Please wait a minute...

Frontiers in Biology

Front Biol    2013, Vol. 8 Issue (1) : 32-49     https://doi.org/10.1007/s11515-012-1199-x
REVIEW
Approaches in extracellular matrix engineering for determination of adhesion molecule mediated single cell function
Chantal E. AYRES-SANDER, Anjelica L. GONZALEZ()
Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
Download: PDF(564 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The native extracellular matrix (ECM) and the cells that comprise human tissues are together engaged in a complex relationship; cells alter the composition and structure of the ECM to regulate the material and biologic properties of the surrounding environment while the composition and structure of the ECM modulates cellular processes that maintain healthy tissue and repair diseased tissue. This reciprocal relationship occurs via cell adhesion molecules (CAMs) such as integrins, selectins, cadherins and IgSF adhesion molecules. To study these cell-ECM interactions, researchers use two-dimensional substrates or three-dimensional matrices composed of native proteins or bioactive peptide sequences to study single cell function. While two-dimensional substrates provide valuable information about cell-ECM interactions, three-dimensional matrices more closely mimic the native ECM; cells cultured in three-dimensional matrices have demonstrated greater cell movement and increased integrin expression when compared to cells cultured on two-dimensional substrates. In this article we review a number of cellular processes (adhesion, motility, phagocytosis, differentiation and survival) and examine the cell adhesion molecules and ECM proteins (or bioactive peptide sequences) that mediate cell functionality.

Keywords Extracellular matrix      integrins      biomaterials      natural polymers      peptide sequences      RGD     
Corresponding Author(s): GONZALEZ Anjelica L.,Email:anjelica.gonzalez@yale.edu   
Issue Date: 01 February 2013
 Cite this article:   
Chantal E. AYRES-SANDER,Anjelica L. GONZALEZ. Approaches in extracellular matrix engineering for determination of adhesion molecule mediated single cell function[J]. Front Biol, 2013, 8(1): 32-49.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-012-1199-x
http://journal.hep.com.cn/fib/EN/Y2013/V8/I1/32
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chantal E. AYRES-SANDER
Anjelica L. GONZALEZ
Fig.1  Overview of cell adhesion molecules.
Major proteins of the native ECM
ProteinPhysiologic locationFunctionMajor cell adhesion peptide sequence
CollagenWidely distributedStructure Cell-matrix interactionsGFOGER (Gly-Phe-O-Gly-Glu-Arg)
ElastinElastic tissues (arteries, veins, ligaments, lung, skin, intestines, bladder)StructureElasticityVGVAPG (Val-Gly-Val-Ala-Pro-Gly)
FibronectinWidely distributedBlood clotting Cell-matrix interactions Matrix-matrix nteractionsRGDS (Arg-Gly-Asp-Ser) LDV (Leu-Asp-Val)
LamininBasal laminaStructure Cell-matrix interactionsIKVAV (Ile-Lys-Val-Ala-Val) YIGSR (Tyr-Ile-Gly-Ser-Arg)
Tab.1  Major components of the native ECM that are commonly used for studying cell-ECM interactions. Adapted from ()
Fig.2  SEM images of a PEG hydrogel. PEG hydrogels were freeze-dried and gold sputter coated in preparation for SEM imaging.Left: approximately 2800x magnification, Right: approximately 22,000x magnification.
Fig.3  SEM images of electrospun collagen. Fiber diameter can be controlled by the initial electrospinning starting concentration; increased starting concentrations result in increased fiber diameter. Type I collagen was solubilized in 2,2,2-Trifluoroethanol and electrospun at starting concentrations of (A) 40 mg/mL, (B) 60 mg/mL, (C) 80 mg/mL and (D) 100 mg/mL. All images are 2000x magnification.
Fig.4  2D surfaces vs 3D matrices. 3D matrices more closely approximate the native ECM environment and induce cell reactions and responses that mimic those . Cells cultured on 3D matrices exhibit increased cell movement and integrin expression when compared to cells cultured on 2D surfaces. Labeling: ‘x’ on the cells denotes cell adhesion molecules.
Fig.5  Schematic of cell function as mediated by specific cell adhesion molecules and adhesion protein/peptide sequences. Labeling: α and β denotes integrins, S denotes selectins, FAK denotes focal adhesion kinase and PKB denotes protein kinase B.
1 Abraham L C, Dice J F, Finn P F, Mesires N T, Lee K, Kaplan D L (2007). Extracellular matrix remodeling—methods to quantify cell-matrix interactions. Biomaterials , 28(2): 151–161
doi: 10.1016/j.biomaterials.2006.07.001 pmid:16893566
2 Abu-Rub M T, Billiar K L, Van Es M H, Knight A, Rodriguez B J, Zeugolis D I, McMahon S, Windebank A J, Pandit A (2011). Nano-textured self-assembled aligned hydrogels promote directional neurite guidance and overcome inhibition by myelin associated glycoprotein. Soft Matter , 7(6): 2770–2781
doi: 10.1039/c0sm01062f
3 Agrez M V, Bates R C, Boyd A W, Burns G F (1991). Arg-Gly-Asp-containing peptides expose novel collagen receptors on fibroblasts: implications for wound healing. Cell Regul , 2(12): 1035–1044
pmid:1666304
4 Alvarez-Perez M A, Guarino V, Cirillo V, Ambrosio L (2010). Influence of gelatin cues in PCL electrospun membranes on nerve outgrowth. Biomacromolecules , 11(9): 2238–2246
doi: 10.1021/bm100221h pmid:20690634
5 Andukuri A, Minor W P, Kushwaha M, Anderson J M, Jun H W, Jun H W (2010). Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells. Nanomedicine , 6(2): 289–297
doi: 10.1016/j.nano.2009.09.004 pmid:19800987
6 Anselme K (2000). Osteoblast adhesion on biomaterials. Biomaterials , 21(7): 667–681
doi: 10.1016/S0142-9612(99)00242-2 pmid:10711964
7 Ayres C E, Bowlin G L, Henderson S C, Taylor L, Shultz J, Alexander J, Telemeco T A, Simpson D G (2006). Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform. Biomaterials , 27(32): 5524–5534
doi: 10.1016/j.biomaterials.2006.06.014 pmid:16859744
8 Ayres C E, Bowlin G L, Pizinger R, Taylor L T, Keen C A, Simpson D G (2007). Incremental changes in anisotropy induce incremental changes in the material properties of electrospun scaffolds. Acta Biomater , 3(5): 651–661
doi: 10.1016/j.actbio.2007.02.010 pmid:17513181
9 Barbani N, Guerra G D, Cristallini C, Urciuoli P, Avvisati R, Sala A, Rosellini E (2011). Hydroxyapatite/gelatin/gellan sponges as nanocomposite scaffolds for bone reconstruction. J Mater Sci Mater Med , (Epub ahead of print)
doi: 10.1007/s10856-011-4505-2 pmid:22116662
10 Barczyk M, Carracedo S, Gullberg D (2010). Integrins. Cell Tissue Res , 339(1): 269–280
doi: 10.1007/s00441-009-0834-6 pmid:19693543
11 Barnes C P, Sell S A, Boland E D, Simpson D G, Bowlin G L (2007). Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev , 59(14): 1413–1433
doi: 10.1016/j.addr.2007.04.022 pmid:17916396
12 Barnhart E L, Lee K C, Keren K, Mogilner A, Theriot J A (2011). An adhesion-dependent switch between mechanisms that determine motile cell shape. PLoS Biol , 9(5): e1001059
doi: 10.1371/journal.pbio.1001059 pmid:21559321
13 Béduer A, Vieu C, Arnauduc F, Sol J C, Loubinoux I, Vaysse L (2012). Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials , 33(2): 504–514
doi: 10.1016/j.biomaterials.2011.09.073 pmid:22014459
14 Benton G, Kleinman H K, Arnaoutova I (2011). Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. International Journal of Cancer , 128(8):1751– 1757
15 Berndt P, Fields G B, Tirrell M (1995). Synthetic lipidation of peptides and amino acids: monolayer structure and properties. J Am Chem Soc , 117(37): 9515–9522
doi: 10.1021/ja00142a019
16 Bhattarai N, Edmondson D, Veiseh O, Matsen F A, Zhang M (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials , 26(31): 6176–6184
doi: 10.1016/j.biomaterials.2005.03.027 pmid:15885770
17 Bigi A, Panzavolta S, Rubini K (2004). Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials , 25(25): 5675–5680
doi: 10.1016/j.biomaterials.2004.01.033 pmid:15159084
18 Brown E J (1986). The role of extracellular matrix proteins in the control of phagocytosis. J Leukoc Biol , 39(5): 579–591
pmid:3517208
19 Chaubey A, Ross K J, Leadbetter R M, Burg K J (2008). Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res B Appl Biomater , 84B(1): 70–78
doi: 10.1002/jbm.b.30846 pmid:17455278
20 Cheema U, Ananta M, Mudera V (2011). Collagen: applications of a natural polymer in regenerative medicine. Regenerative Medicine and Tissue Engineering—Cells and Biomaterials . Eberli D, Ed. In Tech. 287–300
21 Chen V J, Ma P X (2004). Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials , 25(11): 2065–2073
doi: 10.1016/j.biomaterials.2003.08.058 pmid:14741621
22 Chen Y J, Chung M C, Jane Yao C C, Huang C H, Chang H H, Jeng J H, Young T H (2012). The effects of acellular amniotic membrane matrix on osteogenic differentiation and ERK1/2 signaling in human dental apical papilla cells. Biomaterials , 33(2): 455–463
doi: 10.1016/j.biomaterials.2011.09.065 pmid:21993232
23 Colognato H, Yurchenco P D (2000). Form and function: the laminin family of heterotrimers. Dev Dyn , 218(2): 213–234
doi: 10.1002/(SICI)1097-0177(200006)218:2<213::AID-DVDY1>3.0.CO;2-R pmid:10842354
24 Coxon A, Rieu P, Barkalow F J, Askari S, Sharpe A H, von Andrian U H, Arnaout M A, Mayadas T N (1996). A novel role for the β2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity , 5(6): 653–666
doi: 10.1016/S1074-7613(00)80278-2 pmid:8986723
25 Cybulsky M I, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos J C, Connelly P W, Milstone D S (2001). A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest , 107(10): 1255–1262
doi: 10.1172/JCI11871 pmid:11375415
26 Davis G E (1992). Affinity of integrins for damaged extracellular matrix: alpha v beta 3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun , 182(3): 1025–1031
doi: 10.1016/0006-291X(92)91834-D pmid:1540151
27 Duca L, Floquet N, Alix A J, Haye B, Debelle L (2004). Elastin as a matrikine. Crit Rev Oncol Hematol , 49(3): 235–244
doi: 10.1016/j.critrevonc.2003.09.007 pmid:15036263
28 Friedl P (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol , 16(1): 14–23
doi: 10.1016/j.ceb.2003.11.001 pmid:15037300
29 Friedl P, Br?cker E B (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci , 57(1): 41–64
doi: 10.1007/s000180050498 pmid:10949580
30 Friedl P, Hegerfeldt Y, Tusch M (2004). Collective cell migration in morphogenesis and cancer. Int J Dev Biol , 48(5-6): 441–449
doi: 10.1387/ijdb.041821pf pmid:15349818
31 Ghibaudo M, Trichet L, Le Digabel J, Richert A, Hersen P, Ladoux B (2009). Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophys J , 97(1): 357–368
doi: 10.1016/j.bpj.2009.04.024 pmid:19580774
32 Gobin A S, West J L (2002). Cell migration through defined, synthetic extracellular matrix analogues. FASEB J , 16(7): 751–753
pmid:11923220
33 Golias C, Batistatou A, Bablekos G, Charalabopoulos A, Peschos D, Mitsopoulos P, Charalabopoulos K (2011). Physiology and pathophysiology of selectins, integrins, and IgSF cell adhesion molecules focusing on inflammation. A paradigm model on infectious endocarditis. Cell Commun Adhes , 18(3): 19–32
doi: 10.3109/15419061.2011.606381 pmid:21892874
34 Gonzalez A L, El-Bjeirami W, West J L, McIntire L V, Smith C W (2006). Transendothelial migration enhances integrin-dependent human neutrophil chemokinesis. J Leukoc Biol , 81(3): 686–695
doi: 10.1189/jlb.0906553 pmid:17164427
35 Gonzalez A L, Gobin A S, West J L, McIntire L V, Smith C W (2004). Integrin interactions with immobilized peptides in polyethylene glycol diacrylate hydrogels. Tissue Eng , 10(11–12): 1775–1786
doi: 10.1089/ten.2004.10.1775 pmid:15684686
36 Grinnell F (1984). Fibronectin and wound healing. J Cell Biochem , 26(2): 107–116
doi: 10.1002/jcb.240260206 pmid:6084665
37 Gumbiner B M (1996). Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell , 84(3): 345–357
doi: 10.1016/S0092-8674(00)81279-9 pmid:8608588
38 Gumbiner B M (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol , 6(8): 622–634
doi: 10.1038/nrm1699 pmid:16025097
39 Guo L T, Zhang X U, Kuang W, Xu H, Liu L A, Vilquin J T, Miyagoe-Suzuki Y, Takeda S, Ruegg M A, Wewer U M, Engvall E (2003). Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. Neuromuscul Disord , 13(3): 207–215
doi: 10.1016/s0960-8966(02)00266-3 pmid:12609502
40 Handley M E, Pollara G, Chain B M, Katz D R (2005). The use of targeted microbeads for quantitative analysis of the phagocytic properties of human monocyte-derived dendritic cells. J Immunol Methods , 297(1–2): 27–38
doi: 10.1016/j.jim.2004.11.009 pmid:15777928
41 Hayashi Y, Shumsky J S, Connors T, Otsuka T, Fischer I, Tessler A, Murray M (2005). Immunosuppression with either cyclosporine a or FK506 supports survival of transplanted fibroblasts and promotes growth of host axons into the transplant after spinal cord injury. J Neurotrauma , 22(11): 1267–1281
doi: 10.1089/neu.2005.22.1267 pmid:16305315
42 Hughes C S, Postovit L M, Lajoie G A (2010). Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics , 10(9): 1886–1890
doi: 10.1002/pmic.200900758 pmid:20162561
43 Huo Y, Hafezi-Moghadam A, Ley K (2000). Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ Res , 87(2): 153–159
pmid:10904000
44 Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004). Recent advances in polymer nanofibers. J Nanosci Nanotechnol , 4(1–2): 52–65
pmid:15112541
45 Jha B S, Ayres C E, Bowman J R, Telemeco T A, Sell S A, Bowlin G L, Simpson DG (2011). Electrospun collagen: a tissue engineering scaffold with unique functional properties in a wide variety of applications. J Nanomaterials ,
doi: 10.1155/2011/348268
46 Ju Y M, Choi J S, Atala A, Yoo J J, Lee S J (2010). Bilayered scaffold for engineering cellularized blood vessels. Biomaterials , 31(15): 4313–4321
doi: 10.1016/j.biomaterials.2010.02.002 pmid:20188414
47 Kafi A M, El-Said W A, Kim T H, Choi J W (2012). Cell adhesion, spreading, and proliferation on surface functionalized with RGD nanopillar arrays. Biomaterials , 33(3):731–739
48 Komoriya A, Green L J, Mervic M, Yamada S S, Yamada K M, Humphries M J (1991). The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem , 266(23): 15075–15079
pmid:1869542
49 Koo W, Ahn S J, Zhang H, Wang J C, Yim E K F (2011). Human corneal keratocyte response tomicro and nano-gratings on chitosan and PDMS. Cell MolBioeng. , 4(3): 399–410
50 Kundu A K, Putnam A J (2006). Vitronectin and collagen I differentially regulate osteogenesis in mesenchymal stem cells. Biochem Biophys Res Commun , 347(1): 347–357
doi: 10.1016/j.bbrc.2006.06.110 pmid:16815299
51 Ledger P W, Uchida N, Tanzer M L (1980). Immunocytochemical localization of procollagen and fibronectin in human fibroblasts: effects of the monovalent ionophore, monensin. J Cell Biol , 87(3): 663–671
doi: 10.1083/jcb.87.3.663 pmid:7007394
52 Lee K Y, Mooney D J (2001). Hydrogels for tissue engineering. Chem Rev , 101(7): 1869–1880
doi: 10.1021/cr000108x pmid:11710233
53 Lee S H, Moon J J, Miller J S, West J L (2007). Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration. Biomaterials , 28(20): 3163–3170
doi: 10.1016/j.biomaterials.2007.03.004 pmid:17395258
54 Long M, Sato M, Lim C T, Wu J, Adachi T, Inoue Y (2011). Advances in experiments in modeling in micro- and nano- biomechanics: A mini review. Cell Mol Bioeng , 4(3): 327–339
55 Lü S H, Lin Q, Liu Y N, Gao Q, Hao T, Wang Y, Zhou J, Wang H, Du Z, Wu J, Wang C Y (2011). Self-assembly of renal cells into engineered renal tissues in collagen/Matrigel scaffold in vitro. J Tissue Eng Regen Med : N/A (Epub ahead of print)
doi: 10.1002/term.484 pmid:22052853
56 Ma P X, Zhang R (1999). Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res , 46(1): 60–72
doi: 10.1002/(SICI)1097-4636(199907)46:1<60::AID-JBM7>3.0.CO;2-H pmid:10357136
57 Ma P X, Zhang R, Xiao G, Franceschi R (2001). Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res , 54(2): 284–293
doi: 10.1002/1097-4636(200102)54:2<284::AID-JBM16>3.0.CO;2-W pmid:11093189
58 Ma Z, Kotaki M, Inai R, Ramakrishna S (2005). Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng , 11(1–2): 101–109
doi: 10.1089/ten.2005.11.101 pmid:15738665
59 Macrae E K, Pryzwansky K B (1984). Phagocytosis of zymosan by human neutrophils. Carlsberg Res Commun , 49(2): 315–322
doi: 10.1007/BF02913959
60 Maheshwari G, Brown G, Lauffenburger D A, Wells A, Griffith L G (2000). Cell adhesion and motility depend on nanoscale RGD clustering. J Cell Sci , 113(Pt 10): 1677–1686
pmid:10769199
61 Man S, Tucky B, Bagheri N, Li X, Kochar R, Ransohoff R M (2009). alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. J Neuroimmunol , 210(1–2): 92–99
doi: 10.1016/j.jneuroim.2009.03.008 pmid:19345424
62 Martins-Green M (1997). The Dynamics of Cell-ECM Interactions with Implications for Tissue Engineering. Principles of Tissue Engineering . Lanza R, Langer R, Chick W, Eds. R.G. Landes Company: New York. 23–46
63 Matter M L, Zhang Z, Nordstedt C, Ruoslahti E (1998). The α5β1 integrin mediates elimination of amyloid-β peptide and protects against apoptosis. J Cell Biol , 141(4): 1019–1030
doi: 10.1083/jcb.141.4.1019 pmid:9585419
64 Matthews J A, Wnek G E, Simpson D G, Bowlin G L (2002). Electrospinning of collagen nanofibers. Biomacromolecules , 3(2): 232–238
doi: 10.1021/bm015533u pmid:11888306
65 McClure M J, Sell S A, Simpson D G, Walpoth B H, Bowlin G L (2010). A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen: a preliminary study. Acta Biomater , 6(7): 2422–2433
doi: 10.1016/j.actbio.2009.12.029 pmid:20060934
66 McCracken K W, Howell J C, Wells J M, Spence J R (2011). Generating human intestinal tissue from pluripotent stem cells in vitro. Nat Protoc , 6(12): 1920–1928
doi: 10.1038/nprot.2011.410 pmid:22082986
67 Meredith J E Jr, Fazeli B, Schwartz M A (1993). The extracellular matrix as a cell survival factor. Mol Biol Cell , 4(9): 953–961
pmid:8257797
68 Meshel A S, Wei Q, Adelstein R S, Sheetz M P (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat Cell Biol , 7(2): 157–164
doi: 10.1038/ncb1216 pmid:15654332
69 Miller C, George S, Niklason L (2010). Developing a tissue-engineered model of the human bronchiole. J Tissue Eng Regen Med , 4(8): 619–627
doi: 10.1002/term.277 pmid:20603896
70 Nathan C, Srimal S, Farber C, Sanchez E, Kabbash L, Asch A, Gailit J, Wright S D (1989). Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18 integrins. J Cell Biol , 109(3): 1341–1349
doi: 10.1083/jcb.109.3.1341 pmid:2475511
71 Newman S L, Tucci M A (1990). Regulation of human monocyte/macrophage function by extracellular matrix. Adherence of monocytes to collagen matrices enhances phagocytosis of opsonized bacteria by activation of complement receptors and enhancement of Fc receptor function. J Clin Invest , 86(3): 703–714
doi: 10.1172/JCI114766 pmid:2168442
72 Norton L W, Park J, Babensee J E (2010). Biomaterial adjuvant effect is attenuated by anti-inflammatory drug delivery or material selection. J Control Release , 146(3): 341–348
doi: 10.1016/j.jconrel.2010.05.032 pmid:20595029
73 Paik D C, Saito L Y, Sugirtharaj D D, Holmes J W (2006). Nitrite-induced cross-linking alters remodeling and mechanical properties of collagenous engineered tissues. Connect Tissue Res , 47(3): 163–176
doi: 10.1080/03008200600721569 pmid:16753810
74 Parkhurst M R, Saltzman W M (1992). Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration. Biophys J , 61(2): 306–315
doi: 10.1016/S0006-3495(92)81838-6 pmid:1547321
75 Partin A W, Schoeniger J S, Mohler J L, Coffey D S (1989). Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc Natl Acad Sci USA , 86(4): 1254–1258
doi: 10.1073/pnas.86.4.1254 pmid:2919174
76 Peppas N A (2004). Hydrogels. In Biomaterials Science, 2nd Edition. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, Eds. Elsevier Academic Press , 100–106
77 Petersen T H, Calle E A, Zhao L,Lee E J, Gui L, Raredon M B, Gavrilov K, Yi T, Zhuang Z W, Breuer C, Herzog E, Niklason L E (2010). Tissue-engineered lungs for in vivo implantation. Science , 329(5991): 538–541
doi: 10.1126/science.1189345 pmid:20576850
78 Pierschbacher M D, Ruoslahti E (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature , 309(5963): 30–33
doi: 10.1038/309030a0 pmid:6325925
79 Pluskota E, Soloviev D A, Szpak D, Weber C, Plow E F (2008). Neutrophil apoptosis: selective regulation by different ligands of integrin alphaMbeta2. J Immunol , 181(5): 3609–3619
pmid:18714035
80 Ricard-Blum S (2011). The collagen family. Cold Spring Harb Perspect Biol , 3(1): a004978
doi: 10.1101/cshperspect.a004978 pmid:21421911
81 Roca-Cusachs P, Gauthier N C, Del Rio A, Sheetz M P (2009). Clustering of alpha5beta1 integrins determines adhesion strength whereas alphavbeta3 and talin enable mechanotransduction. Proc Natl Acad Sci USA , 22(106): 16245–16250
doi: 10.1073/pnas.0902818106
82 Rodgers U R, Weiss A S (2005). Cellular interactions with elastin. Pathol Biol (Paris) , 53(7): 390–398
doi: 10.1016/j.patbio.2004.12.022 pmid:16085115
83 Rogers T H, Babensee J E (2011). The role of integrins in the recognition and response of dendritic cells to biomaterials. Biomaterials , 32(5): 1270–1279
doi: 10.1016/j.biomaterials.2010.10.014 pmid:21030075
84 Roh J D, Sawh-Martinez R, Brennan M P, Jay S M, Devine L, Rao D A, Yi T, Mirensky T L, Nalbandian A, Udelsman B, Hibino N, Shinoka T, Saltzman W M, Snyder E, Kyriakides T R, Pober J S, Breuer C K (2010). Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci USA , 107(10): 4669–4674
doi: 10.1073/pnas.0911465107 pmid:20207947
85 Rubel C, Fernández G C, Dran G, Bompadre M B, Isturiz M A, Palermo M S (2001). Fibrinogen promotes neutrophil activation and delays apoptosis. J Immunol , 166(3): 2002–2010
pmid:11160249
86 Ruoslahti E (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol , 12(1): 697–715
doi: 10.1146/annurev.cellbio.12.1.697 pmid:8970741
87 Saltzman W M, Livingston T L, Parkhurst M R (1999). Antibodies to CD18 influence neutrophil migration through extracellular matrix. J Leukoc Biol , 65(3): 356–363
pmid:10080540
88 Saltzman W M, Parkhurst M R, Parsons-Wingerter P, Zhu W H (1992). Three-dimensional cell cultures mimic tissues. Ann N Y Acad Sci , 665(665): 259–273
doi: 10.1111/j.1749-6632.1992.tb42590.x pmid:1416608
89 Schwarbauer JE, DeSimone DW (2011). Fibronectins, their fibrillogenesis and in vivo Functions. Prespectives in Biology, Cold Spring Harbor, USA
90 Sell S A, Wolfe P S, Garg K, McCool J M, Rodriguez I A, Bowlin G L (2010). The use of natural polymers in tissue engineering: A focus on electrospun extracellular matrix analogues. Polymers. , 2(4): 522–553
doi: 10.3390/polym2040522
91 Shepherd B R, Enis D R, Wang F, Suarez Y, Pober J S, Schechner J S (2006). Vascularization and engraftment of a human skin substitute using circulating progenitor cell-derived endothelial cells. FASEB J , 20(10): 1739–1741
doi: 10.1096/fj.05-5682fje pmid:16807367
92 Simon-Assmann P, Orend G, Mammadova-Bach E, Spenlé C, Lefebvre O (2011). Role of laminins in physiological and pathological angiogenesis. Int J Dev Biol , 55(4–5): 455–465
doi: 10.1387/ijdb.103223ps pmid:21858771
93 Simpson D G, Terracio L, Terracio M, Price R L, Turner D C, Borg T K (1994). Modulation of cardiac myocyte phenotype in vitro by the composition and orientation of the extracellular matrix. J Cell Physiol , 161(1): 89–105
doi: 10.1002/jcp.1041610112 pmid:7929612
94 Singer A J, Clark R A (1999). Cutaneous wound healing. N Engl J Med , 341(10): 738–746
doi: 10.1056/NEJM199909023411006 pmid:10471461
95 Singh P, Carraher C, Schwarzbauer J E (2010). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol , 26(1): 397–419
doi: 10.1146/annurev-cellbio-100109-104020 pmid:20690820
96 Sniadecki N J, Anguelouch A, Yang M T, Lamb C M, Liu Z, Kirschner S B, Liu Y, Reich D H, Chen C S (2007). Magnetic microposts as an approach to apply forces to living cells. Proc Natl Acad Sci USA , 104(37): 14553–14558
doi: 10.1073/pnas.0611613104 pmid:17804810
97 Stupack D G, Cheresh D A (2004). Integrins and angiogenesis. Curr Top Dev Biol , 64: 207–238
doi: 10.1016/S0070-2153(04)64009-9 pmid:15563949
98 Sugawara K, Tsuruta D, Ishii M, Jones J C, Kobayashi H (2008). Laminin-332 and -511 in skin. Exp Dermatol , 17(6): 473–480
doi: 10.1111/j.1600-0625.2008.00721.x pmid:18474082
99 Tan J, Saltzman W M (2002). Topographical control of human neutrophil motility on micropatterned materials with various surface chemistry. Biomaterials , 23(15): 3215–3225
doi: 10.1016/S0142-9612(02)00074-1 pmid:12102193
100 Telemeco T A, Ayres C E, Bowlin G L, Wnek G E, Boland E D, Cohen N, Baumgarten C M, Mathews J, Simpson D G (2005). Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater , 1(4): 377–385
doi: 10.1016/j.actbio.2005.04.006 pmid:16701819
101 Thein-Han W W, Misra R D (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater , 5(4): 1182–1197
doi: 10.1016/j.actbio.2008.11.025 pmid:19121983
102 Todorovic V, Chen C C, Hay N, Lau L F (2005). The matrix protein CCN1 (CYR61) induces apoptosis in fibroblasts. J Cell Biol , 171(3): 559–568
doi: 10.1083/jcb.200504015 pmid:16275757
103 Tuluc F, Garcia A, Bredetean O, Meshki J, Kunapuli S P (2004). Primary granule release from human neutrophils is potentiated by soluble fibrinogen through a mechanism depending on multiple intracellular signaling pathways. Am J Physiol Cell Physiol , 287(5): C1264–C1272
doi: 10.1152/ajpcell.00177.2004 pmid:15229106
104 Tzu J, Marinkovich M P (2008). Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol , 40(2): 199–214
doi: 10.1016/j.biocel.2007.07.015 pmid:17855154
105 Underhill D M (2003). Macrophage recognition of zymosan particles. J Endotoxin Res , 9(3): 176–180
pmid:12831459
106 van de Witte P, Dijkstra P J, Van den Berg J W A, Feijen J (1996). Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci , 117(1–2): 1–31
doi: 10.1016/0376-7388(96)00088-9
107 Varki A (1994). Selectin ligands. Proc Natl Acad Sci USA , 91(16): 7390–7397
doi: 10.1073/pnas.91.16.7390 pmid:7519775
108 Vasita R, Katti D S (2006). Nanofibers and their applications in tissue engineering. Int J Nanomedicine , 1(1): 15–30
doi: 10.2147/nano.2006.1.1.15 pmid:17722259
109 Wagenseil J E, Mecham R P (2007). New insights into elastic fiber assembly. Birth Defects Res C Embryo Today , 81(4): 229–240
doi: 10.1002/bdrc.20111 pmid:18228265
110 Wang Y Y, Lü L X, Feng Z Q, Xiao Z D, Huang N P (2010). Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed Mater , 5(5): 054112
doi: 10.1088/1748-6041/5/5/054112 pmid:20876956
111 Werbowetski T, Bjerkvig R, Del Maestro R F (2004). Evidence for a secreted chemorepellent that directs glioma cell invasion. J Neurobiol , 60(1): 71–88
doi: 10.1002/neu.10335 pmid:15188274
112 Wierzbicka-Patynowski I, Schwarzbauer J E (2003). The ins and outs of fibronectin matrix assembly. J Cell Sci , 116(16): 3269–3276
doi: 10.1242/jcs.00670 pmid:12857786
113 Wilson B D, Gibson C C, Sorensen L K, Guilhermier M Y, Clinger M, Kelley L L, Shiu Y T, Li D Y (2011). Novel approach for endothelializing vascular devices: understanding and exploiting elastin-endothelial interactions. Ann Biomed Eng , 39(1): 337–346
doi: 10.1007/s10439-010-0142-z pmid:20737290
114 Woo K M, Seo J, Zhang R, Ma P X (2007). Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials , 28(16): 2622–2630
doi: 10.1016/j.biomaterials.2007.02.004 pmid:17320948
115 Wu C, Fields A J, Kapteijn B A, McDonald J A (1995). The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. J Cell Sci , 108(Pt 2): 821–829
pmid:7539441
116 Zhang R, Ma P X (2000). Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res , 52(2): 430–438
doi: 10.1002/1097-4636(200011)52:2<430::AID-JBM25>3.0.CO;2-L pmid:10951385
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed