Please wait a minute...

Frontiers in Biology

Front Biol    2011, Vol. 6 Issue (5) : 351-356     https://doi.org/10.1007/s11515-011-1115-9
REVIEW
MicroRNAs and drug modulation in cancer: an intertwined new story
Francesca FANINI1, Ivan VANNINI1, Muller FABBRI1,2()
1. Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, 47014, Italy; 2. Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
Download: PDF(112 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MicroRNAs (miRNAs) are endogenous small non-coding RNAs (ncRNAs) which play important regulatory roles in physiological processes such as cellular differentiation, proliferation, development, apoptosis and stem cell self-renewal. An increasing number of papers have clearly claimed their involvement in cancer, providing, in some cases, also the molecular mechanisms implicated. Several studies led to the conclusion that miRNAs can be effectively used as anticancer agents alone or in combination with existing anticancer drugs. In particular, miRNAs can be effectively used to overcome drug resistance, one of the main factors responsible for anticancer treatment insuccess. One of the main questions remains how to modulate the expression of miRNAs in cancer cells. Interestingly, a few studies have shown that the expression of miRNAs is affected by drugs (including some drugs currently used as anticancer agents), therefore providing the rationale for an intertwined scenario in which miRNAs can be modulated by drugs and, in turn, can affect drug sensitivity of cancer cells.

Keywords miRNAs      cancer      multidrug resistance      transcription factor      chemotherapy     
Corresponding Author(s): FABBRI Muller,Email:muller.fabbri@osumc.edu   
Issue Date: 01 October 2011
 Cite this article:   
Francesca FANINI,Ivan VANNINI,Muller FABBRI. MicroRNAs and drug modulation in cancer: an intertwined new story[J]. Front Biol, 2011, 6(5): 351-356.
 URL:  
http://journal.hep.com.cn/fib/EN/10.1007/s11515-011-1115-9
http://journal.hep.com.cn/fib/EN/Y2011/V6/I5/351
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Francesca FANINI
Ivan VANNINI
Muller FABBRI
miRNAUp/downregulationCorrelation with sensitivity to chemotherapyChemotherapeutic agentTuomor typeAuthor
miR-125bAnthracyclineBreastCliment et al., 2007
miR-451DoxorubicinBreastKovalchuk et al., 2008
miR-221Endocrine therapyBreastMiller et al., 2008
miR-222Tamoxifen
miR-let7iFulvestrantBreastXin et al., 2009
miR-181a
miR-191
miR199bi
miR-204
miR-211
miR-212
miR-216
miR-328
miR-346
miR-373*
miR-424
miR-628
miR-768-3p
miR-15bVincristine adriamycinGastricXia et al., 2008
5-fluoruracil cisplatin
mitomycin C
miR-16etoposide
miR-30cPaclitaxelOvarianSorrentino et al., 2008
miR-130a
miR-335cisplatin
miR-214CisplatinOvarianYang et al., 2008
miR-199a*
miR-200a
miR-100
miR-125b
let-7 cluster
miR-221Tumor necrosis factor-related apoptosis-inducing ligandNSCLCGarofalo et al., 2008
miR-222
miR-34aCamptotechinProstateFujita et al., 2008
Tab.1  miRNAs involved in multidrug resistance
MoleculeTargetUp/DownregulationChemotherapeutic agent in combinationTuomor typeAuthor
CurcuminmiR-21GemcitabinePancreasAli et al., 2010
CDF synthetic analogue
CurcuminmiR-200bGemcitabinePancreasAli et al., 2010
CDF synthetic analogmiR-200c
EstrogenmiR-17-92BreastCastellano et al., 2009
miR-106a
miR-363
EstrogenmiR-128aLetrozoleBreastMasri et al., 2010
p53 mutatedmiR-34 familyOvarianCorney et al., 2007
p53 wild typemiR-192OvarianGeorges et al., 2008
miR-215
Tab.2  miRNAs modulators
1 Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert J M, Wang Z, Philip P A, Sarkar F H (2010). Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res , 70(9): 3606-3617
doi: 10.1158/0008-5472.CAN-09-4598 pmid:20388782
2 Ambros V, Lee R C (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol , 265: 131-158
pmid:15103073
3 Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 116(2): 281-297
doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
4 Bommer G T, Gerin I, Feng Y, Kaczorowski A J, Kuick R, Love R E, Zhai Y, Giordano T J, Qin Z S, Moore B B, MacDougald O A, Cho K R, Fearon E R (2007). p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol , 17(15): 1298-1307
doi: 10.1016/j.cub.2007.06.068 pmid:17656095
5 Borchert G M, Lanier W, Davidson B L (2006). RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol , 13(12): 1097-1101
doi: 10.1038/nsmb1167 pmid:17099701
6 Cai X, Hagedorn C H, Cullen B R (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA , 10(12): 1957-1966
doi: 10.1261/rna.7135204 pmid:15525708
7 Carleton M, Cleary M A, Linsley P S (2007). MicroRNAs and cell cycle regulation. Cell Cycle , 6(17): 2127-2132
doi: 10.4161/cc.6.17.4641 pmid:17786041
8 Castellano L, Giamas G, Jacob J, Coombes R C, Lucchesi W, Thiruchelvam P, Barton G, Jiao L R, Wait R, Waxman J, Hannon G J, Stebbing J (2009). The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci USA , 106(37): 15732-15737
doi: 10.1073/pnas.0906947106 pmid:19706389
9 Chang T C, Wentzel E A, Kent O A, Ramachandran K, Mullendore M, Lee K H, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein C J, Arking D E, Beer M A, Maitra A, Mendell J T (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell , 26(5): 745-752
doi: 10.1016/j.molcel.2007.05.010 pmid:17540599
10 Climent J, Dimitrow P, Fridlyand J, Palacios J, Siebert R, Albertson D G, Gray J W, Pinkel D, Lluch A, Martinez-Climent J A (2007). Deletion of chromosome 11q predicts response to anthracycline-based chemotherapy in early breast cancer. Cancer Res , 67(2): 818-826
doi: 10.1158/0008-5472.CAN-06-3307 pmid:17234794
11 Corney D C, Flesken-Nikitin A, Godwin A K, Wang W, Nikitin A Y (2007). MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res , 67(18): 8433-8438
doi: 10.1158/0008-5472.CAN-07-1585 pmid:17823410
12 Corney D C, Hwang C I, Matoso A, Vogt M, Flesken-Nikitin A, Godwin A K, Kamat A A, Sood A K, Ellenson L H, Hermeking H, Nikitin A Y (2010). Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res , 16(4): 1119-1128
doi: 10.1158/1078-0432.CCR-09-2642 pmid:20145172
13 Cullen B R (2004). Transcription and processing of human microRNA precursors. Mol Cell , 16(6): 861-865
doi: 10.1016/j.molcel.2004.12.002 pmid:15610730
14 Fabbri M, Ivan M, Cimmino A, Negrini M, Calin G A (2007). Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther , 7(7): 1009-1019
doi: 10.1517/14712598.7.7.1009 pmid:17665990
15 Fujita Y, Kojima K, Hamada N, Ohhashi R, Akao Y, Nozawa Y, Deguchi T, Ito M (2008). Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochem Biophys Res Commun , 377(1): 114-119
doi: 10.1016/j.bbrc.2008.09.086 pmid:18834855
16 Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu C G, Croce C M, Condorelli G (2008). MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene , 27(27): 3845-3855
doi: 10.1038/onc.2008.6 pmid:18246122
17 Georges S A, Biery M C, Kim S Y, Schelter J M, Guo J, Chang A N, Jackson A L, Carleton M O, Linsley P S, Cleary M A, Chau B N (2008). Coordinated regulation of cell cycle transcripts by p53-inducible microRNAs, miR-192 and miR-215. Cancer Res , 68(24): 10105-10112
doi: 10.1158/0008-5472.CAN-08-1846 pmid:19074876
18 He L, Hannon G J (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet , 5(7): 522-531
doi: 10.1038/nrg1379 pmid:15211354
19 Hermeking H (2010). The miR-34 family in cancer and apoptosis. Cell Death Differ , 17(2): 193-199
doi: 10.1038/cdd.2009.56 pmid:19461653
20 Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak V P, Chekhun V F, Pogribny I P (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther , 7(7): 2152-2159
doi: 10.1158/1535-7163.MCT-08-0021 pmid:18645025
21 Kunnumakkara A B, Anand P, Aggarwal B B (2008). Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett , 269(2): 199-225
doi: 10.1016/j.canlet.2008.03.009 pmid:18479807
22 Kunnumakkara A B, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal B B (2007). Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res , 67(8): 3853-3861
doi: 10.1158/0008-5472.CAN-06-4257 pmid:17440100
23 Lee Y, Kim M, Han J, Yeom K H, Lee S, Baek S H, Kim V N (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO J , 23(20): 4051-4060
doi: 10.1038/sj.emboj.7600385 pmid:15372072
24 Lev-Ari S, Vexler A, Starr A, Ashkenazy-Voghera M, Greif J, Aderka D, Ben-Yosef R (2007). Curcumin augments gemcitabine cytotoxic effect on pancreatic adenocarcinoma cell lines. Cancer Invest , 25(6): 411-418
doi: 10.1080/07357900701359577 pmid:17882652
25 Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA , 104(23): 9667-9672
doi: 10.1073/pnas.0703820104 pmid:17535905
26 Masri S, Liu Z, Phung S, Wang E, Yuan Y C, Chen S (2010). The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Res Treat , 124(1): 89-99
doi: 10.1007/s10549-009-0716-3 pmid:20054641
27 Miller T E, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro C L, Jacob S, Majumder S (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem , 283(44): 29897-29903
doi: 10.1074/jbc.M804612200 pmid:18708351
28 Pasquinelli A E, Hunter S, Bracht J (2005). MicroRNAs: a developing story. Curr Opin Genet Dev , 15(2): 200-205
doi: 10.1016/j.gde.2005.01.002 pmid:15797203
29 Plasterk R H (2006). Micro RNAs in animal development. Cell , 124(5): 877-881
doi: 10.1016/j.cell.2006.02.030 pmid:16530032
30 Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One , 5(2): e9429
31 Sorrentino A, Liu C G, Addario A, Peschle C, Scambia G, Ferlini C (2008). Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol , 111(3): 478-486
doi: 10.1016/j.ygyno.2008.08.017 pmid:18823650
32 Sun M, Estrov Z, Ji Y, Coombes K R, Harris D H, Kurzrock R (2008). Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther , 7(3): 464-473
doi: 10.1158/1535-7163.MCT-07-2272 pmid:18347134
33 Szakács G, Paterson J K, Ludwig J A, Booth-Genthe C, Gottesman M M (2006). Targeting multidrug resistance in cancer. Nat Rev Drug Discov , 5(3): 219-234
doi: 10.1038/nrd1984 pmid:16518375
34 Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle , 6(13): 1586-1593
doi: 10.4161/cc.6.13.4436 pmid:17554199
35 Vasudevan S, Tong Y, Steitz J A (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science , 318(5858): 1931-1934
doi: 10.1126/science.1149460 pmid:18048652
36 Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer , 123(2): 372-379
doi: 10.1002/ijc.23501 pmid:18449891
37 Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond S M, Kim S, Nephew K P (2009). Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics , 25(4): 430-434
doi: 10.1093/bioinformatics/btn646 pmid:19091772
38 Yang H, Kong W, He L, Zhao J J, O’Donnell J D, Wang J, Wenham R M, Coppola D, Kruk P A, Nicosia S V, Cheng J Q (2008). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res , 68(2): 425-433
doi: 10.1158/0008-5472.CAN-07-2488 pmid:18199536
39 Zheng T, Wang J, Chen X, Liu L (2010). Role of microRNA in anticancer drug resistance. Int J Cancer , 126(1): 2-10
doi: 10.1002/ijc.24782 pmid:19634138
Related articles from Frontiers Journals
[1] Jalali, Seyyed Mostafa, Morteza Abdollahi, Atiyeh Hosseini, Dehghani Kari Bozorg, Ajami, Marjan Azadeh, Kimia Moiniafshar. The positive effects of Mediterranean-neutropenic diet on nutritional status of acute myeloid leukemia patients under chemotherapy[J]. Front. Biol., 2018, 13(6): 475-480.
[2] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[3] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[4] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[5] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[6] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[7] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[8] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[9] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[10] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[11] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[12] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[13] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[14] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[15] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed