%A Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang %T Accelerated degradation of orange G over a wide pH range in the presence of FeVO4 %0 Journal Article %D 2018 %J Front. Environ. Sci. Eng. %J Frontiers of Environmental Science & Engineering %@ 2095-2201 %R 10.1007/s11783-018-1013-3 %P 7- %V 12 %N 1 %U {https://journal.hep.com.cn/fese/EN/10.1007/s11783-018-1013-3 %8 2018-02-15 %X

The applicability of FeVO4 extended the optimum pH range for heterogeneous Fenton process towards neutral conditions.

The datas for the removal of OG in FeVO4 systems conform to the Langmuir–Hinshelwood model.

The irradiation of FeVO4 by visible light significantly increases the degradation rate of OG due to the enhanced rates of the iron and vanadium cycles.

In this study, FeVO4 was prepared and used as Fenton-like catalyst to degrade orange G (OG) dye. The removal of OG in an aqueous solution containing 0.5 g·L-1 FeVO4 and 15 mmol·L-1 hydrogen peroxide at pH 7.0 reached 93.2%. Similar rates were achieved at pH 5.7 (k = 0.0471 min-1), pH 7.0 (k = 0.0438 min-1), and pH 7.7 (k = 0.0434 min-1). The FeVO4 catalyst successfully overcomes the problem faced in the heterogeneous Fenton process, i.e., the narrow working pH range. The data for the removal of OG in FeVO4 systems containing H2O2 conform to the Langmuir–Hinshelwood model (R2 = 0.9988), indicating that adsorption and surface reaction are the two basic mechanisms for OG removal in the FeVO4–H2O2 system. Furthermore, the irradiation of FeVO4 by visible light significantly increases the degradation rate of OG, which is attributed to the enhanced rates of the iron cycles and vanadium cycles.