Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (4) : 65     https://doi.org/10.1007/s11783-020-1244-y
RESEARCH ARTICLE
Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption
Zihao Li1, Yang Geng1, Lei Ma1,2(), Xiaoyin Chen1, Junhua Li3, Huazhen Chang4, Johannes W. Schwank1
1. Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
2. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
3. School of Environment, Tsinghua University, Beijing 100084, China
4. School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
Download: PDF(873 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Strong metal-support interaction exists on Pt/Fe3O4 catalysts.

• Pt metal particles facilitate the formation of oxygen vacancies on Fe3O4.

• Fe3O4 supports enhance the strength of CO adsorption on Pt metal particles.

The self-inhibition behavior due to CO poisoning on Pt metal particles strongly impairs the performance of CO oxidation. It is an effective method to use reducible metal oxides for supporting Pt metal particles to avoid self-inhibition and to improve catalytic performance. In this work, we used in situ reductions of chloroplatinic acid on commercial Fe3O4 powder to prepare heterogeneous-structured Pt/Fe3O4 catalysts in the solution of ethylene glycol. The heterogeneous Pt/Fe3O4 catalysts achieved a better catalytic performance of CO oxidation compared with the Fe3O4 powder. The temperatures of 50% and 90% CO conversion were achieved above 260°C and 290°C at Pt/Fe3O4, respectively. However, they are accomplished on Fe3O4 at temperatures higher than 310°C. XRD, XPS, and H2-TPR results confirmed that the metallic Pt atoms have a strong synergistic interaction with the Fe3O4 supports. TGA results and transient DRIFTS results proved that the Pt metal particles facilitate the release of lattice oxygen and the formation of oxygen vacancies on Fe3O4. The combined results of O2-TPD and DRIFTS indicated that the activation step of oxygen molecules at surface oxygen vacancies could potentially be the rate-determining step of the catalytic CO oxidation at Pt/Fe3O4 catalysts. The reaction pathway involves a Pt-assisted Mars-van Krevelen (MvK) mechanism.

Keywords Strong metal-support interaction (SMSI)      Surface oxygen vacancy      Lattice oxygen      Magnetite      Platinum metals     
Corresponding Author(s): Lei Ma   
Issue Date: 17 April 2020
 Cite this article:   
Zihao Li,Yang Geng,Lei Ma, et al. Catalytic oxidation of CO over Pt/Fe3O4 catalysts: Tuning O2 activation and CO adsorption[J]. Front. Environ. Sci. Eng., 2020, 14(4): 65.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-020-1244-y
http://journal.hep.com.cn/fese/EN/Y2020/V14/I4/65
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zihao Li
Yang Geng
Lei Ma
Xiaoyin Chen
Junhua Li
Huazhen Chang
Johannes W. Schwank
Fig.1  (a) Light-off curves of CO oxidation over Fe3O4 and Pt/Fe3O4 catalysts, (b) stability of Pt/Fe3O4 catalysts. Reaction condition: 1500 ppm CO, 10% O2, balanced with N2, WHSV= 240000 mL/g/h.
Fig.2  XRD patterns of Fe3O4 and Pt/Fe3O4 catalysts.
Fig.3  Pt 4f XPS spectra of Pt/Fe3O4 catalysts.
Fig.4  H2-TPR profiles of Fe3O4 and Pt/Fe3O4 catalysts.
Fig.5  O2-TPD profiles of Fe3O4 and Pt/Fe3O4 catalysts.
Fig.6  Thermogravimetric analysis and derivative thermogravimetry profiles of (a) Fe3O4 and (b) Pt/Fe3O4 catalysts.
Fig.7  In situ FTIR spectra of CO adsorbed at 250°C followed by N2 purging and O2/N2 reaction on (a) Fe3O4 and (b) Pt/Fe3O4 catalysts.
Fig.8  In situ FTIR spectra of CO and O2 co-adsorption at 250°C for different periods on (a) Fe3O4 and (b) Pt/Fe3O4 catalysts.
Species Vibration modes Wavenumber (cm1)
Monodentate carbonates ν (C-O)
νs (CO32)
νas (CO32)
1080–1040
1370–1300
1530–1470
Bidentate carbonates ν (C= O)
νs (COO)
νas (COO)
1670–1530
1030–980
1270–1220
Free carbonate ions νs (CO32)
νas (CO32)
1090–1020
1450–1420
Tab.1  Species and IR band positions range (cm1) of reactive CO adsorption (Hadjiivanov and Vayssilov, 2002; Li et al., 2015)
1 A D Allian , K Takanabe , K L Fujdala , X Hao , T J Truex , J Cai , C Buda , M Neurock , E Iglesia (2011). Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. Journal of the American Chemical Society, 133(12): 4498–4517
https://doi.org/10.1021/ja110073u
2 R M Anderson , L Zhang , J A Loussaert , A I Frenkel , G Henkelman , R M Crooks (2013). An experimental and theoretical investigation of the inversion of Pd@Pt Core@Shell dendrimer-encapsulated nanoparticles. ACS Nano, 7(10): 9345–9353
https://doi.org/10.1021/nn4040348
3 S Ayyappan , G Gnanaprakash , G Panneerselvam , M Antony , J Philip (2008). Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. Journal of Physical Chemistry C, 112(47): 18376–18383
https://doi.org/10.1021/jp8052899
4 P Bazin , O Saur , J Lavalley , M Daturi , G Blanchard (2005). FT-IR study of CO adsorption on Pt/CeO2: Characterisation and structural rearrangement of small Pt particles. Physical Chemistry Chemical Physics, 7(1): 187–194
https://doi.org/10.1039/b414159h
5 P Beccat , J Bertolini , Y Gauthier , J Massardier , P Ruiz (1990). Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt (111) and Pt80Fe20 (111) single crystals. Journal of Catalysis, 126(2): 451–456
https://doi.org/10.1016/0021-9517(90)90011-8
6 E V Benvenutti , L Franken , C C Moro , C U Davanzo (1999). FTIR study of hydrogen and carbon monoxide adsorption on Pt/TiO2, Pt/ZrO2, and Pt/Al2O3. Langmuir, 15(23): 8140–8146
https://doi.org/10.1021/la990195s
7 P Bera , A Gayen , M S Hegde , N P Lalla , L Spadaro , F Frusteri , F Arena (2003). Promoting effect of CeO2 in combustion synthesized Pt/CeO2 catalyst for CO oxidation. Journal of Physical Chemistry B, 107(25): 6122–6130
https://doi.org/10.1021/jp022132f
8 S Chavadej , K Saktrakool , P Rangsunvigit , L L Lobban , T Sreethawong (2007). Oxidation of ethylene by a multistage corona discharge system in the absence and presence of Pt/TiO2. Chemical Engineering Journal, 132(1–3): 345–353
https://doi.org/10.1016/j.cej.2007.01.030
9 S Chen , R Si , E Taylor , J Janzen , J Chen (2012). Synthesis of Pd/Fe3O4 hybrid nanocatalysts with controllable interface and enhanced catalytic activities for CO oxidation. Journal of Physical Chemistry C, 116(23): 12969–12976
https://doi.org/10.1021/jp3036204
10 R C Costa , F C Moura , J Ardisson , J Fabris , R Lago (2008). Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied Catalysis B: Environmental, 83(1–2): 131–139
https://doi.org/10.1016/j.apcatb.2008.01.039
11 Q Fu , W X Li , Y Yao , H Liu , H Y Su , D Ma , X K Gu , L Chen , Z Wang , H Zhang , B Wang , X Bao (2010). Interface-confined ferrous centers for catalytic oxidation. Science, 328(5982): 1141–1144
https://doi.org/10.1126/science.1188267
12 Q Fu , H Saltsburg , M Flytzani-Stephanopoulos (2003). Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 301(5635): 935–938
https://doi.org/10.1126/science.1085721
13 K I Hadjiivanov , G N Vayssilov (2002). Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis, 47: 328
https://doi.org/10.1016/S0360-0564(02)47008-3
14 A Ivanova , E Slavinskaya , R Gulyaev , V Zaikovskii , O Stonkus , I Danilova , L Plyasova , I Polukhina , A Boronin (2010). Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B: Environmental, 97(1–2): 57–71
https://doi.org/10.1016/j.apcatb.2010.03.024
15 W Jian , S P Wang , H X Zhang , F Q Bai (2019). Disentangling the role of oxygen vacancies on the surface of Fe3O4 and g-Fe2O3. Inorganic Chemistry Frontiers, 6(10): 2660–2666
https://doi.org/10.1039/C9QI00351G
16 H Li , X Jiao , L Li , N Zhao , F Xiao , W Wei , Y Sun , B Zhang (2015). Synthesis of glycerol carbonate by direct carbonylation of glycerol with CO2 over solid catalysts derived from Zn/Al/La and Zn/Al/La/M (M= Li, Mg and Zr) hydrotalcites. Catalysis Science & Technology, 5(2): 989–1005
https://doi.org/10.1039/C4CY01237B
17 L Liotta , G Di Carlo , G Pantaleo , A Venezia (2010). Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect. Catalysis Today, 158(1–2): 56–62
https://doi.org/10.1016/j.cattod.2010.04.049
18 W Liu , M Flytzani-Stephanopoulos (1995). Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. Journal of Catalysis, 153(2): 304–316
https://doi.org/10.1006/jcat.1995.1132
19 X Liu , O Korotkikh , R Farrauto (2002). Selective catalytic oxidation of CO in H2: Structural study of Fe oxide-promoted Pt/alumina catalyst. Applied Catalysis A, General, 226(1–2): 293–303
https://doi.org/10.1016/S0926-860X(01)00915-2
20 X Liu , K Zhou , L Wang , B Wang , Y Li (2009). Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. Journal of the American Chemical Society, 131(9): 3140–3141
https://doi.org/10.1021/ja808433d
21 Z P Liu , X Q Gong , J Kohanoff , C Sanchez , P Hu (2003). Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Physical Review Letters, 91(26): 266102
https://doi.org/10.1103/PhysRevLett.91.266102
22 K S Loh , Y H Lee , A Musa , A A Salmah , I Zamri (2008). Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2,4-dichlorophenoxyacetic acid. Sensors (Basel), 8(9): 5775–5791
https://doi.org/10.3390/s8095775
23 M A Newton , D Ferri , G Smolentsev , V Marchionni , M Nachtegaal (2015). Room-temperature carbon monoxide oxidation by oxygen over Pt/Al2O3 mediated by reactive platinum carbonates. Nature Communications, 6(1): 8675–8681
https://doi.org/10.1038/ncomms9675
24 L Oliveira , J Fabris , R Rios , W D N Mussel , R Lago (2004). Fe3-xMnxO4 catalysts: Phase transformations and carbon monoxide oxidation. Applied Catalysis A, General, 259(2): 253–259
https://doi.org/10.1016/j.apcata.2003.09.033
25 L Olsson , E Fridell (2002). The influence of Pt oxide formation and Pt dispersion on the reactions NO2 ↔ NO+1/2O2 over Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Catalysis, 210(2): 340–353 doi:10.1006/jcat.2002.3698
26 F B Passos , E R De Oliveira , L V Mattos , F B Noronha (2005). Partial oxidation of methane to synthesis gas on Pt/CexZr1–xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts. Catalysis Today, 101(1): 23–30
https://doi.org/10.1016/j.cattod.2004.12.006
27 B Qiao , A Wang , X Yang , L F Allard , Z Jiang , Y Cui , J Liu , J Li , T Zhang (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8): 634–641
https://doi.org/10.1038/nchem.1095
28 A Ruiz Puigdollers , P Schlexer , S Tosoni , G Pacchioni (2017). Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catalysis, 7(10): 6493–6513
https://doi.org/10.1021/acscatal.7b01913
29 P Salomonsson , T Griffin , B Kasemo (1993). Oxygen desorption and oxidation-reduction kinetics with methane and carbon monoxide over perovskite type metal oxide catalysts. Applied Catalysis A, General, 104(2): 175–197
https://doi.org/10.1016/0926-860X(93)85097-9
30 S Scirè , S Minicò , C Crisafulli , C Satriano , A Pistone (2003). Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts. Applied Catalysis B: Environmental, 40(1): 43–49
https://doi.org/10.1016/S0926-3373(02)00127-3
31 M Shou , K I Tanaka , K Yoshioka , Y Moro-Oka , S Nagano (2004). New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature. Catalysis Today, 90(3–4): 255–261
https://doi.org/10.1016/j.cattod.2004.04.049
32 K I Tanaka , M Shou , H He , X Shi (2006). Significant enhancement of the oxidation of CO by H2 and/or H2O on a FeOx/Pt/TiO2 catalyst. Catalysis Letters, 110(3–4): 185–190
https://doi.org/10.1007/s10562-006-0107-x
33 C Wang , S Liu , D Wang , Q Chen (2018). Interface engineering of Ru–Co3O4 nanocomposites for enhancing CO oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(23): 11037–11043
https://doi.org/10.1039/C8TA00994E
34 C Wang , D Wang , Y Yang , R Li , C Chen , Q Chen (2016). Enhanced CO oxidation on CeO2/Co3O4 nanojunctions derived from annealing of metal organic frameworks. Nanoscale, 8(47): 19761–19768
https://doi.org/10.1039/C6NR07725K
35 S Yang , J Kim , Y J Tak , A Soon , H Lee (2016). Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angewandte Chemie International Edition, 55(6): 2058–2062
https://doi.org/10.1002/anie.201509241
36 Y F Y Yao (1984). The oxidation of CO and hydrocarbons over noble metal catalysts. Journal of Catalysis, 87(1): 152–162
https://doi.org/10.1016/0021-9517(84)90178-7
37 H Yin , C Wang , H Zhu , S H Overbury , S Sun , S Dai (2008). Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chemical Communications, 36: 4357–4359
https://doi.org/10.1039/b807591c
38 C Zhang , F Liu , Y Zhai , H Ariga , N Yi , Y Liu , K Asakura , M Flytzani-Stephanopoulos , H He (2012). Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition, 51(38): 9628–9632
https://doi.org/10.1002/anie.201202034
[1] FSE-20016-OF-LZH_suppl_1 Download
Related articles from Frontiers Journals
[1] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[2] María Fernanda HORST,Verónica LASSALLE,María Luján FERREIRA. Nanosized magnetite in low cost materials for remediation of water polluted with toxic metals, azo- and antraquinonic dyes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 746-769.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed