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1 Introduction

Air pollution caused by fine particulate matter (aerody-
namic diameters of less than 2.5 μm, PM2.5) has become a
major environmental challenge in the 21st century.
Increasing research has shown that aerosols have large
influences on clouds and precipitation (Koren et al., 2012;

Wang et al., 2016; Guo et al., 2016; Jiang et al., 2018),
climate system (Kaufman et al., 2002) and public health
(Gu and Yim, 2016). With rapid industrial development,
extensive transportation networks and extremely dense
population, North China has one of the highest concentra-
tions of atmospheric aerosols in the world (Remer et al.,
2005; Levy et al., 2010; Guo et al., 2014) with the number
of hazy days significantly increased since the 1980s (Fan
and Chun, 2008; Hu and Zhou, 2009; Wu et al., 2010).
What’s more, prolonged heavy pollution episodes occur
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H I G H L I G H T S

• The Taihang Mountains was the boundary
between high and low pollution areas.

•There were one high value center for PM2.5

pollution and two low value centers.
• In 2004, 2009 and after 2013, PM2.5 concentra-
tion was relatively low.
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G R A P H I C A B S T R A C T

A B S T R A C T

Over the past 40 years, PM2.5 pollution in North China has become increasingly serious and
progressively exposes the densely populated areas to pollutants. However, due to limited ground data,
it is challenging to estimate accurate PM2.5 exposure levels, further making it unfavorable for the
prediction and prevention of PM2.5 pollutions. This paper therefore uses the mixed effect model to
estimate daily PM2.5 concentrations of North China between 2003 and 2015 with ground observation
data and MODIS AOD satellite data. The tempo-spatial characteristics of PM2.5 and the influence of
meteorological elements on PM2.5 is discussed with EOF and canonical correlation analysis
respectively. Results show that overall R2 is 0.36 and the root mean squared predicted error was 30.1
μg/m3 for the model prediction. Our time series analysis showed that, the TaihangMountains acted as a
boundary between the high and low pollution areas in North China; while the northern part of Henan
Province, the southern part of Hebei Province and the western part of Shandong Province were the
most polluted areas. Although, in 2004, 2009 and dates after 2013, PM2.5 concentrations were
relatively low. Meteorological/topography conditions, that include high surface humidity of area in the
range of 34°‒40°N and 119°‒124°E, relatively low boundary layer heights, and southerly and easterly
winds from the east and north area were common factors attributed to haze in the most polluted area.
Overall, the spatial distribution of increasingly concentrated PM2.5 pollution in North China are
consistent with the local emission level, unfavorable meteorological conditions and topographic
changes.
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more and more frequently. According to the 2013 annual
air quality data of 74 major cities issued by the Ministry of
Environmental Protection (MEP) of China, the annual
average PM2.5 concentrations in all cities in the Beijing-
Tianjin-Hebei region exceeded the standard, among which
7 cities ranked in the top 10. The number of days of
pollution for some cities accounted for 40% of the total
number of days of the year. Taking Beijing as an example,
Beijing has experienced rapid expansions in economy and
urbanization over the past several decades. From 2009 to
2013, the gross domestic product (GDP) in Beijing
increased from $203 to $325 billion, however, vehicle
numbers in the city have increased from 4.0 to 5.4 million
– contributing to a steady deterioration in air quality since
the 1990s. Pollution levels are further highlighted with
average annual PM2.5 concentrations in 2013 reaching 102
μg/m3, with the daily maximum PM2.5 value reaching 568
μg/m3 (Zhang et al., 2013; Guo et al., 2014; Sun et al.,
2014; Zhang et al., 2015; Zhang and Cao, 2015).
The adverse effects of polluted weather therefore creates

an urgent demand on obtaining daily high resolution PM2.5

concentration data and its spatio-temporal variations –
allowing more effective means of predicting and enacting
PM2.5 pollutions control. Currently, ground-based obser-
vations provide precise and timely concentration of
atmospheric PM2.5. However, due to limited spatial and
temporal coverage, in situ observations are unable to
capture high resolution tempo-spatial PM2.5 concentration
variation – this is particular for many developing countries
such as China, because of high operational cost and
technology requirements (Wang et al., 2017). As such
satellite remote sensing can provide aerosol optical depth
(AOD) products at various scales to assist retrieve PM2.5

air quality for areas where surface ground-based PM2.5

monitors are not available or too sparse (Liu et al., 2004;
Engel-Cox et al., 2006; Gupta and Christopher, 2008; van
Donkelaar et al., 2011;Zhang et al., 2017a). AOD data are
composed of non-dimensional parameters calculated by
integrating light extinction of aerosols from the ground-
level with the top of the atmosphere and its reflection of the
integrated particles in a vertical column – this represents
PM loading in the air (Dinoi et al., 2010; Hu et al., 2014;
Ghotbi et al., 2016). Among many satellite AOD products,
the Moderate Resolution Imaging Spectroradiometer
(MODIS) AOD is most widely used to retrieved PM2.5

due to its high resolution and accuracy (Liu et al., 2005;
van Donkelaar et al., 2011). Wang and Christopher (2003)
initially used MODIS AOD in the prediction of ground
level PM2.5 in the USA in 2003 and numerous researchers
have attempted to estimate ground PM2.5 level after that.
The retrieved methods mainly included simple linear

model, land use regression model, geographically
weighted regression, and complex model with additional
variables (Wang and Christopher, 2003; Liu et al., 2009;
Kloog et al., 2012; Hu et al., 2014; Ma et al., 2014; Bai

et al., 2016). The relationship between PM2.5 and AOD in
these methods is fixed, though the inversion effects of
these methods can vary. Particle size, composition and the
vertical profile of aerosols in atmospheric column or other
PM properties could however affect the optical properties
of particles, due to the spatio-temporal change of local
emissions, meteorological elements or other impact
factors. Consequently, it is understood that the PM2.5-
AOD relationship changes as the spatio-temporal param-
ters change (Liu et al., 2007; Lee et al., 2011). That’s to
say, the relationship between PM2.5 and AOD varies by
day. Therefore, in this paper we considered the daily
variability and location difference in the retrieval and later
prediction of PM2.5 ground concentration data via MODIS
AOD.
Mixed models are adopted as they are statistical models

containing both fixed effects and random effects. These
models are particularly useful in situations where repeated
measurements are made on the same statistical units, or
where measurements are made on clusters of related
statistical units. In the 1950s, Henderson provided best
linear unbiased estimates (BLUE) of fixed effects and best
linear unbiased predictions (BLUP) of random effects
(Henderson, 1948). From then on, mixed modeling has
become a major area of statistical research. Lee et al. (Lee
et al., 2011) introduced this method to PM2.5 by
developing a linear mixed effects (LME) model with
day-specific random effects for AOD, which can account
for daily variations of PM2.5-AOD relationship. Previous
studies have shown that day-specific LME model performs
better than other statistical models such as (GWR) (Ma et
al., 2016) and linear regression model (Lee et al., 2011).
Due to its high accuracy, the day-specific LME model has
been widely applied in many studies and models worked
well in different areas (Kloog et al., 2012; Hu et al., 2014;
Beloconi et al., 2016; Lee et al., 2016). However, the LME
model has not been widely used in retriving PM2.5

concentrations in China. Specifically, no long-term
sequence studies on highly polluted areas in China have
been found, the likes of which are essential to the
assessment and prevention of PM2.5 pollution.
As mentioned before, the increase of emissions with

rapid urbanization and economic development are gen-
erally considered as the primary reason for the increase of
polluted days in China. However, the observed air
pollution has significant interannual and decadal variability
(Guo et al., 2011; Chen et al., 2019) in contrary to the
persistent and rapid increase of total local energy
consumption (Li et al., 2016; Wang et al., 2016) – these
variabilities are recognized to be associated with the
changes in climate models. Consequently, in addition to
analyzing spatio-temporal variations of PM2.5 over North
China based on remote sensing AOD data, we further
explore the effect of meteorological elements on PM2.5

concentrations.
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2 Data and methods

2.1 Study area

Our study area of North China includes all areas of Beijing,
Tianjin, Hebei, Shandong and parts of Shanxi, Henan,
Inner Mongolia and Liaoning (Fig. 1) – where latitude and
longitude ranges are from 34°N to 43°N, 113°E to 123°E.
In northern China, most areas are warm temperate semi-
monsoon climate, and a small part of the north-west sits
within the Loess Plateau region. Due to the Taihang
Mountains, the altitude in the study area is higher in the
west and lower in the east, with an average altitude of
about 50 m.

2.2 Data

2.2.1 Ground PM2.5 measurements

Hourly PM2.5 measurements from Apr. 2014 to Mar. 2015
were collected from the official MEP of China website
(http://air.epmap.org/). The MEP has released PM2.5 data
in major cities since 2013. According to the Chinese
National Ambient Air Quality Standard (CNAAQS,
GB3095-2012, available on the MEP website http://kjs.
mep.gov.cn/), the ground PM2.5 data of China are
measured by the tapered element oscillating microbalance
method (TEOM) or the beta-attenuation method. A total of
215 monitoring sites that meet the requirements of
Technical Regulation for Selection of Ambient Air Quality
Monitoring Stations (on trial) (HJ 664-2013) in 41 cities
are included within our study area (Fig. 1). In this study,
hourly PM2.5 data was recorded between 11:00 and 15:00

(local time) at the ground stations. Data was averaged to
match the AOD retrieval time of 13:30. PM2.5 pollution
days are defined as days with an average PM2.5

concentration over 75 μg/m3 – as based on CNAAQS. A
pollution day ratio was defined by dividing days with
PM2.5 concentration data by the days with PM2.5

concentrations larger than 75 μg/m3. This was to create a
standard to measure/account for degrees of contamination
of an observation area or observation point due to missing
satellite data.

2.2.2 MODIS 3 km AOD Product

The MODIS aerosol level 2 products during 2003–2015
over study area were acquired from the Level 1 Atmo-
sphere Archive and Distribution System (LAADS) (Levy
& Hsu, 2015). MODIS carried on the NASATerra satellite
was launched in May 2002 and has been providing
retrieval products of aerosol properties with nearly daily
global coverage since 2003. The satellite crosses our study
region at approximately (on average) 13:30 local time with
a scanning swath of 2330 km (cross-track) by 10 km
(along-track at nadir). Using dark target algorithms, the
MODIS AOD over land is retrieved using the spectral
information at three channels of 0.47, 0.66 and 2.12 m
(Remer et al., 2005) to acquire average signals of
atmospheric aerosols in the vertical direction. The
uncertainty of the MODIS AOD measurements is expected
to be 1AOD = 0.05�0.15 � AOD over land (Levy et al.,
2010). Standard MODIS Level 2 (L2) AOD products are
distributed at a 10 km resolution. In early 2014, NASA
released the new collection 6 (C006) AOD products at a 3
km resolution (MYD04_3K) making it possible for air
quality observers to estimate PM2.5 with a higher
resolution. The retrieval algorithm of the higher resolution
product is similar to that of the 10 km standard product but
averages 6 � 6 pixels in a single retrieval box rather than
the 20 � 20 pixels after cloud screening and other surface
mask processes (Levy et al., 2013; Munchak et al., 2013).
The resolution of grid cells was determined to be 3 km� 3
km under the Mercator projection. There were 76 grid cells
in the x direction and 100 cells in the y direction (7600 cells
in total) in our study area.

2.2.3 NCEP reanalysis meteorological data

Meteorological parameters can impact optical properties of
particles by affecting chemical composition or physical
properties of particles directly or indirectly, which further
influence the formation and transport of PM2.5 (Sotoude-
heian and Arhami, 2014; Ghotbi et al., 2016). Conse-
quently, we also explored the effect of meteorological
elements on PM2.5 in addition to analyzing its spatio-
temporal characteristics. The meteorological data used in
our study included: relative humidity (RH), wind speed

Fig. 1 Study area location and spatial distribution of cities
involved with PM2.5 monitoring sites in this study. In total there are
215 monitoring sites in 41 cities. Red points represent the cities,
where altitude is represented by the gray color bar.
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(Uwind and Vwind) and planetary boundary layer height
(PBLH) during 2003–2015. Meteorological data was
obtained from the National Centers Environmental Pre-
diction (NCEP) and National Center for Atmospheric
Research (NCAR). Data during January 2003 and June
2007 was extracted from NCAR/NCEP reanalysis (R1)
and between July 2007 and December 2015 from NCEP/
DOE Reanalysis 2 (R2). Through four-dimensional
assimilation analysis, various observations and model
output data are produced into high-quality global meteor-
ological data sets, referred to as NCAR/NCEP reanalysis
data. The time resolution of the data was set at 6 h
intervals, which were at Beijing time 08:00, 14:00, 20:00,
and 02:00 the next day, with a spatial resolution of 1° � 1°
(http://rda.ucar.edu/datasets/ Ds083.2). Since meteorologi-
cal elements in the boundary layer do not have large-scale
and long-term observation results, the reanalysis of
meteorological data are commonly used in atmospheric
sciences as actual historical data. The reanalyzed data, as
long-term meteorological data, is currently considered to
be the closest to actual historical data and widely used in
atmospheric scientific research, especially in climate
simulation and climate diagnosis (Trenberth et al., 2014;
Wang and Chen, 2014). Numerous studies have compared
reanalysis data and observation data to prove its reliability
(Kalnay et al., 1996; Zhao et al., 2004). We chose the data
at 14:00 to match the satellite observed time. Since the
spatial resolution of the meteorological elements differs
significantly from PM2.5, the PM2.5 concentration data was
resampled to the same 1° � 1° as the reanalysis data
resolution when analyzing the relationship between them.
The data used was summarized as Table 1.

2.3 Methods

2.3.1 Mixed effect model

This paper makes use of the ground observation data of 41
cities andMODIS AOD data during Apr. 2014 –Mar. 2015
to construct a relation model of PM2.5 and AOD in North
China through the Mixed effect model (Lee et al., 2011;
Xie et al., 2015), and then obtains long-terrm daily PM2.5

concetration bewteen 2003 and 2015 via the AOD product.
We calibrated AOD data of MYD04 using the ground-

based PM2.5 concentration data first. Hourly ground PM2.5

concentration data of 41 cities was used to take the average
value from 11:00 to 15:00 as the city’s daily value for
calibration to match the satellite crossing time. AOD data

takes the average of the AOD values of all grids within
each city range on the day as the daliy value of the city. In
this way, daily PM2.5 concentration data and corresponding
AOD data for each city during April to December 2014 can
be obtained to retrieve the parameters in the mixed effect
model (Eq. (1)).

PM2:5ij ¼ ðαfixed þ αjÞ þ ðβfixed þ βjÞ � AODij þ si

þ εijðαjβjÞ
e

N½ð00Þ,Σ� (1)

Where PM2.5ij and AODij are their value at city i on day j.
Where αfixed and βfixed are the fixed intercept and slope
respectively, and αj and βj are the random intercept and
slope. Si is the random intercept of site i, εij is the error term
at site i on day j and Σ is the variance-covariance matrix for
the day-specific random effects. The random parameters
can represent the temporal and spatial variation of AOD-
PM2.5 relationships, which help to retrieved more accurate
daily PM2.5 concentrations. We chose MODIS AOD data
to match the PM2.5 data of 41 cities in the study area from
April 2014 to December 2014 and used these pairs of data
to create the mixed effect model.

2.3.2 EOF analysis

Taking into account missing data and outlier values, we
calculated average PM2.5 concentration during every
quarter as quarterly data. Average daily value in the first
two months in 2003 and last two months in 2015 were both
calculated as a quarterly value respectively. Consequently,
we had 53 quarters which were then analyzed via temporal
and spatial characteristics using the quarterly pollution day
ratio data by Empirical Orthogonal Function (EOF). EOF,
also known as Eigenvector Analysis, or Principal Compo-
nent Analysis (PCA), is an analysis of structural features
by a few principal components in matrix data. (Lorenz,
1956) introduced it to meteorology and climate research
for the first time in the 1950s and is now widely used in
geosciences and hydroacoustics. EOF analysis is capable
of decomposing the time-varying signal or data set into a
part of the spatial function and a time function part. The
spatial function part does not change with time and can
summarize the geographical distribution characteristics of
the data, and the time function part which only depends on
the time variation is composed of a linear combination of
variables and thus can show time changes in data. The first
few decomposed components occupy a large part of the
total variance of original siginals, which can been seen as

Table 1 Data introduction

Parameters Time range Data sources Resolution

MODIS AOD 2003‒2015 MYD04_3 km data set Daily, 3 km � 3 km

PM2.5 measurements Apr. 2014 ‒ Mar. 2015 MEP of PRC Hourly, cities

Meteorological elements 2003‒2015 NCAR/NCEP reanalysis (R1), NCEP/DOE Reanalysis 2 (R2) Every 6 h, 1° � 1°
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that the main information of original siginals are
concentrated on these components. This method is quick
to converge and it is easy to concentrate a large amount of
data. It can decompose irregularly distributed sites within a
limited area, and the decomposed spatial structure has a
clear physical meaning. That’s to say, it can find both time
series and spatial patterns of PM2.5.

2.3.3 Canonical correlation analysis

Canonical correlation analysis (CCA), first proposed by
Hotelling (1936), is a multivariate statistical method that
uses the correlation between comprehensive variables to
reflect the overall correlation between the two sets of
variables. We used it to analyze the relationship between
PM2.5 and meteorological elements. Like EOF analysis,
CCA analysis extracts typical variables formed by
representative number of representative variables from
original variables. However, the variables here are two
groups of data sets, in order to make the correlation
between the two groups of indicators clear. The correlation
between these comprehensive variables represented by
typical correlation coefficient is used to reflect the overall
correlation between the two groups of data sets – when the
typical correlation coefficient is less than 0.3 the
corresponding feature vectors are generally not significant.
Under the resolution of meteorological data, the study

area was divided into 10 � 11 total 110 grid points.
Though CCA does not require uniform data resolution for
the two variable fields, we selected days where there are
PM2.5 data in half of the grids. We then resampled the
PM2.5 data to the same resolution as the meteorological
data to mitigate missing data effects. A total of 2145 days
were selected for the CCA analysis.

2.4 Mixed effects mode validation

To assess the fitting performance of the model inversion,
coefficient of determination (R2), mean prediction error
(MPE), and root mean squared prediction error (RMSE)
between model estimations and ground observations were
calculated.
R2 of most cities passed the credibility test of 0.01

credibility test (P< 0.01), Weihai, Qingdao, and Texas
passed the credibility test of 0.1 (P< 0.1) and Qinhuang-
dao, Heze, Datong and Huludao passed the 0.05
confidence test (P< 0.5), but Zaozhuang and Zhengzhou
failed to pass the 0.1 credibility test (P>0.1). Conse-
quently, we used the data of the 39 cities that passed a
reliability of 0.1 to build the mixed effect model in the
following discuss. In general, the correlation coefficient of
northern cities was slightly higher than that of southern
cities, especially the correlation coefficient for the cities
between southern Hebei, northern Henan, and southern
Shandong. These cities are usually heavily polluted areas

of PM2.5. That is to say, model fitting results were poorer
for areas with severe PM2.5 pollution, while results were
better in less polluted areas.
A total of 1973 pairs of data points dated from between

April to December 2014 of 36 cities that passed 0.01
confidence were selected to test the model. R2 for retrived
PM2.5 and observed PM2.5 was increased above the AOD
and observed PM2.5. MPE and RMSE were 21.6 and 30.1,
respectively (Fig. 2). To test the stability of the model
parameters, we also verified 141 pairs of data in 8 cities in
2015 and 885 pairs of data in 12 cities in 2017. The MPE
were 25.6 and 20.97 and RMSE were 38.5 μg/m3 and
22.21 μg/m3 for 2015 and 2017, respecticely, which
indicated the relationship between data and the ground
PM2. 5 fromMEP of PRC and MODIS AODwe developed
was relatively robust.

3 Results and discussion

3.1 Spatial and temporal variability in PM2.5 levels

EOF analysis of quarterly anomalies of the pollution day
ratio over North China was used to examine the spatial and
temporal variability in PM2.5 levels. According to the EOF
decomposition, the variance contribution rate of the first
spatial modality was about 80% (the first spatial modality
captured about 80% signal of the PM2.5 spatial distribution
characteristics). Therefore, the first modality map repre-
sented the spatial distribution of PM2.5 concentrations in
North China from 2003 to 2015 largely. To further
understand the actual spatial distribution of the PM2.5

concentrations, we calculated the average concentration of
all days in each grid with retrieved PM2.5 data. From 2003
to 2015, the spatial distribution of the average PM2.5

concentrations were effectively the same with the first
mode of the EOF decomposition, presenting the distribu-
tion characteristics of two low-value areas and one high-
value area. PM2.5 concentration in the high-value center
was around 70 μg/cm3, and the low value center was below
20 ug/cm3 (Fig. 3). The Taihang Mountains were the

Fig. 2 Plots of fitting performance of retrieved PM2.5 and
observed PM2.5 during Apr. ‒ Dec. 2014. The gray line denotes
the fitted linear regression line.
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obvious dividing line with lower pollution in the north-
west region and higher PM2.5 concentrations in the south-
eastern areas. That’s to say, pollution in the southern part
of the study area was significantly higher than that in the
north and the Shandong Peninsula, among which the
southern part of Hebei Province, northern part of Henan
Province and the western part of Shandong Province were
the most polluted areas (core pollution areas). The number
of pollution days in the core pollution areas were about 5
times the average value of the entire study area (Fig. 4(a)).
The degree of pollution in the surrounding areas were
second only to this area, and the pollution levels in the
north and south areas are slightly higher than those in the
east and west areas. Previous studies have also confirmed
the impact of mountains between cities on PM2.5

concentrations (Wang et al., 2017). The dividing line is
also consistent with the low-to-high demarcation line and
the humid and semi-humid areas transition line.
This spatial distribution feature was also consistent with

the results of many other different spatial scale studies (Ma
et al., 2014; Lv et al., 2017; Wei et al., 2017). There are two

main reasons for this. On the one hand, the plain area was
the main industrial production area – particularly substan-
tially polluting heavy industry. Take Hebei, a severe
pollution area, as an example, heavy industry accounted
for more than 65% in 2015 on the total profit of the above-
scale enterprises (enterprise above designated size). On the
other hand, due to the obstruction of the mountain and
different climate on each side of the mountains, the
pollution generated in the plain area could not be spread to
the north-western region.
As for the temporal distribution, PM2.5 concentration

had obvious annual and interannual trends. There were 13
morphologically distinct peaks in PC1, which demon-
strated the annual change of PM2.5 concentrations. More
generally, PM2.5 concentrations over North China experi-
enced three distinct declines according to PC1 (Fig. 4(a)).
Pollution in 2003 was heavy, while declined sharply in
2004. This was also confirmed by other research results
though PM2.5 or AOD retrieved using different data and
methods in those papers (Sun and Chen, 2017; Zhang
et al., 2017b). Because of lack of earlier data and no

Fig. 3 (a) Conventional first mode of EOF (EOF1) of PM2.5 over North China based on quarterly pollution day ratio for the period of
2003–2015. Percentages of explained variance are printed at the upper left on the EOF maps. (b) Daily mean PM2.5 concentrations during
2003‒2015, the unit for the legend is μg/cm3.

Fig. 4 (a) Conventional first principal component (PC1) of PM2.5 over North China based on quarterly pollution day ratio for the period
of 2003–2015. Percentages of explained variance are printed at the upper left on the PC maps. (b) Pollution day ratio during study period,
red line represented the pollution day ratio of the pollution core areas and gray line indicated across the study area.
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articles have been found to discuss this issue, it is difficult
to figure out PM2.5 concentrations before 2003, conse-
quently we couldn’t deduce the possible reason for the
high value of 2003 or the very low value of 2004. PM2.5

pollution continued to increase (a high value interval) in
the next period of 2004 to 2008 but dropped down
drastically in 2009 where the second low PM2.5 pollution
point appeared. To ensure the smooth convening of the
Beijing 2008 Olympic Games, the Chinese government
has implemented many measures to reduce emissions and
production, which was bound to be one of the reasons that
contributed to the low PM2.5 concentrations between 2008
and 2009. However, PM2.5 pollution has risen sharply
again after 2009 with a peak value in 2013 during this
period. Fortunately, it showed a trend of gentle fluctuations
since 2013 until the end of the retrieved data we currently
have. Research by Zheng et al. also confirmed this trend,
further showing that annual mean PM2.5 concentrations
decreased by 21.5% over China during 2013–2015 (Zheng
et al., 2017). This interannual fluctuation can be similarly
obtained by calculating the annual pollution day ratio of
the polluted core area and the whole study area using the
retrieved data (Fig. 4(b)).

3.2 Relationship between meteorological elements and
PM2.5

Severe atmospheric pollution is closely related to: high
emission intensity and emission sources, unfavorable
meteorological conditions, special terrain, pollutant trans-
port and chemical conversion in the atmosphere. As such,
the degree of pollution in an area depends on the area's
energy structure, traffic conditions and the number of
industrial pollutants emitted from a long-term or average
point of view (Zhang et al., 2009; Chen et al., 2009; Cao et
al., 2011; Pearce et al., 2011). However, in terms of short-
term or real-time status, it is mainly related to the local
weather conditions at that time. Large-scale circulation
patterns and local meteorological conditions cannot only
affect the generation, accumulation, and removal of
pollutants by affecting chemical composition or physical
properties of particles directly or indirectly, but can also act
as important external conditions that affect regional
transportation (Fang et al., 2007; Ghotbi et al., 2016).
For example, Tai et al. found that daily variation in
meteorology can explain up to 50% of PM2.5 variability as
described by the multiple linear regression model (Tai et
al., 2010). To explore these effects on PM2.5, meteorolo-
gical parameters (including RH, Uwind, Vwind and
PBLH) were considered on our CCA analysis. What’s
more, meteorological elements have vertical structure and
the elements of each pressure layer on the vertical height
varies, so the impact on PM2.5 may also be different.
Consequently, this paper also analyzed the relationship
between meteorological elements and PM2.5 on different
pressure levels at vertical height. Results can be found in

Table 2.
The canonical correlation coefficient (CCC) between

PM2.5 and meteorological elements decreased as the air
pressure decreased in the vertical profile. Which means
PM2.5 concentrations were mainly impacted by meteor-
ological elements of the ground and bottom atmosphere.
Consequently, we used ground meteorological data to
analyze its relationship with PM2.5. The first typical factor
of all meteorological elements is seen as factors influen-
cing high-value pollution centers, which confirmed the
spatial characteristics above again.

3.2.1 RH & PM2.5

Relative humidity can affect particle formation rate
through photochemical oxidation and a condensation
process, imposing different particle compositions (Ghotbi
et al., 2016). Simialry, variation of relative humidity has
influence on size distribution and optical physiochemical
properties of aerosols through hygroscopic particles
growth or photochemistry phenomena (Marcazzan et al.,
2001). Therefore, we divided the relative humidity from 0
to 100% into 4 intervals and calculated the PM2.5

concentrations at the corresponding time in each relative
humidity interval. Figure 5 shows the percentage of
pollution day ratio in the entire study area under different
relative humidity intervals. From the results we can see that
PM2.5 pollution intensity and relative humidity showed a
clear positive correlation; the higher the relative humidity,
the stronger the pollution level. As relative humidity
increases, the more aerosol particles in the air, the better the
formation and development of fine particulate matter.
Especially in the polluted core area (yellow area), where
the pollution level was significantly higher than that of
other areas at the same relative humidity – with the degree
of pollution declining outwardly in the form of concentric
rings.
Based on the correlation coefficient of typical variables,

we can know that PM2.5 concentration in the south-western
extension of the North China region was positively related
to the relative humidity in the range of 34°–40°N and
119°–124°E. In the eastern region, PM2.5 pollution was
mainly negatively correlated with the relative humidity of
34°–39°N and 112°–120°E, whereas the concentration of
PM2.5 in the north-western region was mainly influenced
by the relative humidity in the central and north regions
(Fig. 6). Relationship between RH and PM2.5 saw little
change until the pressure layer was around 850mb.
Meteorological conditions at 850mb can reflect the
regional circulation – where circulation tends to be simple
above this value. Therefore, the control range of major
meteorological factors is larger and tends to be simpler.
That is to say, the control ability strengthens, which can
also be seen from the fact that the correlation coefficient at
850mb height was inconsistent with the trend of rising and
falling height. We know that the Taihang Mountains is an
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important barrier to the transmission of aerosols in the
eastern part of the study area. High-humidity air around the
Bohai Sea and in the coastal areas to the east is conducive
to the accumulation and development of pollutants, and
thus has a greater impact on the pollution of the east side of
the mountains. Due to the separation of mountains, the
impact on the west side of the mountain range is less
pronounced.

3.2.2 Wind & PM2.5

Wind speed and wind direction highly affects PM2.5

pollution level by diluting the concentration of pollutants

or transferring particulate matters from different sources
with varied properties to the study area (Adams et al.,
2001; Jacob andWinner, 2009; Guo et al., 2014; Nguyen et
al., 2017) and can frequently contribute to temporal
variation in air pollutant concentrations further. Generally,
wind speed has a certain impact on turbulence, affecting
different dispersion conditions for pollutants or changing
the nature of gas flow and the direction of pollutants’
transportation (Tian et al., 2014; Zhou et al., 2015).
Therefore, we analyzed the relationship between Uwind,
Vwind and PM2.5 respectively.
PM2.5 concentrations over the south-eastern to northern

part of North China was mainly negatively correlated with

Table 2 Canonical correlation coefficient (CCC) between PM2.5 concentration and meteorological elements at different vertical height

Meteorological elements Pressure layer(hPa) First CCC Second CCC Third CCC Fourth CCC Fifth CCC Sixth CCC

RHa)
Surface 0.64 0.51 0.46 0.45 0.44 0.43

1000 0.67 0.52 0.46 0.44 0.43 0.42

975 0.65 0.52 0.47 0.44 0.44 0.42

950 0.64 0.50 0.46 0.44 0.42 0.42

925 0.63 0.48 0.44 0.43 0.41 0.41

900 0.63 0.47 0.43 0.42 0.41 0.40

850 0.64 0.45 0.42 0.41 0.41 0.40

800 0.60 0.46 0.42 0.41 0.41 0.40

750 0.57 0.47 0.43 0.43 0.42 0.41

700 0.54 0.45 0.43 0.43 0.42 0.41

Uwindb) Surface 0.63 0.50 0.44 0.44 0.43 0.42

1000 0.59 0.47 0.45 0.44 0.43 0.42

975 0.59 0.47 0.45 0.44 0.44 0.43

950 0.58 0.47 0.44 0.44 0.43 0.43

925 0.57 0.47 0.44 0.44 0.43 0.43

900 0.56 0.47 0.44 0.44 0.44 0.43

850 0.56 0.46 0.44 0.44 0.43 0.42

800 0.58 0.46 0.45 0.45 0.43 0.43

750 0.57 0.46 0.45 0.44 0.43 0.42

700 0.56 0.47 0.45 0.44 0.44 0.43

Vwindc) Surface 0.62 0.48 0.44 0.43 0.43 0.42

1000 0.61 0.46 0.45 0.45 0.44 0.43

975 0.61 0.47 0.45 0.46 0.44 0.44

950 0.59 0.48 0.46 0.45 0.44 0.43

925 0.58 0.46 0.48 0.45 0.44 0.43

900 0.57 0.48 0.45 0.44 0.44 0.43

850 0.55 0.47 0.46 0.45 0.44 0.43

800 0.54 0.48 0.46 0.45 0.44 0.43

750 0.51 0.47 0.45 0.44 0.43 0.43

700 0.48 0.46 0.46 0.44 0.44 0.43

PBLHd)
Surface 0.64 0.51 0.46 0.45 0.44 0.43

Notes: a) RH represented relative humidity; b) Uwind represented zonal wind; c) Vwind represented meridional wind; d) PBLH represented the height of planetary
boundary layer.
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the zonal wind in north-western and south-eastern regions
of North China (R = 0.6) (Fig. 7). This indicated that the
greater the easterly wind speed in the south-eastern and
north-western regions of North China (especially for the
area close to the mountains), the heavier the pollution in
the eastern part of the Taihang Mountains becomes –
except for the Shandong Peninsula. Judging from the
meridional wind V, south wind becomes a favorable
meteorological condition for the accumulation of pollution
compared to north wind. PM2.5 concentration from the
south-eastern to northern part of North China was mainly
positively correlated with the meridian winds around the
high PM2.5 value center (R = 0.6). The greater the southerly
winds around the high-pollution center, the pollution in the
eastern part of the Taihang Mountains becomes heavier –
except for the Shandong Peninsula.
There are three main explanations: different air char-

acteristics carried by varied directional wind, industrial
distribution and topographic changes from the south-east
to the north-west. As mentioned before, North China is
located in the transitional zone of the eastern coast and
inland region in the west of China. Therefore, the wind
blowing from the east and the south is mainly accompanied
by warm and humid air, while air carried by the north and
west winds are relatively dry and cold. What’s more,
industries are mainly distributed north of Henan, south of

Hebei and east of Shandong Province; which means winds
from southern and easterly directions will carry a lot of
pollution particles. Considering the influence of relative
humidity on PM2.5 above, air that followed east and south
winds (with large amounts of industrial emissions of
particulates) was more conducive to the formation and
accumulation of pollutants – especially when together with
the blocking effect of the Taihang Mountains.

3.2.3 PBLH & PM2.5

Similarly, as with RH, we divided PBLH into 5 intervals
from less than 1000m to larger than 3000m. This is
essential as the height of planetary boundary layer affects
the behavior of pollutants in the atmosphere (Marcazzan et
al., 2001; Liu et al., 2005; Sotoudeheian and Arhami,
2014). Displayed in Fig. 8, PM2.5 pollution was most
severe when the boundary layer height was between 1500
and 2500 m. From the point of view of atmospheric
dynamics, the higher the planetary boundary layer, the
more conducive to the diffusion of aerosol particles and
also the meteorological conditions conducive to pollution
dispersal. When the height of the boundary layer is very
low, the weather system is prone to occur with precipita-
tion mostly and similarly conducive to contamination
settlement. Our results approved these regulars.

Fig. 5 Spatial distribution of the average PM2.5 concentrations in different relative humidity intervals during study period, the unit for
the color bar is μg/cm3.
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Seeing from CCA, PM2.5 concentrations from the south-
eastern to northern part of North China was mainly
negatively correlated with the boundary layer height of the
northern and south-eastern parts. Which means the lower
the planetary boundary layer in the southern and northern
part, the greater the pollution concentration in the pollution
center.
From the above analysis, we can know that the first

typical correlation factor between PM2.5 and several
meteorological elements all described the relationship
between meteorological elements and the high value of
PM2.5 pollution in North China. This showed that the
spatial distribution of PM2.5 in North China was relatively
fixed, and the overall discharge status of the region
determines the PM2.5 pollutions in an area, and that the
meteorological conditions only affect the distribution of

Fig. 6 Spatial distribution of the correlation coefficient of RH with its (a) first and second (b) typical variable and PM2.5 with its (c) first
and second (d) typical variable. Through these relationships and the correlation coefficient of each pair of typical variables, the correlation
between the corresponding PM2.5 and meteorological elements can be known.

Fig. 7 Spatial distribution of the correlation coefficient of Uwind with its (a) first typical variable and (b) PM2.5 with its first typical variable.
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short-term particulate matters.
Notably, when the wind speed exceeds a certain

threshold, the south wind and the east wind may also
carry favorable conditions for PM2.5 proliferations. Gen-
erally, the south wind and east wind with wind speeds in
the range of 0–5m/s easily lead to pollution formation
according to studies by Zhou and Zhao (2017). Beside the
parameters we mentioned before, other meteorological
parameters like temperature, precipitation also affect PM2.5

concentrations. For example, characterized by anticyclonic
condition, weak wind, no precipitation, usually accom-
panied by high temperatures stagnation illustrates strong
association with high PM2.5 levels (Tai et al., 2010). We
analyzed the effect of individual meteorological factors on
the concentration of PM2.5, but the meteorological factors
are coupled to each other and cannot occur independently.
Under the influence of other meteorological elements, the
effect over the concentration of PM2.5 may weaken and
even change the influence direction. Therefore, it remains
to be explored how to identify the factors that have the
greatest influence on the concentration of PM2.5 in a
meteorological field and how the PM2.5 concentration
interacts with meteorological factors of different perfor-
mances.

4 Conclusions

This study derived high-resolution daily ground-level
PM2.5 concentration data using 3 km MODIS AOD
products with complete spatial coverage over North
China between the 2003–2015 period. Mixed effect
modeling was developed to simulate AOD-PM2.5 relation-
ships, while canonical correlation analysis was applied to
analyze the impact of meteorological elements on PM2.5.
Through that, we captured the spatial distribution with one
high-value and two low-value areas over the study area and
temporal characteristics with low PM2.5 pollution in 2004,
2009 and after 2013.
Satellite AOD data have been increasingly used in

conjunction with in site PM2.5 ground observations, due to
its high spatial and temporal resolution – especially for
North China where pollution is particularly high but
ground observations start late and observation sites are
sparse. Future satellite technologies will provide data with
finer spatial and temporal resolutions and more accurate
AOD retrieval data. What’s more, multi-level AOD data in
vertical space can also be observed and released now. With
the help of these technologies, PM2.5 concentration
inverted by AOD in the future will be more accurate and

Fig. 8 Spatial distribution of the average PM2.5 concentrations in different height of planetary boundary layer intervals during study
period, the unit for the color bar is μg/cm3.
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precise, which will help control and predict PM2.5

concentrations.
This research mainly focused on the spatio-temporal

changes of PM2.5 pollutions in North China, but the impact
on meteorological factors was only discussed initially. In
the future, the coupling effect of meteorological elements
on the impact of PM2.5 must be further studied to provide
more accurate information on PM2.5 governance and
forecasting.

Acknowledgements This study was funded by the National Key
Technology R&D Program (Grant No. 2018YFA0606104) and the National
Natural Science Foundation of China (Grant No. 41471073).

References

Adams H S, Nieuwenhuijsen M J, Colvile R N (2001). Determinants of

fine particle (PM2.5) personal exposure levels in transport micro-

environments, London, UK. Atmospheric Environment, 35(27):

4557–4566

Bai Y, Wu L, Qin K, Zhang Y, Shen Y, Zhou Y (2016). A

geographically and temporally weighted regression model for

ground-level PM2.5 estimation from satellite-derived 500 m resolu-

tion AOD. Remote Sensing, 8(3): 262–282

Beloconi A, Kamarianakis Y, Chrysoulakis N (2016). Estimating urban

PM10 and PM2.5 concentrations, based on synergistic meris/aatsr

aerosol observations, land cover and morphology data. Remote

Sensing of Environment, 172: 148–164

Cao G, Zhang X, Gong S, An X, Wang Y (2011). Emission inventories

of primary particles and pollutant gases for China. Chinese Science

Bulletin, 56(8): 781–788 (in Chinese)

Chen S, Guo J, Song L, Li J, Liu L, Cohen J B (2019). Inter-annual

variation of the spring haze pollution over the North China Plain:

Roles of atmospheric circulation and sea surface temperature.

International Journal of Climatology, 39(2): 783–798

Chen Y, Zhao C S, Zhang Q, Deng Z Z, Huang M Y, Ma X C (2009).

Aircraft study of mountain chimney effect of Beijing, China. Journal

of Geophysical Research, 114, D08306DeGaetano AT, Doherty OM

(2004). Temporal, spatial and meteorological variations in hourly

PM2.5 concentration extremes in New York City. Atmospheric

Environment, 38: 1547–1558

Dinoi A, Perrone M R, Burlizzi P (2010). Application of MODIS

Products for Air Quality Studies Over Southeastern Italy. Remote

Sensing, 2(7): 1767–1796

Duan J, Tan T (2003). Atmospheric heavy metals and arsenic in China:

Situation, sources and control policies. Atmospheric Environment,

74: 93–101

Engel-Cox J A, Hoff R M, Rogers R, Dimmick F, Rush A C, Szykman J

J, Al-Saadi J, Chu D A, Zell E R (2006). Integrating lidar and satellite

optical depth with ambient monitoring for 3-dimensional particulate

characterization. Atmospheric Environment, 40(40): 8056–8067

Fan Y, Chun C (2008). Visibility trends in Beijing, Tianjin and Hebei

Province during 1980–2003. Plateau Meteorology, 27: 1392–1400

(in Chinese)

Fang G C, Wu Y S, Wen C C, Lee W J, Chang S Y (2007). Influence of

meteorological parameters on particulates and atmospheric pollutants

at Taichung harbor sampling site. Environmental Monitoring and

Assessment, 128(1-3): 259–275

Ghotbi S, Sotoudeheian S, Arhami M (2016). Estimating urban ground-

level PM10 using MODIS 3 km AOD product and meteorological

parameters from WRF model. Atmospheric Environment, 141: 333–

346

Gu Y, Yim S H (2016). The air quality and health impacts of domestic

trans-boundary pollution in various regions of China. Environment

International, 97: 117–124

Guo J, Deng M, Lee S S, Wang F, Li Z, Zhai P, Liu H, Lv W, Yao W, Li

X (2016). Delaying precipitation and lightning by air pollution over

the Pearl River Delta. Part I: Observational analyses. Journal of

Geophysical Research, D, Atmospheres, 121(11): 6472–6488

Guo J, Zhang X, Wu Y, Zhaxi Y, Che H, La B, Wang W, Li X (2011).

Spatio-temporal variation trends of satellite-based aerosol optical

depth in China during 1980–2008. Atmospheric Environment, 45

(37): 6802–6811

Guo Y, Feng N, Christopher S A, Kang P, Zhan F B, Hong S (2014).

Satellite remote sensing of fine particulate matter (PM2.5) air quality

over Beijing using MODIS. International Journal of Remote Sensing,

35(17): 6522–6544

Gupta P, Christopher S A (2008). Seven year particulate matter air

quality assessment from surface and satellite measurements. Atmo-

spheric Chemistry and Physics, 8(12): 3311–3324

Henderson C R (1948). Estimation of general, specific and maternal

combining abilities in crosses among inbred lines of swine. NIDA

Research Monograph, 37: 241–270

Hotelling H (1936). Relations between two sets of variates. Biometrika,

28(3-4): 321–377

Hu X, Waller L A, Lyapustin A, Wang Y, Al-Hamdan M Z, Crosson W

L, Estes M G Jr, Estes S M, Quattrochi D A, Puttaswamy S J, Liu Y

(2014). Estimating ground-level PM2.5 concentrations in the South-

eastern United States using MAIAC AOD retrievals and a two-stage

model. Remote Sensing of Environment, 140: 220–232

Hu Y, Zhou Z (2009). Climatic Characteristics of Haze in China.

Meteorological Monographs, 35: 73–78 (in Chinese)

Jacob D J, Winner D A (2009). Effect of climate change on air quality.

Atmospheric Environment, 43(1): 51–63

Jiang J H, Su H, Huang L, Wang Y, Massie S, Zhao B, Omar A, Wang Z

(2018). Contrasting effects on deep convective clouds by different

types of aerosols. Nature Communications, 9(1): 1–7

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L,

Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki

W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa

A, Reynolds R, Jenne R, Joseph D (1996). The NCEP/NCAR 40-

year reanalysis project. Bulletin of the American Meteorological

Society, 77(3): 437–471

Kaufman Y J, Tanré D, Boucher O (2002). A satellite view of aerosols in

the climate system. Nature, 419(6903): 215–223

Kloog I, Nordio F, Coull B A, Schwartz J (2012). Incorporating local

land use regression and satellite aerosol optical depth in a hybrid

model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states.

Environmental Science & Technology, 46(21): 11913–11921

Koren I, Altaratz O, Remer A, Feingold G, Vanderlei J, Heiblum H

(2012). Aerosol-induced intensification of rain from the tropics to the

12 Front. Environ. Sci. Eng. 2020, 14(2): 23



mid-latitudes. Nature Geoscience, 5(2): 118–122

Lee H J, Chatfield R B, Strawa A W (2016). Enhancing the applicability

of satellite remote sensing for PM2.5 estimation using MODIS deep

blue AOD and land use regression in California, United States.

Environmental Science & Technology, 50(12): 6546–6555

Lee H J, Liu Y, Coull B A, Schwartz J, Koutrakis P (2011). A novel

calibration approach of MODIS AOD data to predict PM2.5

concentrations. Atmospheric Chemistry and Physics, 11(15): 7991–

8002

Levy R C, Hsu C (2015). MODIS Atmosphere L2 Aerosol Product.

NASA MODIS Adaptive Processing System, Goddard Space Flight

Center, USA. Doi:10.5067/MODIS/MYD04_L2.061

Levy R C, Mattoo S, Munchak L A, Remer L A, Sayer A M, Patadia F,

Hsu N C (2013). The Collection 6 MODIS aerosol products over land

and ocean. Atmospheric Measurement Techniques, 6(11): 2989–

3034

Levy R C, Remer L A, Kleidman R G, Mattoo S, Ichoku C, Kahn R, Eck

T F (2010). Global evaluation of the Collection 5 MODIS dark-target

aerosol products over land. Atmospheric Chemistry and Physics, 10

(21): 10399–10420

Li G, Fang C, Wang S, Sun S (2016). The effect of economic growth,

urbanization, and industrialization on fine particulate matter (PM2.5)

concentrations in China. Environmental Science & Technology, 50

(21): 11452–11459

Liu Y, Franklin M, Kahn R, Koutrakis P (2007). Using aerosol optical

thickness to predict ground-level PM2.5 concentrations in the St.

Louis area: A comparison between MISR and MODIS. Remote

Sensing of Environment, 107(1-2): 33–44

Liu Y, Paciorek C J, Koutrakis P (2009). Estimating regional spatial and

temporal variability of PM2.5 concentrations using satellite data,

meteorology, and land use information. Environmental Health

Perspectives, 117(6): 886–892

Liu Y, Park R J, Jacob D J, Li Q, Kilaru V, Sarnat J A (2004). Mapping

annual mean ground-level PM2.5 concentrations using Multiangle

Imaging Spectroradiometer aerosol optical thickness over the

contiguous United States. Journal of Geophysical Research, D,

Atmospheres, 109: D22206

Liu Y, Sarnat J A, Kilaru V, Jacob D J, Koutrakis P (2005). Estimating

ground-level PM2.5 in the eastern United States using satellite remote

sensing. Environmental Science & Technology, 39(9): 3269–3278

Lorenz E N (1956). Emprical orthogonal functions and statistical

weather prediction. Cambridge: Statistical Forecasting Project

Department of Meteorology, MIT

Lv B, Hu Y, Chang H H, Russell A G, Cai J, Xu B, Bai Y (2017). Daily

estimation of ground-level PM2.5 concentrations at 4 km resolution

over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground

observations. Science of the Total Environment, 580: 235–244

Ma Z, Hu X, Huang L, Bi J, Liu Y (2014). Estimating ground-level

PM2.5 in China using satellite remote sensing. Environmental Science

& Technology, 48(13): 7436–7444

Ma Z, Liu Y, Zhao Q, Liu M, Zhou Y, Bi J (2016). Satellite-derived high

resolution PM2.5 concentrations in Yangtze River Delta Region of

China using improved linear mixed effects model. Atmospheric

Environment, 133: 156–164

Marcazzan G M, Vaccaro S, Valli G, Vecchi G (2001). Characterisation

of PM10 and PM2.5 particulate matter in the ambient air of Milan

(Italy). Atmospheric Environment, 35(27): 4639–4650

Munchak L A, Levy R C, Mattoo S, Remer L A, Holben B N, Schafer J

S, Hostetler C A, Ferrare R A (2013). MODIS 3 km aerosol product:

applications over land in an urban/suburban region. Atmospheric

Measurement Techniques, 6(7): 1747–1759

Nguyen M V, Park G H, Lee B K (2017). Correlation analysis of size-

resolved airborne particulate matter with classified meteorological

conditions. Meteorology and Atmospheric Physics, 129(1): 35–46

Pearce J L, Beringer J, Nicholls N, Hyndman R J, Uotila P, Tapper N J

(2011). Investigating the influence of synoptic-scale meteorology on

air quality using self-organizing maps and generalized additive

modeling. Atmospheric Environment, 45(1): 128–136

Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li

R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E,

Holben B N (2005). The MODIS Aerosol Algorithm, Products, and

Validation. American Meteorological Society, 62(4): 947–973

Sotoudeheian S, Arhami M (2014). Estimating ground-level PM10 using

satellite remote sensing and ground-based meteorological measure-

ments over Tehran. Journal of Environmental Health Science &

Engineering, 12(1): 122–134

Sun K, Chen X (2017). Spatio-temporal distribution of localized aerosol

loading in China: A satellite view. Atmospheric Environment, 163:

35–43

Sun Y, Jiang Q, Wang Z, Fu P, Jie L, Yang T, Yin Y (2014).

Investigation of the sources and evolution processes of severe haze

pollution in Beijing in January 2013. Journal of Geophysical

Research, D, Atmospheres, 119(7): 4380–4398

Tai A P K, Mickley L J, Jacob D J (2010). Correlations between fine

particulate matter (PM2.5) and meteorological variables in the United

States: Implications for the sensitivity of PM2.5 to climate change.

Atmospheric Environment, 44(32): 3976–3984

Tian G, Qiao Z, Xu X (2014). Characteristics of particulate matter

(PM10) and its relationship with meteorological factors during 2001–

2012 in Beijing. Environmental Pollution, 192: 266–274

Trenberth K E, Fasullo J T, Branstator G, Phillips A S (2014). Seasonal

aspects of the recent pause in surface warming. Nature Climate

Change, 4(10): 911–916

van Donkelaar A, Martin R V, Levy R C, da Silva A M, Krzyzanowski

M, Chubarova N E, Semutnikova E, Cohen A J (2011). Satellite-

based estimates of ground-level fine particulate matter during

extreme events: A case study of the Moscow fires in 2010.

Atmospheric Environment, 45(34): 6225–6232

Wang J, Christopher S A (2003). Intercomparison between satellite-

derived aerosol optical thickness and PM2.5 mass: Implications for air

quality studies. Geophysical Research Letters, 30(21): 2095–2099

Wang L, Chen W (2014). A CMIP5 multimodel projection of future

temperature, precipitation, and climatological drought in China.

International Journal of Climatology, 34(6): 2059–2078

Wang Q, Huang R J, Zhao Z, Cao J, Ni H, Tie X, Zhao S, Su X, Han Y,

Shen Z, Wang Y, Zhang N, Zhou Y, Corbin J C (2016).

Physicochemical characteristics of black carbon aerosol and its

radiative impact in a polluted urban area of China. Journal of

Geophysical Research, D, Atmospheres, 121(20): 12505–12519

Wang Y, Wang H, Chang S, Liu M (2017). Higher-order network

analysis of fine particulate matter (PM2.5) transport in China at city

level. Scientific Reports, 7(1): 13236–13244

Youfang Chen et al. PM2.5 concentrations and influencing factors in North China 13



Wei J, Jin Q, Yang Z L, Zhou L (2017). Land-atmosphere-aerosol

coupling in North China during 2000–2013. International Journal of

Climatology, 37: 1297–1306

Wu D, Wu X, Li F (2010). Temporal and spatial variation of haze during

1951–2005 in Chinese mainland. Acta Meteorologica Sinica, 68:

680–688 (in Chinese)

Xie Y, Wang Y, Zhang K, Dong W, Lv B, Bai Y (2015). Daily

estimation of ground-level PM2.5 concentrations over Beijing using 3

km resolution MODIS AOD. Environmental Science & Technology,

49(20): 12280–12288

Zhang Q, Jiang X, Tong D, Davis S J, Zhao H, Geng G, Feng T, Zheng

B, Lu Z, Streets D G, Ni R, Brauer M, van Donkelaar A, Martin R V,

Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D (2017a).

Transboundary health impacts of transported global air pollution and

international trade. Nature, 543(7647): 705–709

Zhang Q, Streets D G, Carmichael G R, He K B, Huo H, Kannari A,

Klimont Z, Park I S, Reddy S, Fu J S, Chen D, Duan L, Lei Y, Wang

L T, Yao Z L (2009). Asian emissions in 2006 for the NASA INTEX-

B mission. Atmospheric Chemistry and Physics, 9(14): 5131–5153

Zhang R, Jing J, Tao J, Hsu S C, Wang G, Cao J, Lee C S L, Zhu L, Chen

Z, Zhao Y, Shen Z (2013). Chemical characterization and source

apportionment of PM2.5 in Beijing: Seasonal perspective. Atmo-

spheric Chemistry and Physics, 13(14): 7053–7074

Zhang R, Wang G, Guo S, Zamora M L, Ying Q, Lin Y, WangW, HuM,

Wang Y (2015). Formation of urban fine particulate matter. Chemical

Reviews, 115(10): 3803–3855

Zhang Y L, Cao F (2015). Fine particulate matter (PM2.5) in China at a

city level. Scientific Reports, 5(1): 14884–14895

Zhang Z, Wu W, Wei J, Song Y, Yan X, Zhu L, Wang Q (2017b).

Aerosol optical depth retrieval from visibility in China during 1973–

2014. Atmospheric Environment, 171: 38–48

Zhao T, Ailiku, Feng J (2004). An intercomparison between NCEP

reanalysis and observed data over China. Climatic and Environ-

mental Research, 9: 278–294 (in Chinese)

Zheng Y, Xue T, Zhang Q, Geng G, Tong D, Li X, He K (2017). Air

quality improvements and health benefits from China’s clean air

action since 2013. Environmental Research Letters, 12(11): 114020

Zhou W, Tie X, Zhou G, Liang P (2015). Possible effects of climate

change of wind on aerosol variation during winter in Shanghai,

China. Particuology, 20: 80–88 (in Chinese)

Zhou Y, Zhao X (2017). Correlation Analysis between PM2.5

Concentration and Meteorological Factors in Beijing Area. Acta

Scientiarum Naturalium Universitatis Pekinensis, 53: 111–124 (in

Chinese)

14 Front. Environ. Sci. Eng. 2020, 14(2): 23


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31
	bmkcit32
	bmkcit33
	bmkcit34
	bmkcit35
	bmkcit36
	bmkcit37
	bmkcit38
	bmkcit39
	bmkcit40
	bmkcit41
	bmkcit42
	bmkcit43
	bmkcit44
	bmkcit45
	bmkcit46
	bmkcit47
	bmkcit48
	bmkcit49
	bmkcit50
	bmkcit51
	bmkcit52
	bmkcit53
	bmkcit54
	bmkcit55
	bmkcit56
	bmkcit57
	bmkcit58
	bmkcit59
	bmkcit60
	bmkcit61
	bmkcit62
	bmkcit63
	bmkcit64
	bmkcit65
	bmkcit66
	bmkcit67
	bmkcit68
	bmkcit69
	bmkcit70


