Please wait a minute...

Frontiers in Biology

Front Biol    2013, Vol. 8 Issue (1) : 109-118     https://doi.org/10.1007/s11515-012-1207-1
REVIEW
Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants
Kundan KUMAR1(), Dhammaprakash Pandhari WANKHEDE2, Alok Krishna SINHA2
1. Department of Plant Soil and Insect Sciences, University of Massachusetts, Amherst MA 01003, USA; 2. National Institute of Plant Genome Research, Aruna Asaf Ali Road New Delhi 110067, India
Download: PDF(182 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Common mechanisms plants use to translate the external stimuli into cellular responses are the activation of mitogen-activated protein kinase (MAPK) cascade. These MAPK cascades are highly conserved in eukaryotes and consist of three subsequently acting protein kinases, MAP kinase kinase kinase (MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) which are linked in various ways with upstream receptors and downstream targets. Plant MAPK cascades regulate numerous processes, including various environmental stresses, hormones, cell division and developmental processes. The number of MAPKKs in Arabidopsis and rice is almost half the number of MAPKs pointing important role of MAPKKs in integrating signals from several MAPKKKs and transducing signals to various MAPKs. The cross talks between different signal transduction pathways are concentrated at the level of MAPKK in the MAPK cascade. Here we discussed the insights into MAPKK mediated response to environmental stresses and in plant growth and development.

Keywords environmental stresses      abiotic stress      biotic stress      mitogen-activated protein kinase kinase      MAPKK      mitogen-activated protein kinase      MAPK      plant signaling     
Corresponding Author(s): KUMAR Kundan,Email:kundan@psis.umass.edu, kknipgr@gmail.com   
Issue Date: 01 February 2013
 Cite this article:   
Kundan KUMAR,Dhammaprakash Pandhari WANKHEDE,Alok Krishna SINHA. Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants[J]. Front Biol, 2013, 8(1): 109-118.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-012-1207-1
http://journal.hep.com.cn/fib/EN/Y2013/V8/I1/109
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kundan KUMAR
Dhammaprakash Pandhari WANKHEDE
Alok Krishna SINHA
Fig.1  A typical MAPK cascade and the correspoding number of genes in and . Mitogen-activated protein kinase (MAPK) pathway is composed of 3 kinases (MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK) that are sequentially activated by phosphorylation. The corresponding number of genes encoding these kinases in and genome in the MAPK cascade are presented in right.
MKKsInvolvementPlantsReferences
MKK1Cold, salt, droughtRiceWen et al., 2002; Kumar et al., 2008
MKK1H2O2ArabidopsisXing et al., 2008
MKK2Cold, saltArabidopsisTeige et al., 2004
MKK4, MKK6Cold, saltRiceKumar et al., 2008
MKK4ArseniteRiceRao et al., 2011
MKK9Salt, dehydrationArabidopsisAlzwiy and Morris, 2007; Xu et al., 2008
MKK10-2ColdRiceKumar et al., 2008
SIMKKSaltAlfaalfaKiegerl et al., 2000
MKK1Innate immunityArabidopsisMészáros et al., 2006
MKK1Non-host resistanceTobaccoTakahashi et al., 2007
MKK1Blast and insect resistanceRiceYou et al., 2007
MEK1/NQK1Resistance to tobacco mosaic virus (TMV)TobaccoLiu et al., 2003
MKK2SA and JAArabidopsisBrader et al., 2007
MKK2, MKK3Pto-mediated resistanceTomatoEkengren et al., 2003
MKK2Various pathogen elicitorsTobaccoYang et al., 2001
MKK3P. syringaeArabidopsisDóczi et al., 2007
MKK4Chitin elicitorRiceKishi-Kaboshi et al., 2010
MKK7P. syringae, H. parasiticaArabidopsisZhang et al., 2007
MKK9Ethylene signaling, Camelexin biosynthesisArabidopsisYoo et al., 2008; Xu et al., 2008
MEK1Cell divisionTobaccoCalderini et al., 2001
MKK3JAArabidopsisTakahashi et al., 2007
MKK4, MKK5Stomatal differentiationArabidopsisWang et al., 2007
SIPKKWounding, ozoneTobaccoGomi et al., 2005
MKK7Auxin transportArabidopsisMou et al., 2002
Tab.1  List of MKKs involved in different biologic processes in plants
1 Alonso J M, Stepanova A N, Solano R, Wisman E, Ferrari S, Ausubel F M, Ecker J R (2003). Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA , 100(5): 2992–2997
doi: 10.1073/pnas.0438070100 pmid:12606727
2 Alzwiy I A, Morris P C (2007). A mutation in the Arabidopsis MAP kinase kinase 9 gene results in enhanced seedling stress tolerance. Plant Sci , 173(3): 302–308
doi: 10.1016/j.plantsci.2007.06.007
3 Andreasson E, Ellis B (2010). Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci , 15(2): 106–113
doi: 10.1016/j.tplants.2009.12.001 pmid:20047850
4 Asai S, Ohta K, Yoshioka H (2008). MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell , 20(5): 1390–1406
doi: 10.1105/tpc.107.055855 pmid:18515503
5 Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez-Gomez L, Boller T, Ausubel F M, Sheen J (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature , 415(6875): 977–983
doi: 10.1038/415977a pmid:11875555
6 Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009). Paternal control of embryonic patterning in Arabidopsis thaliana. Science , 323(5920): 1485–1488
doi: 10.1126/science.1167784 pmid:19286558
7 Bergmann D C, Lukowitz W, Somerville C R (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science , 304(5676): 1494–1497
doi: 10.1126/science.1096014 pmid:15178800
8 Boudsocq M, Willmann M R, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S H, Sheen J (2010). Differential innate immune signalling via Ca2+ sensor protein kinases. Nature , 464(7287): 418–422
doi: 10.1038/nature08794 pmid:20164835
9 Brader G, Djamei A, Teige M, Palva E T, Hirt H (2007). The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant Microbe Interact , 20(5): 589–596
doi: 10.1094/MPMI-20-5-0589 pmid:17506336
10 Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem , 276(21): 18139–18145
doi: 10.1074/jbc.M010621200 pmid:11278711
11 Cardinale F, Meskiene I, Ouaked F, Hirt H (2002). Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. Plant Cell , 14(3): 703–711
pmid:11910015
12 Chang L, Karin M (2001). Mammalian MAP kinase signalling cascades. Nature , 410(6824): 37–40
doi: 10.1038/35065000 pmid:11242034
13 Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker J R (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell , 89(7): 1133–1144
doi: 10.1016/S0092-8674(00)80300-1 pmid:9215635
14 Clark K L, Larsen P B, Wang X, Chang C (1998). Association of the Arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA , 95(9): 5401–5406
doi: 10.1073/pnas.95.9.5401 pmid:9560288
15 Clarke A, Desikan R, Hurst R D, Hancock J T, Neill S J (2000). NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J , 24(5): 667–677
doi: 10.1046/j.1365-313x.2000.00911.x pmid:11123805
16 Dai Y, Wang H, Li B, Huang J, Liu X, Zhou Y, Mou Z, Li J (2006). Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell , 18(2): 308–320
doi: 10.1105/tpc.105.037846 pmid:16377756
17 Dóczi R, Brader G, Pettkó-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007). The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell , 19(10): 3266–3279
doi: 10.1105/tpc.106.050039 pmid:17933903
18 Ekengren S K, Liu Y, Schiff M, Dinesh-Kumar S P, Martin G B (2003). Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J , 36(6): 905–917
doi: 10.1046/j.1365-313X.2003.01944.x pmid:14675454
19 Gadjev I, Vanderauwera S, Gechev T S, Laloi C, Minkov I N, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol , 141(2): 436–445
doi: 10.1104/pp.106.078717 pmid:16603662
20 Gómez-Gómez L, Boller T (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell , 5(6): 1003–1011
pmid:10911994
21 Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H, Soyano T, Sasabe M, Machida Y, Mitsuhara I, Ohashi Y, Seo S (2005). A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol , 46(12): 1902–1914
doi: 10.1093/pcp/pci211 pmid:16207744
22 Hamel L P, Nicole M C, Sritubtim S, Morency M J, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis B E (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci , 11(4): 192–198
doi: 10.1016/j.tplants.2006.02.007 pmid:16537113
23 Huang Y, Li H, Hutchison C E, Laskey J, Kieber J J (2003). Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J , 33(2): 221–233
doi: 10.1046/j.1365-313X.2003.01620.x pmid:12535337
24 Ichimura K, Casais C, Peck S C, Shinozaki K, Shirasu K (2006). MEKK1 is required for MPK4 activation and regulates tissue-specific and temperature-dependent cell death in Arabidopsis. J Biol Chem , 281(48): 36969–36976
doi: 10.1074/jbc.M605319200 pmid:17023433
25 Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J , 24(5): 655–665
doi: 10.1046/j.1365-313x.2000.00913.x pmid:11123804
26 Jonak C, Okrész L, B?gre L, Hirt H (2002). Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol , 5(5): 415–424
doi: 10.1016/S1369-5266(02)00285-6 pmid:12183180
27 Khokhlatchev A V, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E, Cobb M H (1998). Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell , 93(4): 605–615
doi: 10.1016/S0092-8674(00)81189-7 pmid:9604935
28 Kieber J J, Rothenberg M, Roman G, Feldmann K A, Ecker J R (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell , 72(3): 427–441
doi: 10.1016/0092-8674(93)90119-B pmid:8431946
29 Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Ekl?f S, Till S, B?gre L, Hirt H, Meskiene I (2000). SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK. Plant Cell , 12(11): 2247–2258
pmid:11090222
30 Kishi-Kaboshi M, Okada K, Kurimoto L, Murakami S, Umezawa T, Shibuya N, Yamane H, Miyao A, Takatsuji H, Takahashi A, Hirochika H (2010). A rice fungal MAMP-responsive MAPK cascade regulates metabolic flow to antimicrobial metabolite synthesis. Plant J , 63(4): 599–612
doi: 10.1111/j.1365-313X.2010.04264.x pmid:20525005
31 Kumar D, Klessig D F (2000). Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. Mol Plant Microbe Interact , 13(3): 347–351
doi: 10.1094/MPMI.2000.13.3.347 pmid:10707361
32 Kumar K, Rao K P, Biswas D K, Sinha A K (2011). Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm. Plant Signal Behav , 6(3): 316–320
doi: 10.4161/psb.6.3.13063 pmid:21178395
33 Kumar K, Rao K P, Sharma P, Sinha A K (2008). Differential regulation of rice mitogen activated protein kinase kinase (MKK) by abiotic stress. Plant Physiol Biochem , 46(10): 891–897
doi: 10.1016/j.plaphy.2008.05.014 pmid:18619847
34 Lee J S, Huh K W, Bhargava A, Ellis B E (2008). Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules. Plant Signal Behav , 3(12): 1037–1041
doi: 10.4161/psb.3.12.6848 pmid:19513235
35 Liu Y, Jin H, Yang K Y, Kim C Y, Baker B, Zhang S (2003). Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J , 34(2): 149–160
doi: 10.1046/j.1365-313X.2003.01709.x pmid:12694591
36 Liu Y, Zhang S (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell , 16(12): 3386–3399
doi: 10.1105/tpc.104.026609 pmid:15539472
37 Liu Y K, Liu Y B, Zhang M Y, Li D Q (2010). Stomatal development and movement: the roles of MAPK signaling. Plant Signal Behav , 5(10): 1176–1180
doi: 10.4161/psb.5.10.12757 pmid:20855958
38 MacRobbie E A, Kurup S (2007). Signalling mechanisms in the regulation of vacuolar ion release in guard cells. New Phytol , 175(4): 630–640
doi: 10.1111/j.1469-8137.2007.02131.x pmid:17688580
39 MAPK Group (2002). Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci , 7(7): 301–308
doi: 10.1016/S1360-1385(02)02302-6 pmid:12119167
40 Matsuoka D, Nanmori T, Sato K I, Fukami Y, Kikkawa U, Yasuda T (2002). Activation of AtMEK1, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant J , 29(5): 637–647
doi: 10.1046/j.0960-7412.2001.01246.x pmid:11874576
41 Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, B?gre L (2006). The Arabidopsis MAP kinase kinase MKK1 participates in defence responses to the bacterial elicitor flagellin. Plant J , 48(4): 485–498
doi: 10.1111/j.1365-313X.2006.02888.x pmid:17059410
42 Mockaitis K, Howell S H (2000). Auxin induces mitogenic activated protein kinase (MAPK) activation in roots of Arabidopsis seedlings. Plant J , 24(6): 785–796
doi: 10.1046/j.1365-313x.2000.00921.x pmid:11135112
43 Mou Z, Wang X, Fu Z, Dai Y, Han C, Ouyang J, Bao F, Hu Y, Li J (2002). Silencing of phosphoethanolamine N-methyltransferase results in temperature-sensitive male sterility and salt hypersensitivity in Arabidopsis. Plant Cell , 14(9): 2031–2043
doi: 10.1105/tpc.001701 pmid:12215503
44 Munnik T, Ligterink W, Meskiene I, Calderini O, Beyerly J, Musgrave A, Hirt H (1999). Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. Plant J , 20(4): 381–388
doi: 10.1046/j.1365-313x.1999.00610.x pmid:10607291
45 Nakagami H, Soukupová H, Schikora A, Zársky V, Hirt H (2006). A Mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem , 281(50): 38697–38704
doi: 10.1074/jbc.M605293200 pmid:17043356
46 Neill S J, Desikan R, Clarke A, Hurst R D, Hancock J T (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot , 53(372): 1237–1247
doi: 10.1093/jexbot/53.372.1237 pmid:11997372
47 Pedley K F, Martin G B (2004). Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J Biol Chem , 279(47): 49229–49235
doi: 10.1074/jbc.M410323200 pmid:15371431
48 Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H B, Lacy M, Austin M J, Parker J E, Sharma S B, Klessig D F, Martienssen R, Mattsson O, Jensen A B, Mundy J (2000). Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell , 103(7): 1111–1120
doi: 10.1016/S0092-8674(00)00213-0 pmid:11163186
49 Pitzschke A, Hirt H (2006). Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol , 141(2): 351–356
doi: 10.1104/pp.106.079160 pmid:16760487
50 Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar S P (2009). MAPK target networks in Arabidopsis thaliana revealed using functional protein microarrays. Genes Dev , 23(1): 80–92
doi: 10.1101/gad.1740009 pmid:19095804
51 Qiu J L, Zhou L, Yun B W, Nielsen H B, Fiil B K, Petersen K, Mackinlay J, Loake G J, Mundy J, Morris P C (2008). Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol , 148(1): 212–222
doi: 10.1104/pp.108.120006 pmid:18599650
52 Rao K P, Richa T, Kumar K, Raghuram B, Sinha A K (2010). In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res , 17(3): 139–153
doi: 10.1093/dnares/dsq011 pmid:20395279
53 Rao K P, Vani G, Kumar K, Wankhede D P, Misra M, Gupta M, Sinha A K (2011). Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys , 506(1): 73–82
doi: 10.1016/j.abb.2010.11.006 pmid:21081102
54 Rodriguez M C, Petersen M, Mundy J (2010). Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol , 61(1): 621–649
doi: 10.1146/annurev-arplant-042809-112252 pmid:20441529
55 Saito N, Nakamura Y, Mori I C, Murata Y (2009). Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. Plant Signal Behav , 4(2): 119–120
doi: 10.4161/psb.4.2.7537 pmid:19649186
56 Seo S, Sano H, Ohashi Y (1999). Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco mitogen-activated protein kinase. Plant Cell , 11(2): 289–298
pmid:9927645
57 Sinha A K, Jaggi M, Raghuram B, Tuteja N (2011). Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav , 6(2): 196–203
doi: 10.4161/psb.6.2.14701 pmid:21512321
58 Suarez-Rodriguez M C, Adams-Phillips L, Liu Y, Wang H, Su S H, Jester P J, Zhang S, Bent A F, Krysan P J (2007). MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol , 143(2): 661–669
doi: 10.1104/pp.106.091389 pmid:17142480
59 Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007). The mitogen-activated protein kinase cascade MKK3-MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell , 19(3): 805–818
doi: 10.1105/tpc.106.046581 pmid:17369371
60 Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell , 15(1): 141–152
doi: 10.1016/j.molcel.2004.06.023 pmid:15225555
61 Thoma I, Loeffler C, Sinha A K, Gupta M, Krischke M, Steffan B, Roitsch T, Mueller M J (2003). Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J , 34(3): 363–375
doi: 10.1046/j.1365-313X.2003.01730.x pmid:12713542
62 Turner J G, Ellis C, Devoto A (2002). The jasmonate signal pathway. Plant Cell , 14(Suppl): S153–S164
pmid:12045275
63 Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol , 139(2): 806–821
doi: 10.1104/pp.105.065896 pmid:16183842
64 Wang H, Ngwenyama N, Liu Y, Walker J C, Zhang S (2007). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell , 19(1): 63–73
doi: 10.1105/tpc.106.048298 pmid:17259259
65 Wang P, Du Y, Li Y, Ren D, Song C P (2010). Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell , 22(9): 2981–2998
doi: 10.1105/tpc.109.072959 pmid:20870959
66 Wen J Q, Oono K, Imai R (2002). Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol , 129(4): 1880–1891
doi: 10.1104/pp.006072 pmid:12177502
67 Whitmarsh A J (2007). Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta , 1773(8): 1285–1298
doi: 10.1016/j.bbamcr.2006.11.011 pmid:17196680
68 Xing Y, Jia W, Zhang J (2008). AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J , 54(3): 440–451
doi: 10.1111/j.1365-313X.2008.03433.x pmid:18248592
69 Xiong L, Yang Y (2003). Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell , 15(3): 745–759
doi: 10.1105/tpc.008714 pmid:12615946
70 Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008). Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem , 283(40): 26996–27006
doi: 10.1074/jbc.M801392200 pmid:18693252
71 Yamamoto A, Katou S, Yoshioka H, Doke N, Kawakita K (2004). Involvement of nitric oxide generation in hypersensitive cell death induced by elicitin in tobacco cell suspension culture. J Gen Plant Pathol , 70(2): 85–92
doi: 10.1007/s10327-003-0094-3
72 Yang K Y, Liu Y, Zhang S (2001). Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA , 98(2): 741–746
doi: 10.1073/pnas.98.2.741 pmid:11209069
73 Yoo S D, Cho Y H, Tena G, Xiong Y, Sheen J (2008). Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature , 451(7180): 789–795
doi: 10.1038/nature06543 pmid:18273012
74 You M K, Oh S L, Ok S H, Cho S K, Shin H Y, Jeung J U, Shin J S (2007). Identification of putative MAPK Kinase in Oryza minuta and O. sativa responsive to biotic stresses. Mol Cell , 23(1): 108–114
75 Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M (2007a). Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol , 175(1): 36–50
doi: 10.1111/j.1469-8137.2007.02071.x pmid:17547665
76 Zhang S, Klessig D F (1998). The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proc Natl Acad Sci USA , 95(12): 7225–7230
doi: 10.1073/pnas.95.12.7225 pmid:9618567
77 Zhang X, Dai Y, Xiong Y, DeFraia C, Li J, Dong X, Mou Z (2007). Overexpression of Arabidopsis MAP kinase kinase 7 leads to activation of plant basal and systemic acquired resistance. Plant J , 52(6): 1066–1079
doi: 10.1111/j.1365-313X.2007.03294.x pmid:17908155
Related articles from Frontiers Journals
[1] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[2] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[3] Bin XING, Guoying BING. Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease[J]. Front Biol, 2012, 7(5): 404-411.
[4] YUAN Wuzhou, HUANG Xinqiong, ZHU Chuanbing, WANG Yuequn, LI Yongqing, WU Xiushan. Role of the domains of human gene ZNF569 in MAPK pathway[J]. Front. Biol., 2006, 1(4): 357-361.
[5] ZHANG Hao, WANG Xiangrong. Leaf developmental stability of Platanus acerifolia under urban environmental stress and its implication as an environmental indicator[J]. Front. Biol., 2006, 1(4): 411-417.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed