Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (4) : 56
Magnetotactic bacteria: Characteristics and environmental applications
Xinjie Wang1, Yang Li1,2(), Jian Zhao1, Hong Yao3, Siqi Chu3, Zimu Song3, Zongxian He3, Wen Zhang2()
1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
2. John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
3. Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing International Cooperation Base for Science and Technology on Antibiotics/ Resistance Genes Water Environmental Pollution Control Technology, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: PDF(1268 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

• Magnetotactic bacteria (MTB) synthesize magnetic nanoparticle within magnetosomes.

• The morphologic and phylogenetic diversity of MTB were summarized.

• Isolation and mass cultivation of MTB deserve extensive research for applications.

• MTB can remove heavy metals, radionuclides, and organic pollutants from wastewater.

Magnetotactic bacteria (MTB) are a group of Gram-negative prokaryotes that respond to the geomagnetic field. This unique property is attributed to the intracellular magnetosomes, which contains membrane-bound nanocrystals of magnetic iron minerals. This review summarizes the most recent advances in MTB, magnetosomes, and their potential applications especially the environmental pollutant control or remediation. The morphologic and phylogenetic diversity of MTB were first introduced, followed by a critical review of isolation and cultivation methods. Past research has devoted to optimize the factors, such as oxygen, carbon source, nitrogen source, nutrient broth, iron source, and mineral elements for the growth of MTB. Besides the applications of MTB in modern biological and medical fields, little attention was made on the environmental applications of MTB for wastewater treatment, which has been summarized in this review. For example, applications of MTB as adsorbents have resulted in a novel magnetic separation technology for removal of heavy metals or organic pollutants in wastewater. In addition, we summarized the current advance on pathogen removal and detection of endocrine disruptor which can inspire new insights toward sustainable engineering and practices. Finally, the new perspectives and possible directions for future studies are recommended, such as isolation of MTB, genetic modification of MTB for mass production and new environmental applications. The ultimate objective of this review is to promote the applications of MTB and magnetosomes in the environmental fields.

Keywords Magnetotactic bacteria      Magnetosome      Heavy metal      Radionuclide      Organic pollutants     
Corresponding Author(s): Yang Li,Wen Zhang   
Issue Date: 01 April 2020
 Cite this article:   
Xinjie Wang,Yang Li,Jian Zhao, et al. Magnetotactic bacteria: Characteristics and environmental applications[J]. Front. Environ. Sci. Eng., 2020, 14(4): 56.
E-mail this article
E-mail Alert
Articles by authors
Xinjie Wang
Yang Li
Jian Zhao
Hong Yao
Siqi Chu
Zimu Song
Zongxian He
Wen Zhang
Fig.1  Typical structure of a magnetotatic bacterium.
Fig.2  The principle of orientation magnetic separation method in a channel separator. Graph was regenerated based on ref. (Bahaj et al., 2002) with modifications.
Fig.3  Hypothesized mechanism of magnetite biomineralization. Graph was cited and reproduced from ref. (Yan et al., 2012) with permission and minor modifications.
Fig.4  Role of the proteins in the magnetite biomineralization and chain formation. Graph was cited and reproduced from ref. (Faivre and Schuler, 2008) with permission. MM represents magnetosome membrane, MC represents cytoplasmic membrane.
Heavy metals Strain Initial metal concentration Wet biomass weight Time pH Removal efficiency Ref.
Au3+ Stenotrophomonas sp. 80 mg/L 10 g/L 60 min 1.0–5.5 100% Song et al. (2008)
M. magneticum AMB-1 2×107 mol/L
4×107 mol/L
1.5×108 cells/mL 7 days 100%
Tanaka et al. (2009)
M. gryphiswaldense MSR-1 80 mg/L 10 g/L 60 min 2.5 Cai et al. (2011)
Cr6+ MTB 34.64 mg/L 44 g/L 60 min 6.0 80% Qu et al. (2014)
21.51 mg/L 100 g/L 30 min 6.0 68% Qu et al. (2014)
MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Cd2+ M. magneticum AMB-1 1×104 mol/L 1×108 cells/mL 24 h 7.4 3.8 × 106 molecules per cell Tanaka et al. (2008)
Desulfovibrio magneticus RS-1 1.3 mg/L 6.9×107 cells/mL 240 h 7.0 58.0% Arakaki et al. (2002)
Hg2+ M. gryphiswaldense MSR-1 2.5×107 mol/L 250 mg/L biogenic magnetite 120 min 13.53% Liu and Wiatrowski (2018)
M. magnetotacticum MS-1 2.5×107 mol/L 250 mg/L biogenic magnetite 120 min 8.55% Liu and Wiatrowski (2018)
Cu2+ M. gryphiswaldense MSR-1 80 mg/L 10 g/L 60 min 5.0 62.23% Wang et al. (2011)
MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Cr3+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Fe3+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Fe2+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Ni2+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 96.20% Wang and Sun (2005)
Mn2+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 50.75% Wang and Sun (2005)
Pb2+ MTB 40 mg/L 80 g/L 60 min 6.0–7.0 100% Wang and Sun (2005)
Co2+ Alphapro- teobacterium MTB-KTN90 115 mg/L 0.015 g/L of dry biomass 60 min 7.0 88.55% Tajer-Mohammad-Ghazvini et al. (2016)
Ag+ M. gryphiswaldense MSR-1 80 mg/L 10 g/L 60 min 4.0 91.26% Wang et al. (2011)
Mixture of Au3+ and Cu2+ MTB Au3+ (80 mg/L) 10 g/L 10 min 1.0–5.5 99.53%–100% Song et al. (2007)
Cu2+ (80 mg/L) 10 g/L 10 min 2.0–4.5 98.07%–98.75% Song et al. (2007)
Tab.1  Literature review for the removal of heavy metals from wastewater by magnetotactic bacteria
1 D Acosta-Avalos, F Abreu (2018). Bacteriology. London: IntechOpen
2 I Ali, C Peng, Z M Khan, I Naz (2017). Yield cultivation of magnetotactic bacteria and magnetosomes: A review. Journal of Basic Microbiology, 57(8): 643–652
3 I Ali, C Peng, Z M Khan, I Naz, M Sultan (2018). An overview of heavy metal removal from wastewater using magnetotactic bacteria. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 93(10): 2817–2832
4 R D Ambashta, M Sillanpaa (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3): 38–49
5 M Amor, V Busigny, P Louvat, M Tharaud, A Gelabert, P Cartigny, J Carlut, A Isambert, M Durand-Dubief, G Ona-Nguema, E Alphandery, I Chebbi, F Guyot (2018). Iron uptake and magnetite biomineralization in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1: An iron isotope study. Geochimica et Cosmochimica Acta, 232: 225–243
6 A Arakaki, H Takeyama, T Tanaka, T Matsunaga (2002). Cadmium recovery by a sulfate-reducing magnetotactic bacterium, Desulfovibrio magneticus RS-1, using magnetic separation. Applied Biochemistry and Biotechnology, 98–100(1–9): 833–840
7 A Bahaj, I Croudace, P James, F Moeschler, P Warwick (1998). Continuous radionuclide recovery from wastewater using magnetotactic bacteria. Journal of Magnetism and Magnetic Materials, 184(2): 241–244
8 A S Bahaj, P James, F Moeschler (1997). Continuous cultivation and recovery of magnetotactic bacteria. IEEE Transactions on Magnetics, 33(5): 4263–4265
9 A S Bahaj, P James, F Moeschler (2002). Efficiency enhancements through the use of magnetic field gradient in origntation magnetic separation for the removal of pollutants by magnetotactic bacteria. Separation Science and Technology, 37(16): 3661–3671
10 S Barber-Zucker, R Zarivach (2017). A look into the biochemistry of magnetosome biosynthesis in magnetotactic bacteria. ACS Chemical Biology, 12(1): 13–22
11 D A Bazylinski, R B Frankel (2004). Magnetosome formation in prokaryotes. Nature Reviews. Microbiology, 2(3): 217–230
12 D A Bazylinski, C T Lefèvre, B H Lower (2014). Nanomicrobiology. New York: Springer
13 D A Bazylinski, S Schubbe (2007). Controlled biomineralization by and applications of magnetotactic bacteria. Advances in Applied Microbiology, 62(7): 21–62
14 P Bender, L Marcano, I Orue, A D Venero, D Honecker, N F N L Barquí, A Muela, M L Fdez-Gubieda (2019). Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria. arXiv preprint arXiv: 1904.10732
15 M Blondeau, Y Guyodo, F Guyot, C Gatel, N Menguy, I Chebbi, B Haye, M Durand-Dubief, E Alphandéry, R Brayner (2018). Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Scientific Reports, 8(1): 1–9
16 F Cai, J Li, J Sun, Y Ji (2011). Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chemical Engineering Journal, 175: 70–75
17 S Chandrajit, G Prakash (2011). Preliminary isolation report of aerobic magnetotactic bacteria in a modified nutrient medium. Recent Research in Science and Technology, 3(11): 71–75
18 C Chen, Q Ma, W Jiang, T Song (2011). Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields. Applied Microbiology and Biotechnology, 90(1): 269–275
19 L Chen, C Chen, P Wang, C Chen, L Wu, T Song (2017). A compound magnetic field generating system for targeted killing of Staphylococcus aureus by magnetotactic bacteria in a microfluidic chip. Journal of Magnetism and Magnetic Materials, 427: 90–94
20 L J Chen, D A Bazylinski, H Brian (2012). Bacteria that synthesize nano-sized compasses to navigate using earth's geomagnetic field. Nature Education Knowledge, 3(10): 30
21 L de Castro Alves, S Yáñez-Vilar, Y Piñeiro-Redondo, J Rivas (2019). Novel magnetic nanostructured beads for cadmium (II) removal. Nanomaterials (Basel, Switzerland), 9(3): 356
22 E C Descamps, J B Abbé, D Pignol, C T Lefèvre (2016). Controlled biomineralization of magnetite in bacteria. Iron Oxides. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 99–116
23 J A Diaz-Alarcón, M P Alfonso-Pérez, I Vergara-Gómez, M Díaz-Lagos, S A Martínez-Ovalle (2019). Removal of iron and manganese in groundwater through magnetotactic bacteria. Journal of Environmental Management, 249: 109381
24 A Dieudonné, D Pignol, S Prévéral (2019). Magnetosomes: Biogenic iron nanoparticles produced by environmental bacteria. Applied Microbiology and Biotechnology, 103(9): 3637–3649
25 D Faivre, D Schuler (2008). Magnetotactic bacteria and magnetosomes. Chemical Reviews, 108(11): 4875–4898
26 F Farzan, S A Shojaosadati, H Abdul Tehrani (2010). A preliminary report on the isolation and identification of magnetotactic bacteria from Iran environment. Iranian Journal of Biotechnology, 8(2): 98–102
27 E Firlar, M Ouy, A Bogdanowicz, L Covnot, B Song, Y Nadkarni, R Shahbazian-Yassar, T Shokuhfar (2019). Investigation of the magnetosome biomineralization in magnetotactic bacteria using graphene liquid cell- transmission electron microscopy. Nanoscale, 11(2): 698–705
28 S Ghaisari, M Winklhofer, P Strauch, S Klumpp, D Faivre (2017). Magnetosome organization in magnetotactic bacteria unraveled by ferromagnetic resonance spectroscopy. Biophysical Journal, 113(3): 637–644
29 N Ginet, R Pardoux, G Adryanczyk, D Garcia, C Brutesco, D Pignol (2011). Single-step production of a recyclable nanobiocatalyst for organophosphate pesticides biodegradation using functionalized bacterial magnetosomes. PLoS One, 6(6): e21442
30 D Heslop, A P Roberts, L Chang, M Davies, A Abrajevitch, P De Deckker (2013). Quantifying magnetite magnetofossil contributions to sedimentary magnetizations. Earth and Planetary Science Letters, 382: 58–65
31 U Heyen, D Schuler (2003). Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Applied Microbiology and Biotechnology, 61(5–6): 536–544
32 T Honda, T Tanaka, T Yoshino (2015). Stoichiometrically controlled immobilization of multiple enzymes on magnetic nanoparticles by the magnetosome display system for efficient cellulose hydrolysis. Biomacromolecules, 16(12): 3863–3868
33 T Islam, C Peng, I Ali (2018). Morphological and cellular diversity of magnetotactic bacteria: A review. Journal of Basic Microbiology, 58(5): 378–389
34 J J Jacob, K Suthindhiran (2016). Magnetotactic bacteria and magnetosomes- Scope and challenges. Materials Science and Engineering C, 68: 919–928
35 Y Jiang, B Xi, R Li, M Li, Z Xu, Y Yang, S Gao (2019). Advances in Fe (III) bioreduction and its application prospect for groundwater remediation: A review. Frontiers of Environmental Science & Engineering, 13(6): 89
36 C Jogler, M Niebler, W Lin, M Kube, G Wanner, S Kolinko, P Stief, A J Beck, D De Beer, N Petersen, Y Pan, R Amann, R Reinhardt, D Schuler (2010). Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environmental Microbiology, 12(9): 2466–2478
37 L Ke, Y Chen, P Liu, S Liu, D Wu, Y Yuan, Y Wu, M Gao (2018). Characteristics and optimized fermentation of a novel magnetotactic bacterium, Magnetospirillum sp. ME-1. FEMS Microbiology Letters, 365(14): 1–9
38 C N Keim, U Lins, M Farina (2009). Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiology Letters, 292(2): 250–253
39 M G Kiran, K Pakshirajan, G Das (2018). Metallic wastewater treatment by sulfate reduction using anaerobic rotating biological contactor reactor under high metal loading conditions. Frontiers of Environmental Science & Engineering, 12(4): 12
40 A Körnig, J Dong, M Bennet, M Widdrat, J Andert, F D Müller, D Schüler, S Klumpp, D Faivre (2014). Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. Nano Letters, 14(8): 4653–4659
41 S Kundu, G R Kulkarni (2010). Enhancement of magnetotactic bacterial yield in a modified MSGM medium without alteration of magnetosomes properties. Indian Journal of Experimental Biology, 48(5): 518–523
42 C T Lefèvre, D A Bazylinski (2013). Magnetotactic bacteria: Ecology, diversity and evolution. Microbiology and Molecular Biology Reviews, 77(3): 497–526
43 C T Lefèvre, N Menguy, F Abreu, U Lins, M Pósfai, T Prozorov, D Pignol, R B Frankel, D A Bazylinski (2011). A cultured greigite-producing magnetotactic bacterium in a novel group of sulfatereducing bacteria. Science, 334(6063): 1720–1723
44 C T Lefèvre, L F Wu (2013). Evolution of the bacterial organelle responsible for magnetotaxis. Trends in Microbiology, 21(10): 534–543
45 T Li, K Xiao, B Yang, G Peng, F Liu, L Tao, S Chen, H Wei, G Yu, S Deng (2019). Recovery of Ni (II) from real electroplating wastewater using fixed-bed resin adsorption and subsequent electrodeposition. Frontiers of Environmental Science & Engineering, 13(6): 91
46 W Lin, Y Pan, D A Bazylinski (2017). Diversity and ecology of and biomineralization by magnetotactic bacteria. Environmental Microbiology Reports, 9(4): 345–356
47 W Lin, Y Wang, Y Pan (2012). Short-term effects of temperature on the abundance and diversity of magnetotactic cocci. MicrobiologyOpen, 1(1): 53–63
48 L Liu, M Bilal, X Duan, H M N Iqbal (2019). Mitigation of environmental pollution by genetically engineered bacteria- Current challenges and future perspectives. Science of the Total Environment, 667: 444–454
49 S Liu, H A Wiatrowski (2018). Reduction of Hg(II) to Hg(0) by biogenic magnetite from two magnetotactic bacteria. Geomicrobiology Journal, 35(3): 198–208
50 Y Liu, G R Li, F F Guo, W Jiang, Y Li, L J Li (2010). Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microbial Cell Factories, 9(1): 99
51 A S Mathuriya, K Yadav, B D Kaushik (2015). Magnetotactic bacteria: Performances and bhallenges. Geomicrobiology Journal, 32(9): 780–788
52 D Murat, A Quinlan, H Vali, A Komeili (2010). Comprehensive genetic dissection of the magnetosome gene island reveals the step-wise assembly of a prokaryotic organelle. Proceedings of the National Academy of Sciences of the United States of America, 107(12): 5593–5598
53 C C Nguyen, C N Hugie, M L Kile, T Navab-Daneshmand (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(3): 46
54 F Parisi, G Lazzara, M Merli, S Milioto, F Princivalle, L Sciascia (2019). Simultaneous removal and recovery of metal ions and dyes from wastewater through montmorillonite clay minera. Nanomaterials (Basel, Switzerland), 9(12): 1699
55 N N Prabhu, M Kowshik (2016). Techniques for the isolation of magnetotactic bacteria. Journal of Microbial & Biochemical Technology, 8(3):188–194
56 Y Qu, X Zhang, J Xu, W Zhang, Y Guo (2014). Removal of hexavalent chromium from wastewater using magnetotactic bacteria. Separation and Purification Technology, 136: 10–17
57 B Ranjan, S Pillai, K Permaul, S Singh (2019). Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. Journal of Hazardous Materials, 363: 73–80
58 I Safarik, L Ptackova, M Safarikova (2002). Adsorption of dyes on magnetically labeled baker’s yeast cells. European Cells & Materials, 3: 52–55
59 M Šafaříková, L Ptackova, I Kibrikova, I Safarik (2005). Biosorption of water-soluble dyes on magnetically modified Saccharomyces cerevisiae subsp. uvarum cells. Chemosphere, 59(6): 831–835
60 S Sannigrahi, K Suthindhiran (2019). Metal recovery from printed circuit boards by magnetotactic bacteria. Hydrometallurgy, 187: 113–124
61 Y Shi, L Chai, Z Yang, Q Jing, R Chen, Y Chen (2012). Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess and Biosystems Engineering, 35(5): 843–850
62 S L Simmons, D A Bazylinski, K J Edwards (2006). South-seeking magnetotactic bacteria in the Northern Hemisphere. Science, 311(5759): 371–374
63 J Singh, Y Y Chang, J K Yang, S H Kang, J R Koduru (2016). Utilization of nano/micro-size iron recovered from the fine fraction of automobile shredder residue for phenol degradation in water. Frontiers of Environmental Science & Engineering, 10(4): 9
64 H Song, X Li, H Cheng, F Cheng (2013). Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalination and Water Treatment, 51(19–21): 3864–3870
65 H Song, X Li, J Sun, S Xu, X Han (2008). Application of a magnetotactic bacterium, Stenotrophomonas sp to the removal of Au(III) from contaminated wastewater with a magnetic separator. Chemosphere, 72(4): 616–621
66 H Song, X Li, J Sun, X Yin, Y Wang, Z Wu (2007). Biosorption equilibrium and kinetics of Au(III) and Cu(II) on magnetotactic Bacteria. Chinese Journal of Chemical Engineering, 15(6): 847–854
67 M M Stanton, B W Park, D Vilela, K Bente, D Faivre, M Sitti, S Sanchez (2017). Magnetotactic bacteria powered biohybrids target E. coli biofilms. ACS Nano, 11(10): 9968–9978
68 P Tajer-Mohammad-Ghazvini, R Kasra-Kermanshahi, A Nozad-Golikand, M Sadeghizadeh, S Ghorbanzadeh-Mashkani, R Dabbagh (2016). Cobalt separation by Alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess and Biosystems Engineering, 39(12): 1899–1911
69 M Tanaka, A Arakaki, S S Staniland, T Matsunaga (2010). Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria. Applied Microbiology and Biotechnology, 76(16): 5526–5532
70 M Tanaka, M Kawase, T Tanaka, T Matsunaga (2009). Gold biorecovery from plating waste by magnetotactic bacterium, Magnetospirillum magneticum AMB-1. Online Proceeding Library Archive, 1169: 1169-Q03-12
71 M Tanaka, W Knowles, R Brown, N Hondow, A Arakaki, S Baldwin, S Staniland, T Matsunaga (2016). Biomagnetic recovery and bioaccumulation of selenium granules in magnetotactic bacteria. Applied Microbiology and Biotechnology, 82(13): 3886–3891
72 M Tanaka, Y Nakata, T Mori, Y Okamura, H Miyasaka, H Takeyama, T Matsunaga (2008). Development of a cell surface display system in a magnetotactic bacterium, “Magnetospirillum magneticum” AMB-1. Applied and Environmental Microbiology, 74(11): 3342–3348
73 T Tanaka, H Takeda, F Ueki, K Obata, H Tajima, H Takeyama, Y Goda, S Fujimoto, T Matsunaga (2004). Rapid and sensitive detection of 17β-estradiol in environmental water using automated immunoassay system with bacterial magnetic particles. Journal of Biotechnology, 108(2): 153–159
74 M Toro-Nahuelpan, G Giacomelli, O Raschdorf, S Borg, J M Plitzko, M Bramkamp, D Schüler, F D Müller (2019). MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nature Microbiology, 4(11): 1978–1989
75 R Uebe, D Schüler (2016). Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews. Microbiology, 14(10): 621–637
76 G Vargas, J Cypriano, T Correa, P Leão, D A Bazylinski, F Abreu (2018). Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: Mini-review. Molecules (Basel, Switzerland), 23(10): 2438
77 J Wang, S Zhuang (2019). Removal of cesium ions from aqueous solutions using various separation technologies. Reviews in Environmental Science and Biotechnology, 18(2): 231–269
78 M Wang, P Liu, Y Wang, D Zhou, C Ma, D Zhang, J Zhan (2015). Core-shell superparamagnetic Fe3O4@beta-CD composites for host-guest adsorption of polychlorinated biphenyls (PCBs). Journal of Colloid and Interface Science, 447: 1–7
79 Y Wang, H Gao, J Sun, J Li, Y Su, Y Ji, C Gong (2011). Selective reinforced competitive biosorption of Ag(I) and Cu(II) on Magnetospirillum gryphiswaldense. Desalination, 270(1–3): 258–263
80 Y H Wang, J S Sun (2005). Biosorption of heavy metal ions by activated sludge cultivated with culture medium of MTB. Chinese Journal of Chemical Engineering, 22(4): 255–258
81 L Yan, H Da, S Zhang, V M López, W Wang (2017). Bacterial magnetosome and its potential application. Microbiological Research, 203: 19–28
82 L Yan, S Zhang, P Chen, H Liu, H Yin, H Li (2012). Magnetotactic bacteria, magnetosomes and their application. Microbiological Research, 167(9): 507–519
83 L Yan, S Zhang, P Chen, W Wang, Y Wang, H Li (2013). Magnetic properties of Acidithiobacillus ferrooxidans. Materials Science and Engineering C, 33(7): 4026–4031
84 C D Yang, H Takeyama, T Tanaka, T Matsunaga (2001). Effects of growth medium composition, iron sources and atmospheric oxygen concentrations on production of luciferase-bacterial magnetic particle complex by a recombinant Magnetospirillum magneticum AMB-1. Enzyme and Microbial Technology, 29(1): 13–19
85 H Yang, J Liu, J Yang (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of Hazardous Materials, 187(1–3): 393–400
86 J Yang, M Lei, T Chen, D Gao, G Zheng, G Guo, D Lee (2014). Current status and developing trends of the contents of heavy metals in sewage sludges in China. Frontiers of Environmental Science & Engineering, 8(5): 719–728
87 X Yang, Y Wan, Y Zheng, F He, Z Yu, J Huang, H Wang, Y S Ok, Y Jiang, B Gao (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366: 608–621
88 S R Yazdi, R Nosrati, C A Stevens, D Vogel, P L Davies, C Escobedo (2018). Magnetotaxis enables magnetotactic bacteria to navigate in flow. Small, 14(5): 1702982
89 N Zeytuni, E Ozyamak, K Ben-Harush, G Davidov, M Levin, Y Gat, T Moyal, A Brik, A Komeili, R Zarivach (2011). Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proceedings of the National Academy of Sciences of the United States of America, 108(33): E480–E487
90 W Zhou, Y Zhang, X Ding, Y Liu, F Shen, X Zhang, S Deng, H Xiao, G Yang, H Peng (2012). Magnetotactic bacteria: Promising biosorbents for heavy metals. Applied Microbiology and Biotechnology, 95(5): 1097–1104
91 Y Zhou, W Lisowski, Y Zhou, N W Jern, K Huang, E Fong (2017). Genetic improvement of Magnetospirillum gryphiswaldense for enhanced biological removal of phosphate. Biotechnology Letters, 39(10): 1509–1514
92 X Zhu, A P Hitchcock, L Le Nagard, D A Bazylinski, V Morillo, F Abreu, P Leao, U Lins (2018). X-ray absorption spectroscopy and magnetism of synthetic greigite and greigite magnetosomes in magnetotactic bacteria. Geomicrobiology Journal, 35(3): 215–226
Related articles from Frontiers Journals
[1] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[2] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[3] Wenzhong Tang, Liu Sun, Limin Shu, Chuang Wang. Evaluating heavy metal contamination of riverine sediment cores in different land-use areas[J]. Front. Environ. Sci. Eng., 2020, 14(6): 104-.
[4] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[5] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[6] Sana Ullah, Xuejun Guo, Xiaoyan Luo, Xiangyuan Zhang, Siwen Leng, Na Ma, Palwasha Faiz. Rapid and long-effective removal of broad-spectrum pollutants from aqueous system by ZVI/oxidants[J]. Front. Environ. Sci. Eng., 2020, 14(5): 89-.
[7] Xinyi Hu, Ting Yang, Chen Liu, Jun Jin, Bingli Gao, Xuejun Wang, Min Qi, Baokai Wei, Yuyu Zhan, Tan Chen, Hongtao Wang, Yanting Liu, Dongrui Bai, Zhu Rao, Nan Zhan. Distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China[J]. Front. Environ. Sci. Eng., 2020, 14(4): 66-.
[8] Jun Yang, Jingyun Wang, Pengwei Qiao, Yuanming Zheng, Junxing Yang, Tongbin Chen, Mei Lei, Xiaoming Wan, Xiaoyong Zhou. Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China[J]. Front. Environ. Sci. Eng., 2020, 14(3): 37-.
[9] Kubra Ulucan-Altuntas, Eyup Debik. Dechlorination of dichlorodiphenyltrichloroethane (DDT) by Fe/Pd bimetallic nanoparticles: Comparison with nZVI, degradation mechanism, and pathways[J]. Front. Environ. Sci. Eng., 2020, 14(1): 17-.
[10] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[11] Nan Wu, Weiyu Zhang, Shiyu Xie, Ming Zeng, Haixue Liu, Jinghui Yang, Xinyuan Liu, Fan Yang. Increasing prevalence of antibiotic resistance genes in manured agricultural soils in northern China[J]. Front. Environ. Sci. Eng., 2020, 14(1): 1-.
[12] Zhan Qu, Ting Su, Yu Chen, Xue Lin, Yang Yu, Suiyi Zhu, Xinfeng Xie, Mingxin Huo. Effective enrichment of Zn from smelting wastewater via an integrated Fe coagulation and hematite precipitation method[J]. Front. Environ. Sci. Eng., 2019, 13(6): 94-.
[13] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[14] Huosheng Li, Hongguo Zhang, Jianyou Long, Ping Zhang, Yongheng Chen. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: Bench and pilot scale studies focusing on in-depth thallium removal[J]. Front. Environ. Sci. Eng., 2019, 13(4): 49-.
[15] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
Full text