Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 428-437     https://doi.org/10.1007/s11783-015-0780-3
RESEARCH ARTICLE |
A photolysis coefficient for characterizing the response of aqueous constituents to photolysis
David R. HOKANSON1,*(),Ke LI2,R. Rhodes TRUSSELL1
1. Trussell Technologies, Inc., Pasadena, CA 91101, USA
2. College of Engineering, University of Georgia, Athens, GA 30602, USA
Download: PDF(533 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

UV photolysis and UV based advanced oxidation processes (AOPs) are gaining more and more attention for drinking water treatment. Quantum yield (?) and molar absorption coefficient (?) are the two critical parameters measuring the effectiveness of photolysis of a compound. The product of the two was proposed as a fundamental measure of a constituent’s amenability to transformation by photolysis. It was shown that this product, named the photolysis coefficient, kp, can be determined using standard bench tests and captures the properties that govern a constituent’s transformation when exposed to light. The development showed the photolysis coefficient to be equally useful for microbiological, inorganic and organic constituents. Values of kp calculated by the authors based on quantum yield and molar absorption coefficient data from the literature were summarized. Photolysis coefficients among microorganisms ranged from 8500 to more than 600000 and are far higher than for inorganic and organic compounds, which varied over a range of approximately 10 to 1000 and are much less sensitive to UV photolysis than the microorganisms.

Keywords UV photolysis      disinfection      advanced oxidation      N-nitrosodimethylamine      quantum yield      absorption coefficient     
Corresponding Authors: David R. HOKANSON   
Just Accepted Date: 05 March 2015   Issue Date: 05 April 2016
 Cite this article:   
David R. HOKANSON,Ke LI,R. Rhodes TRUSSELL. A photolysis coefficient for characterizing the response of aqueous constituents to photolysis[J]. Front. Environ. Sci. Eng., 2016, 10(3): 428-437.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-015-0780-3
http://journal.hep.com.cn/fese/EN/Y2016/V10/I3/428
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
David R. HOKANSON
Ke LI
R. Rhodes TRUSSELL
organism slopea) base 10/(cm2·mJ-1) kp/(L·einstein-1·cm-1) Ref.
Adenovirus ST2, 15, 40, 41 -0.024 11317 [13]
Adenovirus ST40 -0.018 8487 [13]
B40-8 -0.14 66014 [13]
Bacillus subtilis -0.059 27820 [13]
Calicivirus feline, canine -0.106 49982 [13]
Calicivirus, bovine -0.19 89590 [13]
Campylobacter jejuni -0.88 414944 [13]
Cryptosporidium parvum -0.225 106094 [13]
CVB2 -0.119 56112 [14]
Escherischia coli -0.506 238593 [13]
Escherischia coli O157 -0.642 302720 [13]
?X174 -0.396 186725 [13]
Giardia muris -0.122 57526 [13]
Hepatitis A -0.181 85346 [13]
MS2 phage -0.055 25934 [13]
Poliovirus type 1 -0.135 63656 [13]
PRD1 -0.128 60355 [13]
-0.084 39608 [13]
Rotavirus SA-11 -0.102 48096 [13]
Salmonella typherium -0.515 242836 [13]
Shigella dysenteriae -1.308 616757 [13]
Shigella sonnei -0.466 219732 [13]
Streptococcus faecalis -0.312 147116 [13]
T7 -0.232 109394 [13]
vibrio choleae -1.341 632318 [13]
Yersinia entrocoliticaa -0.889 419188 [13]
Tab.1  A summary of photolysis rates of microorganisms at 253.7 nm
constituent formula slopea) base 10/(cm2·mJ-1) kp/(L·einstein-1·cm-1) Ref.
nitrate N O 3 - -0.00003 14 [15]
hypochlorous acid HOCl -0.00109 514 [16]
hypochlorite ion OCl- -0.00065 306 [16]
monochloramine NH2Cl -0.00027 127 [16]
monochloramine NH2Cl -0.00046 217 [17]
monochloramine NH2Cl -0.00039 184 [18]
monochloramine NH2Clb) -0.00042 198 [19]
monochloramine NH2Clc) -0.00022 104 [19]
dichloramine NHCl2 -0.00039 184 [18]
dichloramine NHCl2b) -0.00022 104 [19]
dichloramine NHCl2c) -0.00022 104 [19]
trichloramine NCl3 -0.0011 519 [18]
hydrogen peroxide H2O2 -0.000046 21.8 [20]
Tab.2  Summary of photolysis rates of inorganic chemicals at 253.7 nm
constituent slopea) base 10/(cm2·mJ-1) kp /(L·einstein-1·cm-1) Ref.
alachlor -0.00024 113 [21]
atrazine -0.00034 160 [21]
bisphenol a -0.000017 8 [22]
carbamazepine -0.000014 7 [23]
chlorfenvinphos -0.00103 486 [21]
clofibric acid -0.00059 278 [23]
diclofenac -0.005330 2513 [22]
diphenhydramine -0.000087 41 [24]
diuron -0.00065 306 [21]
ibuprofen -0.000087 41 [24]
iohexol -0.0024 1130 [23]
isoproturon -0.000026 12 [21]
N-nitrosodimethylamine (NDMA) -0.000980 462 [25]
naproxen -0.00018 85 [23]
pentachlorophenol -0.00039 184 [21]
phenazone -0.00109 514 [24]
phenytoin (dilantin) -0.00083 391 [24]
sulfadiazine -0.000572 270 [22]
sulfamethazine -0.000787 371 [22]
sulfamethoxazole -0.002240 1056 [22]
trimethoprim -0.000017 8 [22]
Tab.3  Summary of photolysis rates of organic chemicals at 253.7 nm
Fig.1  Photolysis of selected constituents with increasing UV dose (based on photolysis rates of various constituents shown in Tables 1, 2, and 3)
Fig.2  Semilog plot of the inactivation of MS2 coliphage (data from [14])
Fig.3  Semilog plot of the destruction of NDMA via exposure to low pressure UV (data from Sharpless and Linden [27])
Fig.4  Overview of fluence required for 1-log reduction in a variety of target constituents
a = the absorptivity of the solution, base 10 (cm-1);
a = the absorptivity of the solution, base e (cm-1);
a j = the absorptivity of the solution at wavelength j, base e (cm-1);
Av = Avogadro’s number, 6.02214×1023 photons·einstein-1;
c= speed of light, 2.99792×108 m·s-1;
λ = wavelength of light (m);
C = the concentration of the target compound (mol·L-1);
Ci = the concentration of constituent i (mol·L-1);
C0 = the initial concentration of the target compound (mol·L-1);
E0 = energy flux incident to the sample, a measure of the intensity of irradiance (milliwatts·cm-2);
Eavg = average irradiance= ( 1 - 10 - a ? ) E 0 l n ( 10 ) a ? (milliwatts·cm-2);
h= Planck’s constant, 6.62607×10-34 joules·s·photon-1 (or joules-s·quanta-1);
H = average UV dose (millijoules·cm-2);
i = the index of a constituent;
I0 = the flux of photons incident to the solution (einstein·cm-2·s-1);
I = the flux of photons transmitted through the solution (einstein·cm-2·s-1);
I01, I02, I03,…, I0m, = the flux of photons incident to the solution as a function of wavelength at wavelengths λ 01 , λ 02 , λ 03 , ... , λ 0 m for a polychromatic light source (einstein·cm-2·s-1);
Ilocal,i = the light absorbed by a constituent i at an infinitely small volume (einstein·cm-2·s-1);
n = the number of constituents;
j = the index of wavelengths;
k= pseudo-first order rate constant for target compound irradiated with light (s-1);
kp = photolysis coefficient, base 10= k’p / ln(10) (L·einstein-1·cm-1);
k’p = photolysis coefficient, base e (L·einstein-1·cm-1);
? = depth of the sample (cm);
l = the effective pathlength in a reactor (cm);
m = the total number of wavelengths;
N = number of microorganisms;
N0 = number of microorganisms at time zero;
r avg, i = average rate of photolysis for constituent i (mol·cm-3·s-1);
rR = localized rate of photolysis (mol·cm-3·s-1);
r R , i = localized rate of photolysis for constituent i (mol·cm-3·s-1);
t = time of exposure (s);
x = the distance traveled by the light (cm);
U λ = energy per einstein for photons of wavelength λ (joules·einstein-1);
e = the molar absorption coefficient of constituents base 10 (L·mol-1·cm-1);
ei = the molar absorption coefficient of constituent i base 10 (L·mol-1·cm-1);
? 1 , ? 2 , ? 3 , ... , ? m = the molar absorption coefficient of constituents base 10 at wavelengths λ 01 , λ 02 , λ 03 , ... , λ 0 m (L·mol-1·cm-1);
? = the molar absorption coefficient of constituents base e (L·mol-1·cm-1);
? i , j = the molar absorption coefficient of constituent i at wavelength j base e (L·mol-1·cm-1);
φ = quantum yield, mole of constituent transformed per einstein of photons absorbed by constituent (mol·einstein-1);
φ i = quantum yield of constituent i, moles transformed per einstein of photons absorbed (mol·einstein-1);
φ 1 , φ 2 , φ 3 , ... , φ m = quantum yield of constituent i at wavelengths λ 01 , λ 02 , λ 03 , ... , λ 0 m , moles transformed per einstein of photons absorbed (mol·einstein-1);
φ i , j = quantum yield of constituent i at wavelength j, moles transformed per einstein of photons absorbed (mol·einstein-1);
λ = wavelength (nm);
λ 01 , λ 02 , λ 03 , ... , λ 0 m = wavelengths of light for polychromatic light source (nm);
σ = inactivation cross-section (cm2·molecule-1).
Tab.4  Nomenclature
1 Glaze W H, Kang J W, Chapin D H. Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering, 1987, 9(4): 335–352
https://doi.org/10.1080/01919518708552148
2 Bolton J R. Ultraviolet Applications Handbook, 3rd ed. Edmonton, Canada: Bolton Photosciences, Inc., 2010
3 Li K, Hokanson D R, Crittenden J C, Trussell R R, Minakata D. Evaluating UV/H2O2 processes for methyl tert-butyl ether and tertiary butyl alcohol removal: effect of pretreatment options and light sources. Water Research, 2008, 42(20): 5045–5053
https://doi.org/10.1016/j.watres.2008.09.017
4 Li K, Stefan M I, Crittenden J C. UV photolysis of trichloroethylene (TCE): product study and kinetic modeling. Environmental Science & Technology, 2004, 38(24): 6685–6693
https://doi.org/10.1021/es040304b
5 Setlow R B. Cyclobutane-type pyrimidine dimers in polynucleotides. Science, 1966, 153(3734): 379–386
https://doi.org/10.1126/science.153.3734.379
6 Oguma K, Katayama H, Mitani H, Morita S, Hirata T, Ohgaki S. Determination of pyrimidine dimers in escherichia coli and cryptosporidium parvum during UV light inactivation, photoreactivation, and dark repair. Applied and Environmental Microbiology, 2001, 67(10): 4630–4637
https://doi.org/10.1128/AEM.67.10.4630-4637.2001
7 Radany E H, Love J D, Friedberg E C. The use of direct photoreversal of UV-irradiated DNA for the demonstration of pyrimidine dimer-DNA glycosylase activity. In: Seeberg E, Kleppe K, eds. Chromosome Damage and Repair. New York, N.Y.: Plenum Publishing Corp., 1981, 91–95
8 Einstein A. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Annalen der Physik, 1905, 17(6): 132–148
https://doi.org/10.1002/andp.19053220607
9 Rubin M B, Braslavsky S E. Quantum yield: the term and the symbol. A historical search. Photochemical & Photobiological Sciences, 2010, 9(5): 670–674
https://doi.org/10.1039/b9pp00182d
10 Bolton J R, Stefan M I. Fundamental photochemical approach to the concepts of fluence (UV dose) and electrical energy efficiency in photochemical degradation reactions. Research on Chemical Intermediates, 2002, 28(7–9): 857–870
https://doi.org/10.1163/15685670260469474
11 Bolton J R, Linden K G. Standardization of methods for fluence (UV Dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 2003, 129(3): 209–215
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
12 Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry, 2nd ed. Hoboken, NJ.: Wiley, 2003
13 Hijnen W A M, Beerendonk E F, Medema G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Research, 2006, 40(1): 3–22
https://doi.org/10.1016/j.watres.2005.10.030
14 Havelaar A H, Meulemans C C E, Pot-Hodgeboom W M, Koster J. Inactivation of bacteriophage MS2 in wastewater effluent with monochromatic and polychromatic ultraviolet light. Water Research, 1990, 24(11): 1387–1393
https://doi.org/10.1016/0043-1354(90)90158-3
15 Sharpless C M, Seibold D A, Linden K G. Nitrate photosensitized degradation of atrazine during UV water treatment. Aquatic Sciences, 2003, 65(4): 359–366
https://doi.org/10.1007/s00027-003-0674-5
16 Watts M J, Linden K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research, 2007, 41(13): 2871–2878
https://doi.org/10.1016/j.watres.2007.03.032
17 Li J, Blatchley E R III. UV photodegradation of inorganic chloramines. Environmental Science & Technology, 2009, 43(1): 60–65
https://doi.org/10.1021/es8016304
18 De Laat J, Berne F. La déchloramination des eaux de piscines par irradiation UV. European Journal of Water Quality, 2009, 40(2): 129–149
https://doi.org/10.1051/water/2009009
19 De Laat J, Boudiaf N, Dossier-Berne F. Effect of dissolved oxygen on the photodecomposition of monochloramine and dichloramine in aqueous solution by UV irradiation at 253.7 nm. Water Research, 2010, 44(10): 3261–3269
https://doi.org/10.1016/j.watres.2010.03.009
20 Lukes P, Clupek M, Babicky V, Sunka P.Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Science and Technology, 2008, 17(2): 1–11, article no. 024012
https://doi.org/10.1088/0963-0252/17/2/024012
21 Sanches S, Barreto Crespo M T, Pereira V J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 2010, 44(6): 1809–1818
https://doi.org/10.1016/j.watres.2009.12.001
22 Baeza C, Knappe D R U. Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Research, 2011, 45(15): 4531–4543
https://doi.org/10.1016/j.watres.2011.05.039
23 Pereira V J, Weinberg H S, Linden K G, Singer P C. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environmental Science & Technology, 2007, 41(5): 1682–1688
https://doi.org/10.1021/es061491b
24 Yuan F, Hu C, Hu X, Qu J, Yang M. Degradation of selected pharmaceuticals in aqueous solution with UV and UV H2O2. Water Research, 2009, 43(6): 1766–1774
https://doi.org/10.1016/j.watres.2009.01.008
25 Rauth A M. The physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light. Biophysical Journal, 1965, 5(3): 257–273
https://doi.org/10.1016/S0006-3495(65)86715-7
26 Stefan M I, Bolton J R. UV direct photolysis of N-nitrosodimethylamine (NDMA): kinetic and product study. Helvetica Chimica Acta, 2002, 85(5): 1416–1426
https://doi.org/10.1002/1522-2675(200205)85:5<1416::AID-HLCA1416>3.0.CO;2-I
27 Sharpless C M, Linden K G. Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and H2O2 assisted UV photodegradation of N-nitrosodimethylamine in simulated drinking water. Environmental Science & Technology, 2003, 37(9): 1933–1940
https://doi.org/10.1021/es025814p
Related articles from Frontiers Journals
[1] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[2] Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8-.
[3] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[4] Yulong Shi, Jiaxuan Yang, Jun Ma, Congwei Luo. Feasibility of bubble surface modification for natural organic matter removal from river water using dissolved air flotation[J]. Front. Environ. Sci. Eng., 2017, 11(6): 10-.
[5] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[6] Guiying RAO, Kristen S. BRASTAD, Qianyi ZHANG, Rebecca ROBINSON, Zhen HE, Ying LI. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11-.
[7] Chaojie Jiang, Lifen Liu, John C. Crittenden. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity[J]. Front. Environ. Sci. Eng., 2016, 10(4): 15-.
[8] Xiaolu ZHANG,Hongwei YANG,Xiaofeng WANG,Yu ZHAO,Xiaomao WANG,Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[9] Jianbing WANG,Guoqing WANG,Chunli YANG,Shaoxia YANG,Qing HUANG. Catalytic ozonation of organic compounds in water over the catalyst of RuO2/ZrO2-CeO2[J]. Front. Environ. Sci. Eng., 2015, 9(4): 615-624.
[10] Eunsung KAN,Chang-Il KOH,Kyunghyuk LEE,Joonwun KANG. Decomposition of aqueous chlorinated contaminants by UV irradiation with H2O2[J]. Front. Environ. Sci. Eng., 2015, 9(3): 429-435.
[11] Xiaomao WANG,Yuqin MAO,Shun TANG,Hongwei YANG,Yuefeng F. XIE. Disinfection byproducts in drinking water and regulatory compliance: A critical review[J]. Front. Environ. Sci. Eng., 2015, 9(1): 3-15.
[12] Yang PAN,Xiangru ZHANG,Jianping ZHAI. Whole pictures of halogenated disinfection byproducts in tap water from China’s cities[J]. Front. Environ. Sci. Eng., 2015, 9(1): 121-130.
[13] Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
[14] Liping LIANG,Jing ZHANG,Pian FENG,Cong LI,Yuying HUANG,Bingzhi DONG,Lina LI,Xiaohong GUAN. Occurrence of bisphenol A in surface and drinking waters and its physicochemical removal technologies[J]. Front. Environ. Sci. Eng., 2015, 9(1): 16-38.
[15] Xiaomao WANG,Garcia Leal M I,Xiaolu ZHANG,Hongwei YANG,Yuefeng XIE. Haloacetic acids in swimming pool and spa water in the United States and China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 820-824.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed