Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (6) : 6     https://doi.org/10.1007/s11783-017-0947-1
RESEARCH ARTICLE |
Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor
Yulun Nie1,2, Xike Tian1(), Zhaoxin Zhou1, Yu-You Li2()
1. Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
2. Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
Download: PDF(619 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Efficient methane recovery was obtained when the F/M ratio was below 0.357.

AE was efficiently degraded and converted into CH 4 by anaerobic microbes.

Microbe could cope with the stress of AE by producing more EPS and SMP.

F/M ratio of 1.054 decrease the methane production potential significantly.

The methane production activity of sludge was inhibited at a higher AE dosage.

The effects of food to microorganism (F/M) ratio and alcohol ethoxylate (AE) dosage on the methane production potential were investigated in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor (SAnMBR). The fate of AE and its acute and/or chronic impact on the anaerobic microbes were also analyzed. The results indicated that AE had an inhibitory effect to methane production potential (lag-time depends on the AE dosage) and the negative effect attenuated subsequently and methane production could recover at F/M ratio of 0.088–0.357. VFA measurement proved that AE was degraded into small molecular organic acids and then converted into methane at lower F/M ratio (F/M<0.158). After long-term acclimation, anaerobic microbe could cope with the stress of AE by producing more EPS (extracellular polymeric substances) and SMP (soluble microbial products) due to its self-protection behavior and then enhance its tolerance ability. However, the methane production potential was considerably decreased when AE was present in wastewater at a higher F/M ratio of 1.054. Higher AE amount and F/M ratio may destroy the cell structure of microbe, which lead to the decrease of methane production activity of sludge and methane production potential.

Keywords Anaerobic membrane bioreactor AnMBR      F/M ratio      Surfactant      Wastewater      Methane production      Influence     
Corresponding Authors: Xike Tian,Yu-You Li   
Issue Date: 11 May 2017
 Cite this article:   
Yulun Nie,Xike Tian,Zhaoxin Zhou, et al. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-017-0947-1
http://journal.hep.com.cn/fese/EN/Y2017/V11/I6/6
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yulun Nie
Xike Tian
Zhaoxin Zhou
Yu-You Li
Fig.1  Effect of AE dosage on AnMBR performance in terms of COD removal, biogas production, AE removal and sludge concentration
Fig.2  Measured (dot) and estimated (line) methane production at different F/M ratios and AE concentrations in the course of duration time by batch experiments
Fig.3  Effect of F/M ratio and AE presence on the methane recovery efficiency
Fig.4  AE degradation in batch experiment at different F/M ratios
Fig.5  Measured (dot) and estimated (line) methane production only fermentation of different AE concentrations
Fig.6  Net cumulative methane production only at different AE concentrations
Fig.7  Effect of AE dosage on SMP and EPS concentration changes and the corresponding ratio of P/C at a F/M ratio of 1.054
Fig.8  Effect of AE dosage on the measured (dot) and estimated (line) MPA of sludge before and after long-term acclimation
1 Huang Z, Ong S L, Ng H Y. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water Research, 2011, 45(2): 705–713
https://doi.org/10.1016/j.watres.2010.08.035 pmid: 20851448
2 Smith A L, Skerlos S J, Raskin L. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 °C to 3 °C. Environmental Science: Water Research & Technology, 2015, 1: 56–64
3 Chen L, Gu Y, Cao C, Zhang J, Ng J W, Tang C. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment. Water Research, 2014, 50: 114–123
https://doi.org/10.1016/j.watres.2013.12.009 pmid: 24374126
4 Smith A L, Skerlos S J, Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Research, 2013, 47(4): 1655–1665
https://doi.org/10.1016/j.watres.2012.12.028 pmid: 23295067
5 Mei X J, Wang Z W, Miao Y, Wu Z C. Recover energy from domestic wastewater using anaerobic membrane bioreactor: Operating parameters optimization and energy balance analysis. Energy, 2016, 98: 146–154
https://doi.org/10.1016/j.energy.2016.01.011
6 Pan J M, Zhang R H, El-Mashad H M, Sun H W, Ying Y B. Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy, 2008, 33(23): 6968–6975
https://doi.org/10.1016/j.ijhydene.2008.07.130
7 Liu Y, Liu H N, Cui L, Zhang K S. The ratio of food-to-microorganism (F/M) on membrane fouling of anaerobic membrane bioreactors treating low-strength wastewater. Desalination, 2012, 297: 97–103
https://doi.org/10.1016/j.desal.2012.04.026
8 Lobos J, Wisniewski C, Heran M, Grasmick A. Effects of starvation conditions on biomass behaviour for minimization of sludge production in membrane bioreactors. Water Science and Technology, 2005, 51(6-7): 35–44
pmid: 16003959
9 Wei C H, Harb M, Amy G, Hong P Y, Leiknes T. Sustainable organic loading rate and energy recovery potential of mesophilic anaerobic membrane bioreactor for municipal wastewater treatment. Bioresource Technology, 2014, 166: 326–334
https://doi.org/10.1016/j.biortech.2014.05.053 pmid: 24926606
10 Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology, 2015, 198: 510–519
https://doi.org/10.1016/j.biortech.2015.09.039 pmid: 26432055
11 Kunacheva C, Soh Y N A, Trzcinski A P, Stuckey D C. Soluble microbial products (SMPs) in the effluent from a submerged anaerobic membrane bioreactor (SAMBR) under different HRTs and transient loading conditions. Chemical Engineering Journal, 2017, 311: 72–81
https://doi.org/10.1016/j.cej.2016.11.074
12 Traverso-Soto J M, Lara-Martín P A, León V M, González-Mazo E. Analysis of alcohol polyethoxylates and polyethylene glycols in marine sediments. Talanta, 2013, 110: 171–179
https://doi.org/10.1016/j.talanta.2013.02.027 pmid: 23618191
13 Traverso-Soto J M, Brownawell B J, González-Mazo E, Lara-Martín P A. Partitioning of alcohol ethoxylates and polyethylene glycols in the marine environment: field samplings vs laboratory experiments. Science of the Total Environment, 2014, 490: 671–678
https://doi.org/10.1016/j.scitotenv.2014.05.061 pmid: 24887194
14 Morrall S W, Dunphy J C, Cano M L, Evans A, McAvoy D C, Price B P, Eckhoff W S. Removal and environmental exposure of alcohol ethoxylates in US sewage treatment. Ecotoxicology and Environmental Safety, 2006, 64(1): 3–13
https://doi.org/10.1016/j.ecoenv.2005.07.014 pmid: 16140378
15 Berna J L, Cassani G, Hager C D, Rehman N, López I, Schowanek D, Steber J, Taeger K, Wind T. Anaerobic biodegradation of surfactants—Scientific review. Tenside, Surfactants, Detergents, 2007, 44(6): 312–347
https://doi.org/10.3139/113.100351
16 Motteran F, Braga J K, Sakamoto I K, Silva E L, Varesche M B A. Degradation of high concentrations of nonionic surfactant (linear alcohol ethoxylate) in an anaerobic fluidized bed reactor. Science of the Total Environment, 2014, 481: 121–128
https://doi.org/10.1016/j.scitotenv.2014.02.024 pmid: 24594741
17 Ferrara F, Fabietti F, Delise M, Funari E. Alkylphenols and alkylphenol ethoxylates contamination of crustaceans and fishes from the Adriatic Sea (Italy). Chemosphere, 2005, 59(8): 1145–1150
https://doi.org/10.1016/j.chemosphere.2004.11.085 pmid: 15833488
18 Song M, Bielefeldt A R. Toxicity and inhibition of bacterial growth by series of alkylphenol polyethoxylate nonionic surfactants. Journal of Hazardous Materials, 2012, 219-220: 127–132
https://doi.org/10.1016/j.jhazmat.2012.03.063 pmid: 22537918
19 Puyol D, Sanz J L, Rodriguez J J, Mohedano A F. Inhibition of methanogenesis by chlorophenols: a kinetic approach. New Biotechnology, 2012, 30(1): 51–61
https://doi.org/10.1016/j.nbt.2012.07.011 pmid: 22863949
20 Lu X, Zhen G, Liu Y, Hojo T, Estrada A L, Li Y Y. Long-term effect of the antibiotic cefalexin on methane production during waste activated sludge anaerobic digestion. Bioresource Technology, 2014, 169: 644–651
https://doi.org/10.1016/j.biortech.2014.07.056 pmid: 25105270
21 Cetecioglu Z, Ince B, Orhon D, Ince O. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresource Technology, 2012, 114: 109–116
https://doi.org/10.1016/j.biortech.2012.03.020 pmid: 22459958
22 Motteran F, Braga J K, Sakamoto I K, Silva E L, Varesche M B A. Methanogenic potential of an anaerobic sludge in the presence of anionic and nonionic surfactants. International Biodeterioration & Biodegradation, 2014, 96: 198–204
https://doi.org/10.1016/j.ibiod.2014.10.001
23 Ho J, Sung S. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology, 2010, 101(7): 2191–2196
https://doi.org/10.1016/j.biortech.2009.11.042 pmid: 20022745
24 Gouveia J, Plaza F, Garralon G, Fdz-Polanco F, Peña M. Long-term operation of a pilot scale anaerobic membrane bioreactor (AnMBR) for the treatment of municipal wastewater under psychrophilic conditions. Bioresource Technology, 2015, 185: 225–233
https://doi.org/10.1016/j.biortech.2015.03.002 pmid: 25770470
25 JSWA. Japanese standard methods of the examination of wastewater. Japan sewage works association, Tokyo (Japan), 1997
26 Ross S, Olivier J P. A new method for the determination of critical micelle concentrations of un-ionized associations colloids in aqueous or in non-aqueous solution. Journal of Chemical Physics, 1959, 63(10): 1671–1674
https://doi.org/10.1021/j150580a025
27 Frølund B, Palmgren R, Keiding K, Nielsen P H. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research, 1996, 30(8): 1749–1758
https://doi.org/10.1016/0043-1354(95)00323-1
28 Van der Marel P, Zwijnenburg A, Kemperman A, Wessling M, Temmink H, Van der Meer W. Influence of membrane properties on fouling in submerged membrane bioreactors. Journal of Membrane Science, 2010, 348(1-2): 66–74
https://doi.org/10.1016/j.memsci.2009.10.054
29 Dreher T M, Mott H V, Lupo C D, Oswald A S, Clay S A, Stone J J. Effects of chlortetracycline amended feed on anaerobic sequencing batch reactor performance of swine manure digestion. Bioresource Technology, 2012, 125: 65–74
https://doi.org/10.1016/j.biortech.2012.08.077 pmid: 23023238
30 Ma J, Quan X, Si X, Wu Y. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms. Bioresource Technology, 2013, 149: 346–352
https://doi.org/10.1016/j.biortech.2013.09.080 pmid: 24128396
31 Wu W, Duan T, Song H, Li Y, Yu A, Zhang L, Li A. The effect of continuous Ni(II) exposure on the organic degradation and soluble microbial product (SMP) formation in two-phase anaerobic reactor. Journal of Environmental Sciences (China), 2015, 33: 78–87
https://doi.org/10.1016/j.jes.2015.01.004 pmid: 26141880
32 Wang Y, Qin J, Zhou S, Lin X, Ye L, Song C, Yan Y. Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion. Water Research, 2015, 73: 252–264
https://doi.org/10.1016/j.watres.2015.01.034 pmid: 25697691
33 Aquino S F, Stuckey D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds. Water Research, 2004, 38(2): 255–266
https://doi.org/10.1016/j.watres.2003.09.031 pmid: 14675637
34 Mei X J, Wang Z W, Zheng X, Huang F, Ma J X, Tang J X, Wu Z C. Soluble microbial products in membrane bioreactors in the presence of ZnO nanoparticles. Journal of Membrane Science, 2014, 451: 169–176
https://doi.org/10.1016/j.memsci.2013.10.008
35 Laspidou C S, Rittmann B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Research, 2002, 36(11): 2711–2720
https://doi.org/10.1016/S0043-1354(01)00413-4 pmid: 12146858
36 Garcia M T, Campos E, Sánchez-Leal J, Ribosa I. Effect of linear alkylbenzene sulphonates (LAS) on the anaerobic digestion of sewage sludge. Water Research, 2006, 40(15): 2958–2964
https://doi.org/10.1016/j.watres.2006.05.033 pmid: 16844184
[1] FSE-17041-OF-NYL_suppl_1 Download
Related articles from Frontiers Journals
[1] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[2] Shengzhi Zheng, Yudong Song, Yiming Li, Lidong Sun, Bin Hu, Mingdong An, Yuexi Zhou. Broadening of appropriate demulsifier dosage range for latex-containing wastewater by sulfate addition[J]. Front. Environ. Sci. Eng., 2018, 12(6): 4-.
[3] Xinfeng Wang, Lu Lin, Haifeng Lu, Zhidan Liu, Na Duan, Taili Dong, Hua Xiao, Baoming Li, Pei Xu. Microalgae cultivation and culture medium recycling by a two-stage cultivation system[J]. Front. Environ. Sci. Eng., 2018, 12(6): 14-.
[4] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[5] Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 10-.
[6] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[7] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[8] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
[9] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[10] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[11] Liguo Zhang, Qiaoying Ban, Jianzheng Li. Microbial community dynamics at high organic loading rates revealed by pyrosequencing during sugar refinery wastewater treatment in a UASB reactor[J]. Front. Environ. Sci. Eng., 2018, 12(4): 4-.
[12] Zhi-Long Ye, Yujun Deng, Yaoyin Lou, Xin Ye, Shaohua Chen. Occurrence of veterinary antibiotics in struvite recovery from swine wastewater by using a fluidized bed[J]. Front. Environ. Sci. Eng., 2018, 12(3): 7-.
[13] Peipei Chen, Chaoqi Chen, Xiqing Li. Transport of antibiotic resistance plasmids in porous media and the influence of surfactants[J]. Front. Environ. Sci. Eng., 2018, 12(2): 5-.
[14] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[15] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed