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1 Introduction

Severe regional haze pollution, characterized by rapid
increases of fine particulate matter (PM2.5) in the atmo-
sphere (Liu et al., 2013), occurred frequently in winter over
the Beijing-Tianjin-Hebei (BTH) region (China) in recent
years, leading to serious visibility degradation and exerting

profound negative impacts on human health (Pöschl, 2005;
Chen et al., 2013; Cao et al., 2014). Severe haze events
usually occurred with extensive temporal and spatial
coverage in the BTH region (Sun et al., 2016a). For
example, in January 2013, a continuous and large scale
haze event spread over more than 1 million km2 in
Northern China with extraordinarily high PM2.5 concen-
trations (hourly concentration up to ~900 mg/m3) (Zheng
et al., 2015). Although annual average PM2.5 concentra-
tions decreased considerably over recent years over the
BTH region due to effective emission controls (Zhang
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G R A P H I C A B S T R A C T

A B S T R A C T

Severe haze pollution occurs frequently in the winter over the Beijing-Tianjin-Hebei (BTH) region
(China), exerting profound impacts on air quality, visibility, and human health. The Chinese
Government has taken strict mitigation actions since 2013 and has achieved a significant reduction in
the annual mean PM2.5 concentration over this region. However, the level of secondary aerosols during
heavy haze episodes showed little decrease during this period. During heavy haze episodes, the
concentrations of secondary aerosol components, including sulfate, nitrate and secondary organics, in
aerosol particles increase sharply, acting as the main contributors to aerosol pollution. To achieve
effective control of particle pollution in the BTH region, the precise and complete secondary aerosol
formation mechanisms have been investigated, and advances have been made about the mechanisms of
gas phase reaction, nucleation and heterogeneous reactions in forming secondary aerosols. This paper
reviews the research progress in aerosol chemistry during haze pollution episodes in the BTH region,
lays out the challenges in haze formation studies, and provides implications and directions for future
research.
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et al., 2018), there were still more than 20 percent of winter
days in 2018 with daily average PM2.5 exceeding
75 mg/m3, which is the daily average PM2.5 standard of
China.
The regional haze issue is closely associated with a

unique combination of economic development, topogra-
phy and climate features in the BTH region. With 111
million permanent residents residing in an area of 218000
km2, the BTH region is one of the most densely populated
regions in the world (National Statistical Yearbook 2018 of
China). The rapid industrialization and urbanization over
the last few decades have been accompanied by fast-
growing energy consumption. In 2013 fossil fuel combus-
tion in this region led to emissions of 1.1 teragram (Tg)
primary particles, 2.3 Tg of SO2, 2.7 Tg of NOx, as well as
2.2 Tg of volatile organic compounds (VOCs) (Qi et al.,
2017). With Yanshan Mountains to the north and Taihang
Mountains to the west of the BTH region blocking air mass
movement (Chen et al., 2019), pollutants emitted locally
and transported from the southern part of North China
Plain tended to accumulate in the BTH region, under low
pressure weather conditions. Locating beside the eastern
leeward slope of Tibet Plateau, the “harbor effect” (Xu
et al., 2015) could result in temperature inversion in the
middle and lower troposphere of eastern China, reducing
the diffusion capacity of atmosphere in eastern China,
which also facilitates the accumulation of pollutants
leading to haze formation.
Quick actions and strong policies were taken to control

pollution emissions and improve the air quality in the BTH
region. For example, $277 billion financial allocations
were used to support Action Plan on Prevention and
Control of Air Pollution (2013–2017) aiming at reducing
the PM2.5 annual concentration by 25% from that in 2012
(China Daily, 2013). The primary PM2.5 emission in China
was 7.6 Tg in 2017, reduced 33% compared with that in
2013, as a result of China Coal Cap projects and other
actions (Zheng et al., 2018). The policies and actions
achieved major results through economic restructuring and
technology upgrade (Liu et al., 2019a); according to the
report on the State of the Ecology and Environmental in
China, from 2013 to 2018, the annual average concentra-
tion of PM2.5 and SO2 over the BTH region decreased by
41% and 72%, respectively.
Despite the reductions in the annual mass concentrations

of PM2.5 and the frequency of heavy haze events between
2013 and 2018, the severity of haze showed little
alleviation (Zhang et al., 2020). Furthermore, the chemical
mechanisms of the explosive particle mass concentration
growth during pollution episodes still remained unclear. In
addition, during severe pollution periods PM2.5 mainly
consisted of secondary components, i.e. secondary inor-
ganic constituents including sulfate, nitrate and ammonium
(SNA), and secondary organic aerosols (SOA) formed
from oxidation of VOCs (Guo et al., 2014). Thus,

elucidating aerosol chemistry behind the rapid formation
of secondary aerosols is one key to solve the haze problem.
There are various formation pathways of SNA and SOA

in the atmosphere. The relationships between PM2.5

concentrations and the emissions of its precursors are
nonlinear (Zhao et al., 2017; Lu et al., 2018). Models with
known chemical reactions about SO2, NOx and VOCs
oxidation and secondary aerosol formation can not
reproduce the rapid increases of particle mass during
haze formation in the fall and winter over the BTH region
(Han et al., 2014; Wang et al., 2014a; Wang et al., 2014c;
Zheng et al., 2015; Chen et al., 2016; Cheng et al., 2016;
Tang et al., 2016; Liu et al., 2020). The contributions from
local emissions, secondary chemical formation and
regional transport were not clearly quantified, hindering
the joint efforts among different parts of the BTH region to
control air pollutants’ emissions (Zheng et al., 2015). A
deeper understanding of the chemical formation mechan-
isms is needed for air pollution control under the air
pollution complex characteristics in China (Kulmala,
2015).
Different from former reviews on mechanisms of

secondary aerosol formation (Ma et al., 2012; Zhang
et al., 2015a), this work summarizes the current state of
knowledge on the chemistry of secondary aerosol forma-
tion in the fall and winter of the BTH region, discusses the
limitations of our understandings, and makes recommen-
dations on future studies. The knowledge and recommen-
dations can serve as a reference for future studies and
mitigation of regional particle pollution in areas in the
world with rapid economic growth and large anthropo-
genic emissions.

2 Characteristics of haze formation

In the BTH region, haze was caused by atmospheric PM2.5

pollution contributed by primary emission and secondary
formation. The unique geography of the BTH region as
well as meteorological conditions favored rapidly second-
ary formation in the winter.

2.1 Source identification of aerosol particles

The understanding and control recommendations on
regional haze in the BTH region were first established
based on source apportionment studies (Lv et al., 2016;
Li et al., 2017b). These studies applied receptor models,
e.g., Chemical Mass Balance (CMB) model and Positive
Matrix Factor (PMF) model, and atmospheric transport
models, e.g., Weather Research and Forecasting—Com-
munity Multiscale Air Quality (WRF-CMAQ) model and
Comprehensive Air Quality Model with extensions
(CAMs), to determine the contributions from various
sources to PM2.5. The sources of atmospheric PM2.5 and its
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precursors in the winter over the BTH region include
residential and industrial coal combustion, biomass burn-
ing, traffic emission, and soil and construction dust (Wang
et al., 2009; Cheng et al., 2013; Zhang et al., 2015b; Elser
et al., 2016; Han et al., 2016b; Hu et al., 2016; Sun et al.,
2016b; Tan et al., 2016; Yao et al., 2016; Hu et al., 2017;
Cheng et al., 2018; Gao et al., 2018; Li et al., 2018; Li
et al., 2019a; Liu et al., 2019d). Among the primary
sources, coal combustion (~20%) and biomass burning
(~20%) are the most important during haze events (Li et
al., 2018; Li et al., 2019a), while traffic emissions become
more important during clean period (Liu et al., 2019d).
Compared with primary emissions, secondary formation
contributes more to PM2.5 concentration during polluted
periods, indicating important roles of aerosol chemical
formation in haze (Liu et al., 2019d).

2.2 Secondary components in PM2.5

The explosive growth of secondary components in
aerosols has a dominant effect on haze development over
the BTH region during fall and winter (Guo et al., 2014;
Yang et al., 2015; Yao et al., 2016; Cao et al., 2017; Ma
et al., 2017; Li et al., 2019a; Xie, 2020); emissions of
elemental carbon (EC), primary organic aerosols (POA),
mineral elements and other components in particles also
increase during haze accumulation period (Tan et al., 2016;
Zhang et al., 2016; Li et al., 2019a).
Field measurements reveal that haze formation in

Beijing always follows a two-stage cycle lasting for
several days (Tan et al., 2018), i.e., a new particle

formation process to generate large number concentration
of nano-particles, followed by subsequent growth of these
particles to over 100 nm diameter to concentrations as high
as 150 mg/m3 from efficient secondary formation of SNA
and SOA (Guo et al., 2014; Zamora et al., 2019).
SNA and oxidized organic aerosols (OOA) derived by

high resolution aerosol mass spectrometer (HR-AMS)
contribute about 60%–80% to mass concentration of
particles with diameter less than 1 μm (PM1) in Beijing
(Hu et al., 2017). The organic fraction in particles
decreases during haze episodes (Sun et al., 2014; Zhang
et al., 2014; Zheng et al., 2016; Wang et al., 2019), but it is
still dominant in PM2.5 increases during late fall and winter
(41%). The OA fraction is followed by the nitrate fraction
(20%) (Tan et al., 2018). SNA are efficiently formed by
strong gas to particle conversion and oxidation reactions,
as the sulfur and nitrogen oxidation ratios, calculated as
SO4

2–/(SO4
2–+ SO2) and NO3

–/(NO3
–+ NOx), exhibit

higher levels during haze events (Zheng et al., 2016).
Due to the implementation of coal combustion control

policies, e.g., the replacement by natural gases and
establishment of non-coal burning areas in the BTH
region, nitrate (Yang et al., 2015; Tan et al., 2018; Xu et al.,
2019a; Xu et al., 2019b) has replaced sulfate (Sun et al.,
2014; Wang et al., 2014b; Wang et al., 2014c; Han et al.,
2016a; Zheng et al., 2016) as the primary inorganic
component in PM2.5 during severe haze episodes. Figure 1
shows the chemical fractions of PM2.5 in Beijing in winter.
The daily average PM2.5 concentrations on haze days of
2013 and 2018 were 150 mg/m3 and 131 mg/m3,
respectively, indicating small decline in haze severity.

Fig. 1 Fractions of PM2.5 in the winter of Beijing during non-episode (daily averaged PM2.5< 75 mg/m3) and polluted periods (daily
averaged PM2.5>75 mg/m3) in year of 2013 and 2018. (Data from the filter samples collected at the PKUERS site, the campus of Peking
University. Elemental carbon and organic carbon (OC) are measured by the Sunset ECOC instrument, concentration organics are
calculated as 1.6*OC; SNA are measured by ion chromatography).
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Sulfate concentrations during pollution period decreased
during 2013–2018, from 19.2 mg/m3 to 12.1 mg/m3. A
comparison between non-episode and polluted periods
shows the fraction of organics decreased from 30% in non-
episode PM2.5 to 19% in PM2.5 during pollution episode in
winter of 2018, while nitrate increased sharply from 18%
to 34%, becoming the most abundant composition in
PM2.5.

2.3 Meteorological conditions favorable for secondary
formation

The rapid increases of PM2.5 during haze episodes over the
BTH region are facilitated under specific meteorological
conditions, e.g. higher relative humidities (Zhao et al.,
2013; Zhang et al., 2014; Han et al., 2016a), increased
atmospheric stability (Zheng et al., 2015), weak cyclone
and convection, and lower planetary boundary layer (PBL)
(Liu et al., 2013; Guo et al., 2014). Such high atmospheric
stability phenomenon is typically induced by climatologi-
cal anomalies in the anticyclonic activities during winter
season in north-eastern Asia (Zhong et al., 2019), and the
large-scale temperature inversion in the eastern slope of the
Tibetan Plateau (i.e. the harbor effect) (Xu et al., 2015).
The high levels and aging of PM2.5 can lead to
meteorological feedbacks, reducing downward shortwave
radiation at the surface by 26% and planetary boundary
layer height by 15%–25%, and increasing the humidity of
air (Wang et al., 2014d; Peng et al., 2016; Gao et al., 2017;
Tie et al., 2017; Zhao et al., 2019). This feedback
mechanism can be an important factor in the enhancement
of secondary aerosol mass loading (Wang et al., 2020).
Long range transport is another important process influen-
cing pollution levels. During polluted days in Beijing, air
was mainly transported from the polluted areas in southern
Hebei (Zhao et al., 2013; Zhang et al., 2014; Zhang et al.,
2019a), and such regional transport dominated Beijing
local emissions in terms of PM2.5 contributions in the
winter (Ge et al., 2018; Zhai et al., 2018). Lastly, climate
change may increase the frequency of meteorological
conditions conducive to pollution accumulation (Cai et al.,
2017; Hong et al., 2019), but the influence is limited with
emission controls (Shen et al., 2018).
According to model simulations, meteorology processes

contributed 7.9%–42.6% to the incremental levels of PM2.5

pollution in the BTH region (Bei et al., 2017; Xu et al.,
2018). While the decreases in the annual mean PM2.5 have
been mainly contributed by reductions in anthropogenic
emissions (Cheng et al., 2019; Vu et al., 2019; Zhai et al.,
2019; Zhang et al., 2019c) as a result of the China Action
Plan on Prevention and Control of Air Pollution, case
studies have found that extreme pollution episodes are
driven by meteorological conditions, and that the effects
from emission controls on the extremely polluted days
during 2013–2017 are relatively small (Zhang et al., 2018).

3 Progress in aerosol chemistry in haze
formation over the BTH region

As shown in Fig. 2, there are two main chemical pathways
forming secondary components in aerosol particles:
photochemical reactions among gas phase species and
aqueous phase reactions in cloud droplets or particles. At
the initial stage of pollution, the photochemical reactions
produce products of low volatility which dominate the
formation of secondary components. As pollution level
increases, the radiation intensity decreases by light
scattering and probably absorption from high aerosol
loadings, reducing the formation of gas phase photoche-
mical oxidants. On the other hand, the increased relative
humidity during pollution episodes enhances heteroge-
neous reactions in in aerosol particles. Thus, aqueous
reaction may become the dominant process in secondary
aerosol formation during heavy pollution episodes.

3.1 Gas phase reaction, nucleation and condensation

During photochemical reactions, gaseous precursors (SO2,
NOx and VOCs) are oxidized by radicals (OH, HO2, NO3)
and ozone. The photochemical process over the BTH
region during winter haze episodes is effective since: 1) the
atmosphere in Beijing during winter exhibits a strong
oxidation capacity. The OH and HO2 concentrations in
Beijing have been reported to be 1.5 � 106 cm–3 and 0.3 �
108 cm–3, respectively, during pollution episodes in winter
(Ma et al., 2019). The total loss rate of the OH radical in
winter in Beijing is comparable with peak values observed
in summer (Lu et al., 2019) indicating high levels of winter
OH reactivity. 2) Ozone photolysis is the main OH
production pathway, and can be produced through the
oxidation of VOCs and NOx (Lu et al., 2018). 3)
Photochemical aging of PM2.5 in Beijing can contribute
to the production of nitrous acid (HONO) (Bao et al., 2018;
Qu et al., 2019; Zhang et al., 2019b). The photolysis of
HONO is an important source of OH, especially during
heavy haze episodes with elevated HONO concentrations
(Ma et al., 2019).
The photochemical process always leads to products

with higher oxidation states, e.g. H2SO4 and oxidized
organic molecules. These gas phase oxidation products
have lower volatilities and further transfer into the particle
phase via two paths: nucleation occurring at the cluster size
range (< 1 nm) and gas-particle partitioning (condensation)
occurring in all particle size ranges.
Nucleation is the first step of new particle formation, in

which the ~1 nm clusters are formed by hydrogen bonding
of gaseous precursors under low level of pre-existing
particles (Kulmala, 2003; Kulmala et al., 2013), and is
considered to be one of the main sources of aerosol
particles all over the world. H2SO4 formed by gas phase
reaction of SO2 and OH/Crigee radicals is thought to be the
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most important precursor of nucleation (Kuang et al.,
2008; Sipilä et al., 2010; Wang et al., 2011). In addition,
the participation of other gaseous precursors, e.g. H2O
(Zollner et al., 2012), NH3 (Xiao et al., 2015), dimethy-
lamine (DMA) (Yao et al., 2018) and organic acids (Zhang
et al., 2004), is essential to the efficient nucleation in
polluted atmosphere in China (Wang et al., 2017). The
oxidation products of VOCs emitted by vehicles also
contribute remarkably to nucleation in atmosphere of
Beijing (Guo et al., 2020). Heterogeneous nucleation
between ions and gaseous molecules is found to have small
contributions to the number concentrations of newly
formed particles over Beijing (Jayaratne et al., 2017).
The large number of nano particles formed through
atmospheric nucleation can then grow into larger sizes
through formation of secondary low volatility products
which partition into the particulate phase and finally cause
haze (Guo et al., 2014). During the beginning of particle
growth and haze formation over urban atmosphere, the gas
to particle partitioning of gas phase oxidation products is
dominant (Qi et al., 2018). For example, the condensation
of gaseous H2SO4 has been found contribute 19%–45% of
particle phase sulfate mass, depending on the stages of new
particle growth (Shao et al., 2019)
At the early stage of haze formation, SOA is formed by

photochemical reaction of VOCs and further condensation
of the oxidation products onto the particles. Good
correlations (R2 = 0.53–0.80) have been found between
less oxidized oxygenated organic aerosols (LO-OOA) and
odd oxygen (Ox = O3 + NO2) in the BTH region (Hu et al.,
2017; Xu et al., 2017). Previous studies of photochemical
reaction mechanisms of VOCs in the atmosphere only
included products with a lower degree of oxidation. In
recent years, highly oxygenated multifunctional organic
molecules (HOMs) were observed in laboratory and
atmospheric studies (Ehn et al., 2014; Mutzel et al.,
2015). HOM compounds are formed by autoxidation of
$RO2 radicals and can contribute to condensational growth
and nucleation of particles (Riccobono et al., 2014).
For particulate nitrate, gas phase reaction between

HNO3 and NH3 was thought as the main formation path
in daytime (Wen et al., 2018), and the formation of
NH4NO3 is highly dependent on temperature. During haze
formation, higher levels of NH3 and water vapor in the
BTH region influence the thermodynamic equilibrium, and
favor aqueous NH4NO3 formation (Liu et al., 2015). In
addition, nitrate and SOA show gradual increasing trend
during day time in winter in Beijing, indicating contribu-
tions from photochemical process and gas-particle parti-
tioning at low temperatures (Sun et al., 2013b).

3.2 Heterogeneous reaction

The formation of SNA and SOA also occurs through
heterogeneous processes, including the uptake of SO2,
NOx and VOCs and other gaseous pollutants by cloud

droplets (“in-cloud process”) or particles (“heterogeneous
process”), and then oxidation by H2O2, O3 and NO2 in
aqueous phase (Zhu et al., 2011; Zhang et al., 2015a).
According to recent studies in the BTH region, the uptake
and oxidation process can occur rapidly in liquid water
content of particles (LWCP) (Wang et al., 2016). During
haze formation, relative humidity increases to over 60% to
80%, sub micrometer particles were deliquescent during
heavy haze episodes, facilitating the mass transfer and
multiphase reactions of the particles (Liu et al., 2017). The
fractions of SOA, sulfate and nitrate in PM2.5, sulfur and
nitrogen oxidation ratios have positive correlations with
relative humidity (RH), indicating aqueous reactions play
important roles in secondary transformation in the BTH
during winter haze formation (Sun et al., 2013a; Yang
et al., 2015; Elser et al., 2016; Sun et al., 2016a; Wang
et al., 2016; Hu et al., 2017). Due to the dependence on
LWCP, the heterogeneous reactions occur mainly on larger
particle size range (>100 nm).
For sulfate formation, the most important pathway is the

oxidation of S(IV) in aqueous phase. Field measurements
revealed that, at the accumulation stage of winter haze, RH
increases to more than 60% to 80%, during which the
aerosol particles deliquesce and shift from solid phase to
liquid state thereby increasing LWCP (Liu et al., 2017).
The phase change can further decrease the viscosity of
particles and enhance the uptake of SO2 and oxidizing
agents. However, there is disagreement among studies
about the main oxidizing agent during haze formation in
the winter of BTH region. Some claim that the acidity of
particles during aqueous reactions is close to neutral (pH =
5–6), and dissolved NO2 (Cheng et al., 2016; Wang et al.,
2016; Xue et al., 2016) is the main oxidizing agent for
sulfate formation. On the other hand, some recent studies
reveal that pH of particles is around 4–5 (Song et al.,
2018). In this pH range, the oxidizing capacity of transition
metal ions (TMIs) and O3 can be stronger than that of NO2

(Shao et al., 2019). Thus, SO2 oxidation in aerosol water
by O3 catalyzed by TMI (Li et al., 2017a) and in-cloud
reactions dominates sulfate production on polluted days,
with a fractional contribution of up to 68% (He et al.,
2018a; Shao et al., 2019). In addition, the levels of another
oxidant, H2O2, during haze episodes have been found to be
0.90 parts per billion by volume (ppbv) (Ye et al., 2018),
one order of magnitude higher than reported in previous
studies (Cheng et al., 2016). Such high levels could be the
result of heterogeneous formation involving NOx (Qin
et al., 2018). At H2O2 level of ~1 ppbv, the sulfate formation
rate from the H2O2 oxidation pathway can be one order of
magnitude higher than the rate from the NOx oxidation
pathway (Ye et al., 2018). Apart from inorganic sulfates, the
concentration of particulate sulfur can also be partially
explained by organic sulfates, e.g. hydroxymethansulfonic
acid (HMSA) from HCHO and S(IV) reaction in cloud
droplets (Moch et al., 2018; Song et al., 2019).
Heterogeneous reaction is also important for SOA
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formation during haze episode in the BTH region. Model
results show that heterogeneous HONO sources substan-
tially enhance near-surface SOA formation by contributing
to the OH radical level through its photolysis, increasing
the regional average near-surface SOA concentration by
about 46.3% during episodes. The uptake and hydrolysis
of glyoxal and methylglyoxal in LWCP is another
important pathway of SOA formation during haze
formation, with the SOA contribution at 30.2% (Xing
et al., 2019).
The heterogeneous formation of nitrate is mainly from

the uptake and hydrolysis of N2O5 during nighttime (Liu
et al., 2019b). Nighttime production of nitrate in air masses
above urban Beijing (~200 m height) has been found to
enhance its concentration at ground level by 28 µg/m3

through vertical mixing (Wang et al., 2018), comprising of
a 21.0% enhancement of nitrate (NO3

–) through N2O5

hydrolysis and a 7.5% enhancement of ammonium (NH4
+)

(Su et al., 2017). The isotope analysis of Δ17O in NO3
–

indicates that the nocturnal pathway is dominant (56%–
97%) in the formation of nitrate during pollution process
(He et al., 2018b).
The aqueous reactions and water content in particles

have a positive feedback loop (Fig. 2). The increase in
inorganic fraction and elevation of the oxidation state of
organics in aerosol particles enhance the hygroscopicity
and water uptake of particles, thus further promoting the
aqueous reactions, resulting in more inorganic salt and
SOA formation (Li et al., 2019b). Furthermore, the
heterogeneous reactions between NO2 and SO2 in LWCP
can form HONO, which would further generate hydroxyl
radicals via photolysis, promoting photochemical reactions
(Ge et al., 2019).

4 Challenges on aerosol chemistry of
secondary formation

The studies on aerosol chemistry of haze formation in the
BTH region have achieved substantive progress, but there
are still many problems and unexplained phenomena that
remain to be solved.
1) The unknown sources of strong oxidation capacity

during polluted periods. Based on current mechanisms, the
models can simulate the concentration of OH radicals
during clean periods in winter, but underestimate the OH
concentrations during polluted periods (Ma et al., 2019).
2) The ambiguous mechanisms of new particle forma-

tion in rural atmosphere. Due to limitation of observational
data sets, the nucleation mechanisms including H2SO4 +
DMA and H2SO4 + HOMs were only evaluated at a
limited number of locations in the BTH region. The key
precursors of the effective nucleation observed in the BTH
regions remain unknown. Thus, continuous and compre-
hensive observations with full measurements of new
particle formation parameters are needed.

3) The dominant roles of nitrate in pollution. Models,
which are based on current mechanisms, are able to
reproduce nitrate formation in clean and polluted period.
However, the reasons of the explosive growth in
particulate nitration concentrations during extreme pollu-
tion episodes still need to be understood. With continuing
efforts in reducing SO2 emissions, the concentrations of
particulate sulfate have been decreasing in recent years.
However, particulate nitrate concentrations have stayed at
similar levels over the same period despite reductions in
NOx emissions, making it as the most important inorganic
components in aerosols during pollution.
4) The different views on the main oxidation mechan-

isms of SO2. Recent studies provided deeper under-
standings in sulfate formation by including heterogeneous
reactions in LWCP. On the other hand, there are different
views on the oxidation path. More studies are needed to
distinguish the main oxidizing agents of SO2 in liquid
phase, among H2O2, transition medal, O3 and NO2, and to
quantify their respective contributions.
5) The need to explore explicit molecular mechanisms of

SOA formation. Aqueous formation of SOA is commonly
considered to be important during haze formation, but this
conclusion is based only on correlations between SOA
concentration and RH (or LWCP). At the molecular level,
current observations only find the higher O:C ratio of SOA
during pollution period. Such observations can not provide
detailed information on chemical reactions in aqueous
formation of SOA.

5 Future outlook

5.1 Monitoring of key parameters

To meet the challenges of future aerosol chemistry studies
on haze formation of BTH region, researchers need to be
equipped with instruments that are able to measure
additional important atmospheric parameters, such as the
level of water contents in particles, H2SO4, HOMs, particle
pH, etc. With precise and comprehensive data sets,
researchers can work on the integration of different
mechanisms, and find out the main pathway of SNA and
SOA formations.
Such comprehensive measurements in atmosphere need

to be conducted continuously in both urban and rural areas,
so that researchers and policy makers can get reliable
results on atmospheric chemistry, to analyze the outcomes
of emission control policies (Kulmala, 2018).

5.2 Systematic understanding among different chemical
and physical processes

In future studies, researchers must systematically consider
the formation of different secondary aerosols in the real
atmosphere. Recent studies indicate that the formation of
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SNA can enhance SOA formation during haze episode by
increasing the LWCP and accelerating the uptake of VOCs
on particle surface. However, the formation mechanisms of
secondary components were treated separately in many
previous model or laboratory studies, leading to a lack of
understanding on the interactions among nitrate, sulfate
and SOA formation.
Knowledge on such interactions may lay a foundation in

guiding policy development. Because of the complex
interactions among pollutants, the mitigation of particle
pollution may have unforeseen consequences in other air
pollution issues. For example, reduction of NOx and NH3

emissions can control secondary formation of aerosol
particles, but may aggravate ozone pollution (Lu et al.,
2019) and acid rain problems, respectively (Liu et al.,
2019c). To achieve synergistic control of atmospheric
pollutants, a comprehensive understanding of the atmo-
spheric chemical reaction mechanism is required for
effective control actions.

5.3 Quantifying the contribution of different pathway on
secondary aerosol formation

Through studies conducted in recent years, researchers
developed various mechanisms and characterized many

parameters in aerosol chemistry during haze formation.
However, there are still no consensual understandings
about the relative contributions of different pathways of
formation of secondary particulate components including
SNA and SOA. One future task for the researchers is to
integrate the mechanisms and parameters revealed in those
separate studies into a comprehensive numerical model to
quantify the contributions from the different pathways on
SNA and SOA under certain atmospheric conditions.

5.4 Integrating measurement, laboratory and model
techniques

To validate the mechanisms obtained from theoretical and
laboratory studies for applications to real atmosphere,
comprehensive measurements in the real atmosphere must
be conducted to determine related precursor and product
concentration levels. Closure studies must be done, by
feeding the measured precursors into models equipped
with various mechanisms, and see which mechanism can
reproduce the measured products and particle properties.
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Fig. 2 Sketch map of secondary component formation by atmospheric aerosol chemical process.
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