%A Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi %T Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics %0 Journal Article %D 2017 %J Front. Environ. Sci. Eng. %J Frontiers of Environmental Science & Engineering %@ 2095-2201 %R 10.1007/s11783-017-0919-5 %P 11- %V 11 %N 2 %U {https://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0919-5 %8 2017-04-25 %X

The BF-MBR displayed higher removal rates of nitrogen, phosphorous and antibiotics.

The BF-MBR saved alkali consumption.

The removal of antibiotics was influenced significantly by HRT.

Membrane filtration greatly contributed to antibiotics removal.

A biofilm membrane bioreactor (BF-MBR) and a conventional membrane bioreactor (MBR) were parallelly operated for treating digested piggery wastewater. The removal performance of COD, TN, NH4+-N, TP as well as antibiotics were simultaneously studied when the hydraulic retention time (HRT) was gradually shortened from 9 d to 1 d and when the ratio of influent COD to TN was changed. The results showed that the effluent quality in both reactors was poor and unstable at an influent COD/TN ratio of 1.0±0.2. The effluent quality was significantly improved as the influent COD/TN ratio was increased to 2.3±0.5. The averaged removal rates of COD, NH4+-N, TN and TP were 92.1%, 97.1%, 35.6% and 54.2%, respectively, in the BF-MBR, significantly higher than the corresponding values of 91.7%, 90.9%, 17.4% and 31.9% in the MBR. Analysis of 11 typical veterinary antibiotics (from the tetracycline, sulfonamide, quinolone, and macrolide families) revealed that the BF-MBR removed more antibiotics than the MBR. Although the antibiotics removal decreased with a shortened HRT, high antibiotics removals of 86.8%, 80.2% and 45.3% were observed in the BF-MBR at HRT of 5–4 d, 3–2 d and 1 d, respectively, while the corresponding values were only 83.8%, 57.0% and 25.5% in the MBR. Moreover, the BF-MBR showed a 15% higher retention rate of antibiotics and consumed 40% less alkalinity than the MBR. Results above suggest that the BF-MBR was more suitable for digested piggery wastewater treatment.