Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • RESEARCH ARTICLE
    Joana C. Prata, Ana L. Patrício Silva, Armando C. Duarte, Teresa Rocha-Santos
    Frontiers of Environmental Science & Engineering, 2022, 16(1): 5. https://doi.org/10.1007/s11783-021-1439-x

    • Portugal recycles 34% of the 40 kg/hab year of plastic packaging waste.

    • Recycling of plastics in Portugal produces a final revenue of 167 €/t.

    • Recycling and recovery must be the priority for imported wastes.

    • Beach litter must be reduced from 330 to 20 items/100 m (94%) under EU goals.

    • Consumption, use, and waste management of plastics need to improve.

    As a European Union (EU) member, Portugal must comply with reductions in plastic waste. In Portugal, the 330 items/100 m of beach litter, comprising up to 3.9 million pieces and of which 88% is plastic, is higher than the EU median (149 items/100 m) and must be reduced to 20 items/100 m (94%). Integrative measures are needed to reduce littering and improve plastics’ use and disposal under the circular economy. Of this 414 kt of plastic packaging waste, 163 kt were declared plastic packaging, 140 kt subjected to recycling, and 94 kt to energy recovery. The current recycling rate of plastic packaging (34%) should be improved to reach EU recycling averages (42%) and goals and to provide widespread benefits, considering revenues of 167 €/t. As a net importer of waste, Portugal could benefit from the valorization of imported waste. Besides increased recycling, pyrolysis and gasification could provide short-term alternatives for producing value-added substances from plastic waste, such as hydrogen, consistent with the National Plan of Hydrogen and improving ongoing regulations on single-use plastics. This manuscript provides an integrative view of plastics in Portugal, from use to disposal, providing specific recommendations under the circular economy.

  • RESEARCH ARTICLE
    Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 61. https://doi.org/10.1007/s11783-020-1353-7

    • Separate reduction and sintering cannot be effective for Cr stabilization.

    • Combined treatment of reduction and sintering is effective for Cr stabilization.

    • Almost all the Cr in the reduced soil is residual form after sintering at 1000°C.

    This study explored the effectiveness and mechanisms of high temperature sintering following pre-reduction with ferric sulfate (FeSO4), sodium sulfide (Na2S), or citric acid (C6H8O7) in stabilizing hexavalent chromium (Cr(VI)) in highly contaminated soil. The soil samples had an initial total Cr leaching of 1768.83 mg/L, and Cr(VI) leaching of 1745.13 mg/L. When FeSO4 or C6H8O7 reduction was followed by sintering at 1000°C, the Cr leaching was reduced enough to meet the Safety Landfill Standards regarding general industrial solid waste. This combined treatment greatly improved the stabilization efficiency of chromium because the reduction of Cr(VI) into Cr(III) decreased the mobility of chromium and made it more easily encapsulated in minerals during sintering. SEM, XRD, TG-DSC, and speciation analysis indicated that when the sintering temperature reached 1000°C, almost all the chromium in soils that had the pre-reduction treatment was transformed into the residual form. At 1000°C, the soil melted and promoted the mineralization of Cr and the formation of new Cr-containing compounds, which significantly decreased subsequent leaching of chromium from the soil. However, without reduction treatment, chromium continued to leach from the soil even after being sintered at 1000°C, possibly because the soil did not fully fuse and because Cr(VI) does not bind with soil as easily as Cr(III).

  • REVIEW ARTICLE
    Elham Abaie, Limeimei Xu, Yue-xiao Shen
    Frontiers of Environmental Science & Engineering, 2021, 15(6): 124. https://doi.org/10.1007/s11783-021-1412-8

    •The history of biological and artificial water channels is reviewed.

    •A comprehensive channel characterization platform is introduced.

    •Rationale designs and fabrications of biomimetic membranes are summarized.

    •The advantages, limitations, and challenges of biomimetic membranes are discussed.

    •The prospect and scalable solutions of biomimetic membranes are discussed.

    Bioinspired and biomimetic membranes that contain biological transport channels or attain their structural designs from biological systems have been through a remarkable development over the last two decades. They take advantage of the exceptional transport properties of those channels, thus possess both high permeability and selectivity, and have emerged as a promising solution to existing membranes. Since the discovery of biological water channel proteins aquaporins (AQPs), extensive efforts have been made to utilize them to make separation membranes–AQP-based membranes, which have been commercialized. The exploration of AQPs’ unique structures and transport properties has resulted in the evolution of biomimetic separation materials from protein-based to artificial channel-based membranes. However, large-scale, defect-free biomimetic membranes are not available yet. This paper reviews the state-of-the-art biomimetic membranes and summarizes the latest research progress, platform, and methodology. Then it critically discusses the potential routes of this emerging area toward scalable applications. We conclude that an appropriate combination of bioinspired concepts and molecular engineering with mature polymer industry may lead to scalable polymeric membranes with intrinsic selective channels, which will gain the merit of both desired selectivity and scalability.

  • REVIEW ARTICLE
    Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu
    Frontiers of Environmental Science & Engineering, 2021, 15(3): 38. https://doi.org/10.1007/s11783-020-1330-1

    • Bioaerosols are produced in the process of wastewater biological treatment.

    • The concentration of bioaerosol indoor is higher than outdoor.

    • Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals.

    • Inhalation is the main route of exposure of bioaerosol.

    • Both the workers and the surrounding residents will be affected by the bioaerosol.

    Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.

  • REVIEW ARTICLE
    Shuai Li, Zhiyao Yang, Da Hu, Liu Cao, Qiang He
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 65. https://doi.org/10.1007/s11783-020-1357-3

    • The built environment, occupants, and microbiomes constitute an integrated ecosystem.

    • This review summarizes research progress which has focused primarily on microbiomes.

    • Critical research needs include studying impacts of occupant behaviors on microbiomes.

    Built environments, occupants, and microbiomes constitute a system of ecosystems with extensive interactions that impact one another. Understanding the interactions between these systems is essential to develop strategies for effective management of the built environment and its inhabitants to enhance public health and well-being. Numerous studies have been conducted to characterize the microbiomes of the built environment. This review summarizes current progress in understanding the interactions between attributes of built environments and occupant behaviors that shape the structure and dynamics of indoor microbial communities. In addition, this review also discusses the challenges and future research needs in the field of microbiomes of the built environment that necessitate research beyond the basic characterization of microbiomes in order to gain an understanding of the causal mechanisms between the built environment, occupants, and microbiomes, which will provide a knowledge base for the development of transformative intervention strategies toward healthy built environments. The pressing need to control the transmission of SARS-CoV-2 in indoor environments highlights the urgency and significance of understanding the complex interactions between the built environment, occupants, and microbiomes, which is the focus of this review.

  • VIEWS & COMMENTS
    Elvis Genbo Xu, Zhiyong Jason Ren
    Frontiers of Environmental Science & Engineering, 2021, 15(6): 125. https://doi.org/10.1007/s11783-021-1413-7
  • RESEARCH ARTICLE
    Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang
    Frontiers of Environmental Science & Engineering, 2022, 16(8): 97. https://doi.org/10.1007/s11783-022-1518-7

    • Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

    • Azithromycin at 0.5% dosage increased the sensitivity for toxic formaldehyde.

    • Azithromycin increased the relative abundance of Geobacter.

    • Azithromycin regulated thickness of electroactive biofilm.

    Extensive research has been carried out for improved sensitivity of electroactive biofilm-based sensor (EAB-sensor), which is recognized as a useful tool in water quality early-warning. Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor’s sensitivity. A novel composite electrode was prepared using azithromycin (AZM) and graphite powder (GP), namely AZM@GP electrode, and was employed as the anode in EAB-biosensor. Different dosages of AZM, i.e., 2 mg, 4 mg, and 8 mg, referred to as 0.25%, 0.5% and 1% AZM@GP were under examination. Results showed that EAB-biosensor was greatly benefited from appropriate dosage of AZM (0.5% AZM@GP) with reduced start-up time period, comparatively higher voltage output, more readable electrical signal and increased inhibition rate (30%-65% higher than control sensor with GP electrode) when exposing to toxic formaldehyde. This may be attributed to the fact that AZM inhibited the growth of non-EAM without much influence on the physiologic or metabolism activities of EAM under proper dosage. Further investigation of the biofilm morphology and microbial community analysis suggested that the biofilm formation was optimized with reduced thickness and enriched Geobacter with 0.5% AZM@GP dosage. This novel electrode is easily fabricated and equipped, and therefore would be a promising way to facilitate the practical application of EAB-sensors.

  • REVIEW ARTICLE
    Shaoyi Xu, Xiaolong Wu, Huijie Lu
    Frontiers of Environmental Science & Engineering, 2021, 15(6): 133. https://doi.org/10.1007/s11783-021-1426-2

    • AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs.

    • Coupled DNRA/anammox and NOx-DAMO/anammox/comammox processes are demonstrated.

    • Substrate level, SRT and stressors determine the niches of overlooked microbes.

    • Applications of overlooked microbes in enhancing nitrogen removal are promising.

    Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria, heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that are less abundant but functionally important in wastewater nitrogen removal. These microbes include, but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox) bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of high-throughput molecular technologies has enabled the detection, quantification, and characterization of these minor populations. The aim of this review is therefore to synthesize the current knowledge on the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes from microbiology, ecology, and engineering perspectives will facilitate the design and operation of more efficient and sustainable biological nitrogen removal processes.

  • REVIEW ARTICLE
    Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li
    Frontiers of Environmental Science & Engineering, 2022, 16(1): 1. https://doi.org/10.1007/s11783-021-1429-z

    • Microplastics are widely found in both aquatic and terrestrial environments.

    • Cleaning products and discarded plastic waste are primary sources of microplastics.

    • Microplastics have apparent toxic effects on the growth of fish and soil plants.

    • Multiple strains of biodegradable microplastics have been isolated.

    Microplastics (MPs) are distributed in the oceans, freshwater, and soil environment and have become major pollutants. MPs are generally referred to as plastic particles less than 5 mm in diameter. They consist of primary microplastics synthesized in microscopic size manufactured production and secondary microplastics generated by physical and environmental degradation. Plastic particles are long-lived pollutants that are highly resistant to environmental degradation. In this review, the distribution and possible sources of MPs in aquatic and terrestrial environments are described. Moreover, the adverse effects of MPs on natural creatures due to ingestion have been discussed. We also have summarized identification methods based on MPs particle size and chemical bond. To control the pollution of MPs, the biodegradation of MPs under the action of different microbes has also been reviewed in this work. This review will contribute to a better understanding of MPs pollution in the environment, as well as their identification, toxicity, and biodegradation in the ocean, freshwater, and soil, and the assessment and control of microplastics exposure.

  • RESEARCH ARTICLE
    Shaswati Saha, Rohan Gupta, Shradhanjali Sethi, Rima Biswas
    Frontiers of Environmental Science & Engineering, 2022, 16(8): 101. https://doi.org/10.1007/s11783-022-1522-y

    • Simultaneous C & N removal in Methammox occurs at wide C:N ratio.

    • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported.

    • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio.

    • Acetogenic population compensated for ammonia oxidizers at high C:N ratio.

    • Methanogens increase the plasticity of nitrogen removers at high C:N ratio.

    High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.

  • RESEARCH ARTICLE
    Xiaoge Huang, Lihao Chen, Ziqi Ma, Kenneth C. Carroll, Xiao Zhao, Zailin Huo
    Frontiers of Environmental Science & Engineering, 2022, 16(12): 151. https://doi.org/10.1007/s11783-022-1586-8

    ● nZVI, S-nZVI, and nFeS were systematically compared for Cd(II) removal.

    ● Cd(II) removal by nZVI involved coprecipitation, complexation, and reduction.

    ● The predominant reaction for Cd(II) removal by S-nZVI and nFeS was replacement.

    ● A simple pseudo-second-order kinetic can adequately fit Fe(II) dissolution.

    Cadmium (Cd) is a common toxic heavy metal in the environment. Taking Cd(II) as a target contaminant, we systematically compared the performances of three Fe-based nanomaterials (nano zero valent iron, nZVI; sulfidated nZVI, S-nZVI; and nano FeS, nFeS) for Cd immobilization under anaerobic conditions. Effects of nanomaterials doses, initial pH, co-existing ions, and humic acid (HA) were examined. Under identical conditions, at varied doses or initial pH, Cd(II) removal by three materials followed the order of S-nZVI > nFeS > nZVI. At pH 6, the Cd(II) removal within 24 hours for S-nZVI, nFeS, and nZVI (dose of 20 mg/L) were 93.50%, 89.12% and 4.10%, respectively. The fast initial reaction rate of nZVI did not lead to a high removal capacity. The Cd removal was slightly impacted or even improved with co-existing ions (at 50 mg/L or 200 mg/L) or HA (at 2 mg/L or 20 mg/L). Characterization results revealed that nZVI immobilized Cd through coprecipitation, surface complexation, and reduction, whereas the mechanisms for sulfidated materials involved replacement, coprecipitation, and surface complexation, with replacement as the predominant reaction. A strong linear correlation between Cd(II) removal and Fe(II) dissolution was observed, and we proposed a novel pseudo-second-order kinetic model to simulate Fe(II) dissolution.

  • SHORT COMMUNICATION
    Minxiang Wang, Lili Yang, Xiaoyun Liu, Zheng Wang, Guorui Liu, Minghui Zheng
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 60. https://doi.org/10.1007/s11783-020-1352-8

    • Unintentional HCBD production in typical chemical plants was investigated.

    • The highest HCBD concentrations were found in the bottom residue.

    • Tri/tetrachloroethylene production processes were important HCBD sources.

    Hexachlorobutadiene (HCBD) was classed as a persistent organic pollutant under the Stockholm Convention in 2015. HCBD is mainly an unintentionally produced by-product of chlorinated hydrocarbon (e.g., trichloroethylene and tetrachloroethylene) synthesis. Few studies of HCBD formation during chemical production processes have been performed, so HCBD emissions from these potentially important sources are not understood. In this study, HCBD concentrations in raw materials, intermediate products, products, and bottom residues from chemical plants producing chlorobenzene, trichloroethylene, and tetrachloroethylene were determined. The results indicated that HCBD is unintentionally produced at much higher concentrations in trichloroethylene and tetrachloroethylene plants than chlorobenzene plants. The sum of the HCBD concentrations in the samples from all of the trichloroethylene and tetrachloroethylene production stages in plant PC was 247000 mg/mL, about three orders of magnitude higher than the concentrations in the tetrachloroethylene production samples (plant PB) and about six orders of magnitude higher than the concentrations in the chlorobenzene production samples (plant PA). The HCBD concentrations were highest in bottom residues from all of the plants. The concentrations in the bottom residue samples contributed 24%–99% of the total HCBD formed in the chemical production plants. The bottom residue, being hazardous waste, could be disposed of by incineration. The HCBD concentrations were much higher in intermediate products than raw materials, indicating that HCBD formed during production of the intended chemicals. The results indicate the concentrations of HCBD unintentionally produced in typical chemical plants and will be useful in developing protocols for controlling HCBD emissions to meet the Stockholm Convention requirements.

  • RESEARCH ARTICLE
    Sen Dong, Peng Gao, Benhang Li, Li Feng, Yongze Liu, Ziwen Du, Liqiu Zhang
    Frontiers of Environmental Science & Engineering, 2022, 16(11): 142. https://doi.org/10.1007/s11783-022-1577-9

    ● Reduce the quantifying MPs time by using Nile red staining.

    ● The removal rate of MPs and PAEs in wastewater and sludge were investigated.

    ● MPs and PAEs were firstly analyzed during thermal hydrolysis treatment.

    ● The removal of PAEs from wastewater and sludge was mainly biodegradation.

    Microplastics (MPs) and plasticizers, such as phthalate esters (PAEs), were frequently detected in municipal wastewater treatment plants (MWTP). Previous research mainly studied the removal of MPs and PAEs in wastewater. However, the occurrence of MPs and PAEs in the sludge was generally ignored. To comprehensively investigate the occurrence and the migration behaviors of MPs and PAEs in MWTP, a series of representative parameters including the number, size, color, shape of MPs, and the concentrations of PAEs in wastewater and sludge were systematically investigated. In this study, the concentrations of MPs in the influent and effluent were 15.46±0.37 and 0.30±0.14 particles/L. The MP removal efficiency of 98.1% was achieved and about 73.8% of MPs were accumulated in the sludge in the MWTP. The numbers of MPs in the sludge before and after digestion were 4.40±0.14 and 0.31±0.01 particles/g (dry sludge), respectively. Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that the main types of MPs were polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), and polystyrene (PS). Six PAEs, including phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), ortho dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), and bis(2-ethyl) hexyl phthalate (DEHP), were detected in the MWTP. The concentrations of total PAEs (ΣPAEs) in the influent and effluent were 76.66 and 6.28 µg/L, respectively. The concentrations of ΣPAEs in the sludge before and after digestion were 152.64 and 31.70 µg/g, respectively. In the process of thermal hydrolysis, the number and size of MPs decreased accompanied by the increase of the plasticizer concentration.

  • REVIEW ARTICLE
    Zhuqiu Sun, Jinying Xi, Chunping Yang, Wenjie Cong
    Frontiers of Environmental Science & Engineering, 2022, 16(7): 87. https://doi.org/10.1007/s11783-021-1495-2

    • Quorum sensing enhancement and inhibition methods are summarized.

    • Effects of quorum sensing regulation on biofilm are reviewed.

    • Current knowledge gaps and research challenges are proposed.

    Quorum sensing (QS) plays an important role in microbial aggregation control. Recently, the optimization of biological waste treatment systems by QS regulation gained an increasing attention. The effects of QS regulation on treatment performances and biofilm were frequently investigated. To understand the state of art of QS regulation, this review summarizes the methods of QS enhancement and QS inhibition in biological waste treatment systems. Typical QS enhancement methods include adding exogenous QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods include additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. The specific improvements after applying these QS regulation methods in different treatment systems are concluded. In addition, the effects of QS regulation methods on biofilm in biological waste treatment systems are reviewed in terms of biofilm formation, extracellular polymeric substances production, microbial viability, and microbial community. In the end, the knowledge gaps in current researches are analyzed, and the requirements for future study are suggested.

  • RESEARCH ARTICLE
    Shansi Wang, Siwei Li, Jia Xing, Jie Yang, Jiaxin Dong, Yu Qin, Shovan Kumar Sahu
    Frontiers of Environmental Science & Engineering, 2022, 16(2): 26. https://doi.org/10.1007/s11783-021-1460-0

    •Strong ENSO influence on AOD is found in southern China region.

    •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China.

    •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase.

    •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020.

    •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020).

    Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.

  • RESEARCH ARTICLE
    Hua Long, Yang Liao, Changhao Cui, Meijia Liu, Zeiwei Liu, Li Li, Wenzheng Hu, Dahai Yan
    Frontiers of Environmental Science & Engineering, 2022, 16(4): 51. https://doi.org/10.1007/s11783-021-1485-4

    • Municipal solid waste (MSW) was fermented, screened, gasified, then co-processed.

    • Co-processing MSW in cement kilns could cause excessive pollutant emissions.

    • Bypass flue gas can be disposed of through the main flue system.

    • Popular MSW co-processing methods do not affect cement quality.

    Cement kiln co-processing techniques have been developed in the past 20 years in China, and more than 60 factories now use fermentation, screening, and gasification pre-treatment techniques to co-process municipal solid waste (MSW). There three complete MSW pre-treatment techniques, co-processing procedures, and environmental risk assessments have been described in few publications. In this study, we assessed the effectiveness of each technique. The results suggested that the pollutant content released by each pre-treatment technology was lower than the emission standard. To reveal the mechanisms of pollutant migration and enrichment, the substances in the kiln and kiln products are investigated. The input of co-processing materials (Co-M) produced by fermentation caused formation of polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/Fs) in the bypass flue gas (By-gas) in excess of the regulatory standard. The Co-M input produced by the screening and gasifier technologies caused the total organic carbon (TOC) concentration to exceed the standard. In addition, the NOx, TOC, and PCDD/Fs in the By-gas exceeded the regulatory standard. Raw meal was the primary chlorine and heavy metals input stream, and clinker (CK) and cement kiln dust (CKD) accounted for>90% of the total chlorine output stream. Flue gas and CKD were the primary volatile heavy metal (Hg) output streams. Greater than 70% of the semi-volatile heavy metals (Cd, Pb, Tl and Se) distributed in hot raw meal and bypass cement kiln dust. The low-volatility heavy metals were concentrated in the CK. These results indicated that co-processing techniques used in China still require improvement.

  • RESEARCH ARTICLE
    Runyao Huang, Jin Xu, Li Xie, Hongtao Wang, Xiaohang Ni
    Frontiers of Environmental Science & Engineering, 2022, 16(9): 117. https://doi.org/10.1007/s11783-022-1549-0

    • Framework of indicators was established based on energy efficiency and recovery.

    • Energy neutrality potential of 970 wastewater treatment plants was evaluated.

    • Analysis of characteristics and explanatory factors was carried out.

    • Pathways for improving the energy neutrality potential were proposed.

    Wastewater treatment plants (WWTPs) consume large amounts of energy and emit greenhouse gases to remove pollutants. This study proposes a framework for evaluating the energy neutrality potential (ENP) of WWTPs from an integrated perspective. Operational data of 970 WWTPs in the Yangtze River Economic Belt (YREB) were extracted from the China Urban Drainage Yearbook 2018. The potential chemical and thermal energies were estimated using combined heat and power (CHP) and water source heat pump, respectively. Two key performance indicators (KPIs) were then established: the energy self-sufficiency (ESS) indicator, which reflects the offset degree of energy recovery, and the comprehensive water–energy efficiency (CWEE) indicator, which characterizes the efficiency of water–energy conversion. For the qualitative results, 98 WWTPs became the benchmark (i.e., CWEE= 1.000), while 112 WWTPs were fully self-sufficient (i.e., ESS≥100%). Subsequently, four types of ENP were classified by setting the median values of the two KPIs as the critical value. The WWTPs with high ENP had high net thermal energy values and relatively loose discharge limits. The explanatory factor analysis of water quantity and quality verified the existence of scale economies. Sufficient carbon source and biodegradability condition were also significant factors. As the CWEE indicator was mostly sensitive to the input of CHP, future optimization shall focus on the moisture and organic content of sludge. This study proposes a novel framework for evaluating the ENP of WWTPs. The results can provide guidance for optimizing the energy efficiency and recovery of WWTPs.

  • RESEARCH ARTICLE
    Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 54. https://doi.org/10.1007/s11783-020-1346-6

    •Wood and its reassemblies are ideal substrates to develop novel photocatalysts.

    •Synthetic methods and mechanisms of wood-derived photocatalysts are summarized.

    •Advances in wood-derived photocatalysts for organic pollutant removal are summed up.

    •Metal doping, morphology control and semiconductor coupling methods are highlighted.

    •Structure-activity relationship and catalytic mechanism of photocatalysts are given.

    Wood-based nanotechnologies have received much attention in the area of photocatalytic degradation of organic contaminants in aquatic environment in recent years, because of the high abundance and renewability of wood as well as the high reaction activity and unique structural features of these materials. Herein, we present a comprehensive review of the current research activities centering on the development of wood-based nanocatalysts for photodegradation of organic pollutants. This review begins with a brief introduction of the development of photocatalysts and hierarchical structure of wood. The review then focuses on strategies of designing novel photocatalysts based on wood or its recombinants (such as 1D fiber, 2D films and 3D porous gels) using advanced nanotechnology including sol-gel method, hydrothermal method, magnetron sputtering method, dipping method and so on. Next, we highlight typical approaches that improve the photocatalytic property, including metal element doping, morphology control and semiconductor coupling. Also, the structure-activity relationship of photocatalysts is emphasized. Finally, a brief summary and prospect of wood-derived photocatalysts is provided.

  • REVIEW ARTICLE
    Sai Liang, Qiumeng Zhong
    Frontiers of Environmental Science & Engineering, 2023, 17(2): 24. https://doi.org/10.1007/s11783-023-1624-1

    ● Reducing environmental impacts through socioeconomic structural transitions.

    ● Simulation of looping the dynamic material cycle should be concerned.

    ● Transboundary effects of socioeconomic transitions need to be analyzed.

    ● Facilitating interregional cooperation and synergetic control mechanisms.

    Rapid socioeconomic development has caused numerous environmental impacts. Human production and consumption activities are the underlying drivers of resource uses, environmental emissions, and associated environmental impacts (e.g., ecosystem quality and human health). Reducing environmental impacts requires an understanding of the complex interactions between socioeconomic system and environmental system. Existing studies have explored the relationships among human society, economic system, and environmental system. However, it is unclear about the research progress in the effects of socioeconomic activities on environmental impacts and the potential directions of future research. This critical review finds that existing studies have identified critical regions, sectors, and transmission pathways for resource uses, environmental emissions, and environmental impacts from supply chain perspectives. Moreover, scholars have characterized the impacts of socioeconomic transitions on resource uses and environmental emissions. However, existing studies overlook the dynamic nature of the interconnections among human society, economic system, and environmental system. In addition, the effects of socioeconomic structural transitions on environmental impacts remain unknown. This review proposes four prospects and possible solutions that will contribute to a better understanding of the complex interactions among human society, economic system, and environmental system. They can help identify more effective solutions to reduce environmental impacts through socioeconomic transitions.

  • PERSPECTIVE
    Xiaoyuan Zhang, Jun Gu, Shujuan Meng, Yu Liu
    Frontiers of Environmental Science & Engineering, 2022, 16(4): 54. https://doi.org/10.1007/s11783-022-1537-4

    Various anaerobic processes have been explored for the energy-efficient treatment of municipal wastewater. However, dissolved methane in anaerobic effluent appears to be a barrier towards the energy and carbon neutrality of wastewater treatment. Although several dissolved methane recovery methods have been developed, their engineering feasibility and economic viability have not yet been assessed in a holistic manner. In this perspective, we thus intend to offer additional insights into the cost-benefit of dissolved methane recovery against its emission.

  • RESEARCH ARTICLE
    Zhike Li, Jie Chi, Zhenyu Wu, Yiyan Zhang, Yiran Liu, Lanlan Huang, Yiren Lu, Minhaz Uddin, Wei Zhang, Xuejun Wang, Yan Lin, Yindong Tong
    Frontiers of Environmental Science & Engineering, 2022, 16(3): 37. https://doi.org/10.1007/s11783-021-1471-x

    • Hg bioaccumulation by phytoplankton varies among aquatic ecosystems.

    • Active Hg uptake may exist for the phytoplankton in aquatic ecosystems.

    • Impacts of nutrient imbalance on food chain Hg transfer should be addressed.

    The bioaccumulation of mercury (Hg) in aquatic ecosystem poses a potential health risk to human being and aquatic organism. Bioaccumulations by plankton represent a crucial process of Hg transfer from water to aquatic food chain. However, the current understanding of major factors affecting Hg accumulation by plankton is inadequate. In this study, a data set of 89 aquatic ecosystems worldwide, including inland water, nearshore water and open sea, was established. Key factors influencing plankton Hg bioaccumulation (i.e., plankton species, cell sizes and biomasses) were discussed. The results indicated that total Hg (THg) and methylmercury (MeHg) concentrations in plankton in inland waters were significantly higher than those in nearshore waters and open seas. Bioaccumulation factors for the logarithm of THg and MeHg of phytoplankton were 2.4–6.0 and 2.6–6.7 L/kg, respectively, in all aquatic ecosystems. They could be further biomagnified by a factor of 2.1–15.1 and 5.3–28.2 from phytoplankton to zooplankton. Higher MeHg concentrations were observed with the increases of cell size for both phyto- and zooplankton. A contrasting trend was observed between the plankton biomasses and BAFMeHg, with a positive relationship for zooplankton and a negative relationship for phytoplankton. Plankton physiologic traits impose constraints on the rates of nutrients and contaminants obtaining process from water. Nowadays, many aquatic ecosystems are facing rapid shifts in nutrient compositions. We suggested that these potential influences on the growth and composition of plankton should be incorporated in future aquatic Hg modeling and ecological risk assessments.

  • RESEARCH ARTICLE
    Rui Yue, Zhikang Chen, Liujun Liu, Lipu Yin, Yicheng Qiu, Xianhui Wang, Zhicheng Wang, Xuhui Mao
    Frontiers of Environmental Science & Engineering, 2022, 16(11): 147. https://doi.org/10.1007/s11783-022-1582-z

    ● Coupling merits of SEE and ERH were explored by a laboratory-scale device.

    ● SEE promotes the soil electrical conductivity and ERH process.

    ● Preheating soil by ERH improves the soil permeability and SEE.

    ● Combined method is more energy-efficient for perchloroethylene extraction.

    In situ thermal desorption (ISTD) technology effectively remediates soil contaminated by dense nonaqueous phase liquids (DNAPLs). However, more efforts are required to minimize the energy consumption of ISTD technology. This study developed a laboratory-scale experimental device to explore the coupling merits of two traditional desorption technologies: steam-enhanced extraction (SEE) and electrical resistance heating (ERH). The results showed that injecting high-density steam (> 1 g/min) into loam or clay with relatively high moisture content (> 13.3%) could fracture the soil matrix and lead to the occurrence of the preferential flow of steam. For ERH alone, the electrical resistance and soil moisture loss were critical factors influencing heating power. When ERH and SEE were combined, preheating soil by ERH could increase soil permeability, effectively alleviating the problem of preferential flow of SEE. Meanwhile, steam injection heated the soil and provided moisture for maintaining soil electrical conductivity, thereby ensuring power stability in the ERH process. Compared with ERH alone (8 V/cm) and SEE alone (1 g/min steam), the energy consumption of combined method in remediating perchloroethylene-contaminated soil was reduced by 39.3% and 52.9%, respectively. These findings indicate that the combined method is more favorable than ERH or SEE alone for remediating DNAPL-contaminated subsurfaces when considering ISTD technology.

  • PERSPECTIVES
    Xi Lu, Dan Tong, Kebin He
    Frontiers of Environmental Science & Engineering, 2023, 17(2): 14. https://doi.org/10.1007/s11783-023-1614-3

    ● China has pledged ambitious carbon peak and neutrality goals for mitigating global climate change.

    ● Major challenges to achieve carbon neutrality in China are summarized.

    ● The new opportunities along the pathway of China’s carbon neutrality are discussed from four aspects.

    ● Five policy suggestions for China are provided.

    China is the largest developing economy and carbon dioxide emitter in the world, the carbon neutrality goal of which will have a profound influence on the mitigation pathway of global climate change. The transition towards a carbon-neutral society is integrated into the construction of ecological civilization in China, and brings profound implications for China’s socioeconomic development. Here, we not only summarize the major challenges in achieving carbon neutrality in China, but also identify the four potential new opportunities: namely, the acceleration of technology innovations, narrowing regional disparity by reshaping the value of resources, transforming the industrial structure, and co-benefits of pollution and carbon mitigation. Finally, we provide five policy suggestions and highlight the importance of balancing economic growth and carbon mitigation, and the joint efforts among the government, the enterprises, and the residents.

  • REVIEW ARTICLE
    Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng
    Frontiers of Environmental Science & Engineering, 2022, 16(9): 123. https://doi.org/10.1007/s11783-022-1555-2

    • Comammox bacteria have unique physiological characteristics.

    • Comammox bacteria are widely distributed in natural and artificial systems.

    • Comammox bacteria have the potential to reduce N2O emissions.

    • Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment.

    • Comammox bacteria have significant potential for enhancing total nitrogen removal.

    Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.

  • REVIEW ARTICLE
    Shuchang Wang, Binbin Shao, Junlian Qiao, Xiaohong Guan
    Frontiers of Environmental Science & Engineering, 2021, 15(5): 80. https://doi.org/10.1007/s11783-020-1373-3

    • The properties of Fe(VI) were summarized.

    • Both the superiorities and the limitations of Fe(VI) technologies were discussed.

    • Methods to improve contaminants oxidation/disinfection by Fe(VI) were introduced.

    • Future research needs for the development of Fe(VI) technologies were proposed.

    The past two decades have witnessed the rapid development and wide application of Fe(VI) in the field of water de-contamination because of its environmentally benign character. Fe(VI) has been mainly applied as a highly efficient oxidant/disinfectant for the selective elimination of contaminants. The in situ generated iron(III) (hydr)oxides with the function of adsorption/coagulation can further increase the removal of contaminants by Fe(VI) in some cases. Because of the limitations of Fe(VI) per se, various modified methods have been developed to improve the performance of Fe(VI) oxidation technology. Based on the published literature, this paper summarized the current views on the intrinsic properties of Fe(VI) with the emphasis on the self-decay mechanism of Fe(VI). The applications of Fe(VI) as a sole oxidant for decomposing organic contaminants rich in electron-donating moieties, as a bi-functional reagent (both oxidant and coagulant) for eliminating some special contaminants, and as a disinfectant for inactivating microorganisms were systematically summarized. Moreover, the difficulties in synthesizing and preserving Fe(VI), which limits the large-scale application of Fe(VI), and the potential formation of toxic byproducts during Fe(VI) application were presented. This paper also systematically reviewed the important nodes in developing methods to improve the performance of Fe(VI) as oxidant or disinfectant in the past two decades, and proposed the future research needs for the development of Fe(VI) technologies.

  • RESEARCH ARTICLE
    Hosein Ghaedi, Payam Kalhor, Ming Zhao, Peter T. Clough, Edward J. Anthony, Paul S. Fennell
    Frontiers of Environmental Science & Engineering, 2022, 16(7): 92. https://doi.org/10.1007/s11783-021-1500-9

    •Addition of hindered amine increased thermal stability and viscosity of TTTM.

    •Addition of hindered amine improved the CO2 absorption performance of TTTM.

    •Good the CO2 absorption of recycled solvents after two regenerations.

    •Important role of amine group in CO2 absorption of TTTM confirmed by DFT analysis.

    Is it possible to improve CO2 solubility in potassium carbonate (K2CO3)-based transition temperature mixtures (TTMs)? To assess this possibility, a ternary transition-temperature mixture (TTTM) was prepared by using a hindered amine, 2-amino-2-methyl-1,3-propanediol (AMPD). Fourier transform infrared spectroscopy (FT-IR) was employed to detect the functional groups including hydroxyl, amine, carbonate ion, and aliphatic functional groups in the prepared solvents. From thermogravimetric analysis (TGA), it was found that the addition of AMPD to the binary mixture can increase the thermal stability of TTTM. The viscosity findings showed that TTTM has a higher viscosity than TTM while their difference was decreased by increasing temperature. In addition, Eyring’s absolute rate theory was used to compute the activation parameters (ΔG*, ΔH*, and ΔS*). The CO2 solubility in liquids was measured at a temperature of 303.15 K and pressures up to 1.8 MPa. The results disclosed that the CO2 solubility of TTTM was improved by the addition of AMPD. At the pressure of about 1.8 MPa, the CO2 mole fractions of TTM and TTTM were 0.1697 and 0.2022, respectively. To confirm the experimental data, density functional theory (DFT) was employed. From the DFT analysis, it was found that the TTTM+ CO2 system has higher interaction energy (|ΔE |) than the TTM+ CO2 system indicating the higher CO2 affinity of the former system. This study might help scientists to better understand and to improve CO2 solubility in these types of solvents by choosing a suitable amine as HBD and finding the best combination of HBA and HBD.

  • REVIEW ARTICLE
    Kehui Liu, Xiaojin Guan, Chunming Li, Keyi Zhao, Xiaohua Yang, Rongxin Fu, Yi Li, Fangming Yu
    Frontiers of Environmental Science & Engineering, 2022, 16(6): 73. https://doi.org/10.1007/s11783-021-1507-2

    • The overall global perspective of the PHMCS field was obtained.

    • PHMCS research has flourished over the past two decades.

    • In total, 8 clusters were obtained, and many new hot topics emerged.

    • “Biochar,” “Drought,” “Nanoparticle,” etc., may be future hot topics.

    • Five future directions are proposed.

    In total, 9,552 documents were extracted from the Web of Science Core Collection and subjected to knowledge mapping and visualization analysis for the field of phytoremediation of HM-contaminated soil (PHMCS) with CiteSpace 5.7 R3 software. The results showed that (1) the number of publications increased linearly over the studied period. The top 10 countries/regions, institutions and authors contributing to this field were exhibited. (2) Keyword co-occurrence cluster analysis revealed a total of 8 clusters, including “Bioremediation,” “Arsenic,” “Biochar,” “Oxidative stress,” “Hyperaccumulation,” “EDTA,” “Arbuscular mycorrhizal fungi,” and “Environmental pollution” clusters (3) In total, 334 keyword bursts were obtained, and the 25 strongest, longest duration, and newest keyboard bursts were analyzed in depth. The strongest keyword burst test showed that the hottest keywords could be divided into 7 groups, i.e., “Plant bioremediation materials,” “HM types,” “Chelating amendments,” “Other improved strategies,” “Bioremediation characteristics,” “Risk assessment,” and “Other.” Almost half of the newest topics had emerged in the past 3 years, including “biochar,” “drought,” “health risk assessment,” “electrokinetic remediation,” “nanoparticle,” and “intercropping.” (4) In total, 9 knowledge base clusters were obtained in this study. The studies of Ali et al. (2013), Blaylock et al. (1997), Huang et al. (1997), van der Ent et al. (2013), Salt et al. (1995), and Salt (1998), which had both high frequencies and the strongest burst scores, have had the most profound effects on PHMCS research. Finally, future research directions were proposed.

  • PERSPECTIVES
    Bin Wang, Gang Yu
    Frontiers of Environmental Science & Engineering, 2022, 16(6): 81. https://doi.org/10.1007/s11783-022-1559-y

    Since the concept of emerging contaminants (ECs) was first proposed in 2001, the global scientific research of ECs has developed rapidly. In the past decades, great progress has been achieved in the scientific research of ECs in China, including the establishment of EC analysis method system, the evaluation of the pollution status, pollution characteristics and environmental risk of ECs in typical regions of China, and establishment of EC control technology system. Continuous progress in scientific research of ECs promoted China’s action on EC control. It is planned that the environmental risk of ECs will be generally controlled by 2035 in China. Priority ECs should be screened for environmental management. Although great efforts have been made, the EC control in China still faces tremendous challenges. It is necessary to bridge the gap between scientific research and decision-making management. Based on the science and technology study, various measures such as engineering, policy management and public participation should be combinedly adopted for EC control.

  • REVIEW ARTICLE
    Fengping Hu, Yongming Guo
    Frontiers of Environmental Science & Engineering, 2021, 15(4): 74. https://doi.org/10.1007/s11783-020-1367-1

    •Impacts of air pollution on various body systems health in China were highlighted.

    •China’s actions to control air pollution and their effects were briefly introduced.

    •Challenges and perspectives of the health effects of air pollution are provided.

    The health effects of air pollution have attracted considerable attention in China. In this review, the status of air pollution in China is briefly presented. The impacts of air pollution on the health of the respiratory system, the circulatory system, the nervous system, the digestive system, the urinary system, pregnancy and life expectancy are highlighted. Additionally, China’s actions to control air pollution and their effects are briefly introduced. Finally, the challenges and perspectives of the health effects of air pollution are provided. We believe that this review will provide a promising perspective on the health impacts of air pollution in China, and further elicit more attention from governments and researchers worldwide.

  • FOCUS
    Jiuhui Qu, Hongqiang Ren, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Xingcan Zheng, Ji Li
    Frontiers of Environmental Science & Engineering, 0: 13. https://doi.org/10.1007/s11783-021-1496-1