Jongmans M C, Admiraal R J, van der Donk K P, Vissers L E, Baas A F, Kapusta L, van Hagen J M, Donnai D, de Ravel T J, Veltman J A, Geurts van Kessel A, De Vries B B, Brunner H G, Hoefsloot L H, van Ravenswaaij C M (2006). CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet, 43(4): 306–314
doi: 10.1136/jmg.2005.036061
34 Jongmans M C, Hoefsloot L H, van der Donk K P, Admiraal R J, Magee A, van de Laar I, Hendriks Y, Verheij J B, Walpole I, Brunner H G, van Ravenswaaij C M (2008). Familial CHARGE syndrome and the CHD7 gene: a recurrent missense mutation, intrafamilial recurrence and variability. Am J Med Genet A, 146A(1): 43–50
doi: 10.1002/ajmg.a.31921
35 Kaminsky Z A, Tang T, Wang S C, Ptak C, Oh G H, Wong A H, Feldcamp L A, Virtanen C, Halfvarson J, Tysk C, McRae A F, Visscher P M, Montgomery G W, Gottesman I I, Martin N G, Petronis A (2009). DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet, 41(2): 240–245
doi: 10.1038/ng.286
36 Kim K H, Roberts C W (2013). CHD7 in charge of neurogenesis. Cell Stem Cell, 13(1): 1–2
doi: 10.1016/j.stem.2013.06.010
37 Kirmizis A, Santos-Rosa H, Penkett C J, Singer M A, Vermeulen M, Mann M, Bahler J, Green R D, Kouzarides T (2007). Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature, 449(7164): 928–932
doi: 10.1038/nature06160
38 Kita Y, Nishiyama M, Nakayama K I (2012). Identification of CHD7S as a novel splicing variant of CHD7 with functions similar and antagonistic to those of the full-length CHD7L. Genes Cells, 17(7): 536–547
doi: 10.1111/j.1365-2443.2012.01606.x
39 Kornberg R D, Lorch Y (1999). Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98(3): 285–294
doi: 10.1016/S0092-8674(00)81958-3
40 Kosaki K (2011). Role of rare cases in deciphering the mechanisms of congenital anomalies: CHARGE syndrome research. Congenit Anom (Kyoto), 51(1): 12–15
doi: 10.1111/j.1741-4520.2010.00309.x
41 Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
doi: 10.1016/j.cell.2007.02.005
42 Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 131(4): 822–822.e1
doi: 10.1016/j.cell.2007.11.005
43 Kouzarides T (2007). SnapShot: Histone-modifying enzymes. Cell, 128(4): 802
doi: 10.1016/j.cell.2007.02.018
44 Lalani S R, Safiullah A M, Fernbach S D, Harutyunyan K G, Thaller C, Peterson L E, McPherson J D, Gibbs R A, White L D, Hefner M, Davenport S L, Graham J MJr, Bacino C A, Glass N L, Towbin J A, Craigen W J, Neish S R, Lin A E, Belmont J W (2006). Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet, 78(2): 303–314
doi: 10.1086/500273
45 Layman W S, Hurd E A, Martin D M (2011). Reproductive dysfunction and decreased GnRH neurogenesis in a mouse model of CHARGE syndrome. Hum Mol Genet, 20(16): 3138–3150
doi: 10.1093/hmg/ddr216
46 Layman W S, McEwen D P, Beyer L A, Lalani S R, Fernbach S D, Oh E, Swaroop A, Hegg C C, Raphael Y, Martens J R, Martin D M (2009). Defects in neural stem cell proliferation and olfaction in Chd7 deficient mice indicate a mechanism for hyposmia in human CHARGE syndrome. Hum Mol Genet, 18(11): 1909–1923
doi: 10.1093/hmg/ddp112
47 Melicharek D, Shah A, DiStefano G, Gangemi A J, Orapallo A, Vrailas-Mortimer A D, Marenda D R (2008). Identification of novel regulators of atonal expression in the developing Drosophila retina. Genetics, 180(4): 2095–2110
doi: 10.1534/genetics.108.093302
48 Melicharek D J, Ramirez L C, Singh S, Thompson R, Marenda D R (2010). Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet, 19(21): 4253–4264
doi: 10.1093/hmg/ddq348
49 Micucci J A, Layman W S, Hurd E A, Sperry E D, Frank S F, Durham M A, Swiderski D L, Skidmore J M, Scacheri P C, Raphael Y, Martin D M (2014). CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet, 23(2): 434–448
doi: 10.1093/hmg/ddt435
50 Mueller-Planitz F, Klinker H, Ludwigsen J, Becker P B (2013). The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat Struct Mol Biol, 20(1): 82–89
doi: 10.1038/nsmb.2457
51 Papp B, Muller J (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev, 20(15): 2041–2054
doi: 10.1101/gad.388706
52 Paro R, Strutt H, Cavalli G (1998). Heritable chromatin states induced by the Polycomb and trithorax group genes. Novartis Found Symp, 214: 51–61; discussion 61–56, 104–113
53 Patten S A, Jacobs-McDaniels N L, Zaouter C, Drapeau P, Albertson R C, Moldovan F (2012). Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS ONE, 7(2): e31650
doi: 10.1371/journal.pone.0031650
54 Petruk S, Sedkov Y, Johnston D M, Hodgson J W, Black K L, Kovermann S K, Beck S, Canaani E, Brock H W, Mazo A (2012). TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell, 150(5): 922–933
doi: 10.1016/j.cell.2012.06.046
55 Pinto G, Abadie V, Mesnage R, Blustajn J, Cabrol S, Amiel J, Hertz-Pannier L, Bertrand A M, Lyonnet S, Rappaport R, Netchine I (2005). CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab, 90(10): 5621–5626
doi: 10.1210/jc.2004-2474
56 Reisman D, Glaros S, Thompson E A (2009). The SWI/SNF complex and cancer. Oncogene, 28(14): 1653–1668
doi: 10.1038/onc.2009.4
57 Richmond T J, Davey C A (2003). The structure of DNA in the nucleosome core. Nature, 423(6936): 145–150
doi: 10.1038/nature01595
58 Sanlaville D, Verloes A (2007). CHARGE syndrome: an update. Eur J Hum Genet, 15(4): 389–399
doi: 10.1038/sj.ejhg.5201778
59 Santoro R, Li J, Grummt I (2002). The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet, 32(3): 393–396
doi: 10.1038/ng1010
60 Schnetz M P, Bartels C F, Shastri K, Balasubramanian D, Zentner G E, Balaji R, Zhang X, Song L, Wang Z, Laframboise T, Crawford G E, Scacheri P C (2009). Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res, 19(4): 590–601
doi: 10.1101/gr.086983.108
61 Schnetz M P, Handoko L, Akhtar-Zaidi B, Bartels C F, Pereira C F, Fisher A G, Adams D J, Flicek P, Crawford G E, Laframboise T, Tesar P, Wei C L, Scacheri P C (2010). CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet, 6(7): e1001023
doi: 10.1371/journal.pgen.1001023
62 Souriau J, Gimenes M, Blouin C, Benbrik I, Benbrik E, Churakowskyi A, Churakowskyi B (2005). CHARGE syndrome: developmental and behavioral data. Am J Med Genet A, 133A(3): 278–281
doi: 10.1002/ajmg.a.30549
63 Srinivasan S, Armstrong J A, Deuring R, Dahlsveen I K, McNeill H, Tamkun J W (2005). The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development, 132(7): 1623–1635
doi: 10.1242/dev.01713
64 Srinivasan S, Dorighi K M, Tamkun J W (2008). Drosophila Kismet regulates histone H3 lysine 27 methylation and early elongation by RNA polymerase II. PLoS Genet, 4(10): e1000217
doi: 10.1371/journal.pgen.1000217
65 Tellier A L, Cormier-Daire V, Abadie V, Amiel J, Sigaudy S, Bonnet D, de Lonlay-Debeney P, Morrisseau-Durand M P, Hubert P, Michel J L, Jan D, Dollfus H, Baumann C, Labrune P, Lacombe D, Philip N, LeMerrer M, Briard M L, Munnich A, Lyonnet S (1998). CHARGE syndrome: report of 47 cases and review. Am J Med Genet, 76(5): 402–409
doi: 10.1002/(SICI)1096-8628(19980413)76:5<402::AID-AJMG7>3.0.CO;2-O
66 Terriente-Felix A, Molnar C, Gomez-Skarmeta J L, de Celis J F (2011). A conserved function of the chromatin ATPase Kismet in the regulation of hedgehog expression. Dev Biol, 350(2): 382–392
doi: 10.1016/j.ydbio.2010.12.003
67 Therrien M, Morrison D K, Wong A M, Rubin G M (2000). A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila. Genetics, 156(3): 1231–1242
68 Torres-Padilla M E, Parfitt D E, Kouzarides T, Zernicka-Goetz M (2007). Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature, 445(7124): 214–218
doi: 10.1038/nature05458
69 Vissers L E, van Ravenswaaij C M, Admiraal R, Hurst J A, de Vries B B, Janssen I M, van der Vliet W A, Huys E H, de Jong P J, Hamel B C, Schoenmakers E F, Brunner H G, Veltman J A, van Kessel A G (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet, 36(9): 955–957
doi: 10.1038/ng1407
70 Workman J L (2006). Nucleosome displacement in transcription. Genes Dev, 20(15): 2009–2017
doi: 10.1101/gad.1435706
71 Zentner G E, Hurd E A, Schnetz M P, Handoko L, Wang C, Wang Z, Wei C, Tesar P J, Hatzoglou M, Martin D M, Scacheri P C (2010a). CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis. Hum Mol Genet, 19(18): 3491–3501
doi: 10.1093/hmg/ddq265
72 Zentner G E, Layman W S, Martin D M, Scacheri P C (2010b). Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A, 152A(3): 674–686
doi: 10.1002/ajmg.a.33323
Related articles from Frontiers Journals
[1] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[2] Ienglam LEI, Mai Har SHAM, Zhong WANG. ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development[J]. Front Biol, 2012, 7(3): 202-211.
Full text