Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 8     https://doi.org/10.1007/s11783-018-1025-z
RESEARCH ARTICLE |
Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions
Pan Gao1, Yuan Song1, Shaoning Wang1, Claude Descorme2, Shaoxia Yang1()
1. National Engineering Laboratory for Biomass Power Generation Equipment, Beijing Key Laboratory of Energy Safety and Clean Utilization, School of Renewable Energy, North China Electric Power University, Beijing 102206, China
2. Institute for Research on Catalysis and Environment of Lyon (IRCELYON), UMR5256 CNRS –Claude Bernard Lyon 1 University, Albert Einstein Avenue, 69626, Villeurbanne, France
Download: PDF(302 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fe2O3-CeO2-Bi2O3/γ-Al2O3, an environmental friendly material, was investigated.

The catalyst exhibited good catalytic performance in the CWAO of cationic red GTL.

The apparent activation energy for the reaction was 79 kJ·mol−1.

HO2· and O2· appeared as the main reactive species in the reaction.

The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst, a novel environmental-friendly material, was used to investigate the catalytic wet air oxidation (CWAO) of cationic red GTL under mild operating conditions in a batch reactor. The catalyst was prepared by wet impregnation, and characterized by special surface area (BET measurement), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst exhibited good catalytic activity and stability in the CWAO under atmosphere pressure. The effect of the reaction conditions (catalyst loading, degradation temperature, solution concentration and initial solution pH value) was studied. The result showed that the decolorization efficiency of cationic red GTL was improved with increasing the initial solution pH value and the degradation temperature. The apparent activation energy for the reaction was 79 kJ·mol1. Hydroperoxy radicals (HO2·) and superoxide radicals (O2·) appeared as the main reactive species upon the CWAO of cationic red GTL.

Keywords Catalytic wet air oxidation (CWAO)      Advanced oxidation processes (AOPs)      Iron oxide catalyst      Industrial wastewater     
This article is part of themed collection: Advanced Treatment Technology for Industrial Wastewaters (Responsible Editors: Junfeng Niu & Hongbin Cao)
Corresponding Authors: Shaoxia Yang   
Issue Date: 23 January 2018
 Cite this article:   
Pan Gao,Yuan Song,Shaoning Wang, et al. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-018-1025-z
http://journal.hep.com.cn/fese/EN/Y2018/V12/I1/8
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Pan Gao
Yuan Song
Shaoning Wang
Claude Descorme
Shaoxia Yang
Samples Surface area (m2·g1) pHPZC Fe2+ (at.%) Fe3 (at.%) Loading of metals (wt.%)
Fe Ce Bi
Fe2O3/γ-Al2O3 163 7.64 5.43 94.57 3.51
Fe2O3-CeO2/γ-Al2O3 160 7.78 8.74 91.26 3.49 2.41
Fe2O3-CeO2-Bi2O3/γ-Al2O3 157 7.94 11.09 ? 88.91?? ?????3.47???? 2.38 1.82
Tab.1  The structure of the catalysts
Fig.1  XRD patterns of the support and catalysts (a: γ-Al2O3, b: Fe2O3/γ-Al2O3, c: Fe2O3-CeO2/γ-Al2O3, d: Fe2O3-CeO2-Bi2O3/γ-Al2O3)
Fig.2  XPS spectra of Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst
Fig.3  Decolorization efficiency of cationic red GTL in CWAO over the different catalysts under atmospheric pressure ([Dye]0=100 mg·L1; [Catalyst]0 =2.0 g·L1; [O2]0=200 mL·min−1; T=70 oC)
Fig.4  Effect of initial pH value of cationic red GTL solution on the decolorization efficiency in the CWAO over the Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst under atmospheric pressure ([Dye]0=100 mg·L1; [Catalyst]0=2.0 g·L1; [O2]0=200 mL·min1; T=70 oC)
Fig.5  Effect of reaction temperature on the decolorization efficiency of cationic red GTL in the CWAO over the Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst under atmospheric pressure ([Dye]0=100 mg·L−1; [Catalyst]0=2.0 g·L−1; [O2]0=200 mL·min−1)
Fig.6  Effect of the cationic red GTL concentration on the decolorization efficiency in the CWAO over the Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst under atmosphere pressure ([Catalyst]0=2.0 g·L1, [O2]0=200 mL·min1, T=70 oC)
Fig.7  Effect of scavenging agents on the decolorization efficiency of cationic red GTL in the CWAO over Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst under atmospheric pressure ([Dye]0=100 mg·L1; [Catalyst]0=2.0 g·L1; [O2]0=200 mL·min1; T=70 oC)
1 Sang  H L,  Carberry  J B. Biodegradation of PCP enhanced by chemical oxidation pretreatment.  Water Environment Research, 1992, 64(5): 682–690
https://doi.org/10.2175/WER.64.5.4
2 Tian  S C,  Li  Y B,  Zhao  X. Cyanide removal with a copper/active carbon fiber cathode via a combined oxidation of a Fenton-like reaction and in situ generated copper oxides at anode.  Electrochimica Acta, 2015, 180: 746–755
https://doi.org/10.1016/j.electacta.2015.09.006
3 Liao  G, Zhu   D, Li  L,  Lan  B. Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation.  Journal of Hazardous Materials, 2014, 280: 531–535
https://doi.org/10.1016/j.jhazmat.2014.08.052 pmid: 25215654
4 Wang  Y B,  Zhao  H,  Zhao  G. Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants.  Applied Catalysis B: Environmental, 2015, 164: 396–406
https://doi.org/10.1016/j.apcatb.2014.09.047
5 Xiao  J D,  Xie  Y B,  Nawaz  F,  Jin  S,  Duan  F,  Li  M J,  Cao  H B. Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination.  Applied Catalysis B: Environmental, 2016, 181: 420–428
https://doi.org/10.1016/j.apcatb.2015.08.020
6 Luck  F. Wet air oxidation: Past, present and future.  Catalysis Today, 1999, 53(1): 81–91
https://doi.org/10.1016/S0920-5861(99)00112-1
7 Kim  K H,  Ihm  S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review.  Journal of Hazardous Materials, 2011, 186(1): 16–34
https://doi.org/10.1016/j.jhazmat.2010.11.011 pmid: 21122984
8 Mezohegyi  G, Erjavec   B, Kaplan  R,  Pintar  A. Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation.  Industrial & Engineering Chemistry Research, 2013, 52(26): 9301–9307
https://doi.org/10.1021/ie400998t
9 Wang  J B,  Zhu  W P,  Yang  S X,  Wang  W,  Zhou  Y R. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts.  Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37
https://doi.org/10.1016/j.apcatb.2007.08.014
10 Yang  S X,  Besson  M,  Descorme  C. Catalytic wet air oxidation of succinic acid over Ru and Pt catalysts supported on CexZr1−xO2 mixed oxides.  Applied Catalysis B: Environmental, 2015, 165(165): 1–9
https://doi.org/10.1016/j.apcatb.2014.09.057
11 De los Monteros  A E,  Lafaye  G,  Cervantes  A,  Del Angel  G,  Barbier  JJr. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides.  Catalysis Today, 2015, 258: 564–569
https://doi.org/10.1016/j.cattod.2015.01.009
12 Szabados  E, Sagi   G, Somodi  F,  Maroti  B,  Sranko  D,  Tungler  A. Wet air oxidation of paracetamol over precious metal/Ti mesh monolith catalyst.  Journal of Industrial and Engineering Chemistry, 2017, 46: 364–372
https://doi.org/10.1016/j.jiec.2016.11.005
13 Xu  A, Sun   C. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol.  Environmental Technology, 2012, 33(10–12): 1339–1344
https://doi.org/10.1080/09593330.2011.626800 pmid: 22856307
14 Ersöz  G,  Atalay  S. Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3.  Journal of Environmental Management, 2012, 113(4): 244–250
https://doi.org/10.1016/j.jenvman.2012.08.036 pmid: 23041516
15 Ma  C J, Wen   Y Y, Yue   Q Q, Li   A Q, Fu   J L, Zhang   N, Gai  H,  Zheng  J,  Chen  B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2.  RSC Advances, 2017, 7(43): 27079–27088
https://doi.org/10.1039/C7RA04037G
16 Rocha  R P,  Silva A M T,  Romero S M M,  Pereira M F R,  Figueiredo J L. The role of O- and S-containing surface groups on carbon nanotubes for the elimination of organic pollutants by catalytic wet air oxidation.  Applied Catalysis B: Environmental, 2014, 147(14): 314–321
https://doi.org/10.1016/j.apcatb.2013.09.009
17 Yang  S, Cui   Y, Sun  Y,  Yang  H. Graphene oxide as an effective catalyst for wet air oxidation of phenol.  Journal of Hazardous Materials, 2014, 280: 55–62
https://doi.org/10.1016/j.jhazmat.2014.07.051 pmid: 25127389
18 Ma  H, Zhuo   Q, Wang  B. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions.  Environmental Science & Technology, 2007, 41(21): 7491–7496
https://doi.org/10.1021/es071057p pmid: 18044531
19 Yang  S X,  Besson  M,  Descorme  C. Catalytic wet air oxidation of formic acid over Pt/CexZr1−xO2 catalysts at low temperature and atmospheric pressure.  Applied Catalysis B: Environmental, 2010, 100(1–2): 282–288
20 Xu  Y, Li   X, Cheng  X,  Sun  D,  Wang  X. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.  Environmental Science & Technology, 2012, 46(5): 2856–2863
https://doi.org/10.1021/es203531q pmid: 22369476
21 Zou  L, Wang   Q, Wang  Z,  Jin  L,  Liu  R J,  Shen  X Q. Rapid decolorization of methyl blue in aqueous solution by recyclable microchannel-like La0.8K0.2FeO3 hollow microfibers.  Industrial & Engineering Chemistry Research, 2013, 53(2): 658–663
https://doi.org/10.1021/ie403417s
22 Quintanilla  A,  Casas  J A,  Rodríguez  J J. Catalytic wet air oxidation of phenol with modified activated carbons and Fe/activated carbon catalysts.  Applied Catalysis B: Environmental, 2007, 76(1–2): 135–145
https://doi.org/10.1016/j.apcatb.2007.05.019
23 di Luca  C,  Ivorra  F,  Massa  P,  Fenoglio  R. Iron-alumina synergy in the heterogeneous Fenton-type peroxidation of phenol solutions.  Chemical Engineering Journal, 2015, 268: 280–289
https://doi.org/10.1016/j.cej.2015.01.074
24 Zhu  W, Bin   Y, Li  Z,  Jiang  Z,  Yin  T. Application of catalytic wet air oxidation for the treatment of H-acid manufacturing process wastewater.  Water Research, 2002, 36(8): 1947–1954
https://doi.org/10.1016/S0043-1354(01)00419-5 pmid: 12092569
25 Wang  X M,  Waite  T D. Role of gelling soluble and colloidal microbial products in membrane fouling.  Environmental Science & Technology, 2009, 43(24): 9341–9347
https://doi.org/10.1021/es9013129 pmid: 20000527
26 Noh  J S,  Schwarz  J A. Effect of HNO3 treatment on the surface acidity of activated carbons.  Carbon, 1990, 28(5): 675–682
https://doi.org/10.1016/0008-6223(90)90069-B
27 Karpel  N, Leitner   V, Fu  H X. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts. Topics in Catalysis, 2005, 33(1–4): 249–256
28 Descostes  M, Mercier   F, Thromat  N,  Beaucaire  C,  Gautier-Soyer  M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium.  Applied Surface Science, 2000, 165(4): 288–302
https://doi.org/10.1016/S0169-4332(00)00443-8
29 Guo  L Q,  Chen  F,  Fan  X Q,  Cai  W D,  Zhang  J L. S-doped α-Fe2O3 as a highly active heterogeneous Fenton-like catalyst toward the degradation of acid orange 7 and phenol.  Applied Catalysis B: Environmental, 2010, 96(1–2): 162–168
https://doi.org/10.1016/j.apcatb.2010.02.015
30 Barbier  JJr, Delanoë   F, Jabouille  F,  Duprez  D,  Blanchard  G,  Isnard  P. Total oxidation of acetic acid in aqueous solutions over noble metal catalysts.  Journal of Catalysis, 1998, 177(2): 378–385
https://doi.org/10.1006/jcat.1998.2113
31 Rosenfeldt  E J,  Linden  K G,  Canonica  S,  von Gunten  U. Comparison of the efficiency of ·OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.  Water Research, 2006, 40(20): 3695–3704
https://doi.org/10.1016/j.watres.2006.09.008 pmid: 17078993
32 Yang  Y, Jiang   J, Lu  X,  Ma  J,  Liu  Y. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: A novel advanced oxidation process.  Environmental Science & Technology, 2015, 49(12): 7330–7339
https://doi.org/10.1021/es506362e pmid: 25988821
[1] FSE-17122-OF-GP_suppl_1 Download
Related articles from Frontiers Journals
[1] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[2] Shaoxia YANG,Yu SUN,Hongwei YANG,Jiafeng WAN. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts[J]. Front. Environ. Sci. Eng., 2015, 9(3): 436-443.
[3] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
[4] LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu. Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation[J]. Front.Environ.Sci.Eng., 2007, 1(2): 190-195.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed