Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (4) : 11
Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane
Guiying RAO1,Kristen S. BRASTAD2,3,Qianyi ZHANG2,Rebecca ROBINSON3,Zhen HE4,Ying LI1()
1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
2. Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
3. A.O. Smith Corporate Technology Center, Milwaukee, WI 53224, USA
4. Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Download: PDF(973 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

A novel photocatalytic Ag-Cu-TiO2 nanowire membrane was fabricated.

Bacteria and virus disinfection was improved by co-depositing Ag and Cu onto membrane.

Synergetic photocatalytic effects and free metal ions of Ag and Cu contribute to disinfection.

7.68 log removal of E. coli and 4.02 log removal of bacteriophage MS2 were achieved.

Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of dead-end filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.

Keywords Photo-activated disinfection      Titanium dioxide      Nanowire membrane      Silver      Copper     
Issue Date: 12 June 2016
 Cite this article:   
Guiying RAO,Kristen S. BRASTAD,Qianyi ZHANG, et al. Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane[J]. Front. Environ. Sci. Eng., 2016, 10(4): 11.
E-mail this article
E-mail Alert
Articles by authors
Guiying RAO
Kristen S. BRASTAD
Qianyi ZHANG
Zhen HE
Ying LI
Fig.1  Schematic of the test setup (a) and the exploded diagram of the membrane holder (b)
Fig.2  SEM images of the TiO2 membrane (a) and the Cu-Ag-TiO2 membrane (b); EDS analysis results of the Ag-TiO2 membrane (c), the Cu-TiO2 membrane (d) and the Cu-Ag-TiO2 membrane (e); and membrane cross-section (f)
Fig.3  Pore size distributions of the prepared membranes
Fig.4  Inactivation of E. coli by the TiO2, Ag-TiO2, Cu-TiO2, and Cu-Ag-TiO2 membranes under dark (a) and UV (b) conditions.
Fig.5  Concentrations of free silver ions in water effluent for the Ag-TiO2 membrane and copper ions for the Cu-TiO2 membrane under the dark condition
Fig.6  Inactivation of bacteriophage MS2 for the TiO2, Ag-TiO2, Cu-TiO2, and Cu-Ag-TiO2 membranes under dark (a) and UV (b) conditions.
1 Murray K E, Manitou-Alvarez E I, Inniss E C, Healy F G, Bodour A A. Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 2015, 9(1): 39–49
2 Pablos C, Marugán J, van Grieken R, Serrano E. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Research, 2013, 47(3): 1237–1245 pmid: 23276426
3 Ollis D F. Photocatalytic purification and remediation of contaminated air and water. Comptes Rendus de l'Académie des Sciences Series IIC: Chemistry, 2000, 3(6): 405–411
4 Thabet S, Weiss-Gayet M, Dappozze F, Cotton P, Guillard C. Photocatalysis on yeast cells: toward targets and mechanisms. Applied Catalysis B: Environmental, 2013, 140–141: 169–178
5 Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959 pmid: 17590053
6 Wang S, Wang K, Jehng J, Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering, 2012, 6(3): 304–312
7 Coleman H M, Marquis C P, Scott J A, Chin S S, Amal R. Bactericidal effects of titanium dioxide-based photocatalysts. Chemical Engineering Journal, 2005, 113(1): 55–63
8 Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602 pmid: 18804836
9 Ashkarran A A, Aghigh S M, Kavianipour M, Farahani N J. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Current Applied Physics, 2011, 11(4): 1048–1055
10 Selvaraj S, Saha K C, Chakraborty A, Bhattacharyya S N, Saha A. Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli. Journal of Hazardous Materials, 2009, 166(2–3): 1403–1409 pmid: 19167164
11 Khraisheh M, Wu L, Al-Muhtaseb A H, Al-Ghouti M A. Photocatalytic disinfection of Escherichia coli using TiO2-P25 and Cu-doped TiO2. Chemical Engineering Journal, 2005, 113: 55–63
12 McEvoy J G, Zhang Z. Review: antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2014, 19: 62–75
13 Liga M V, Bryant E L, Colvin V L, Li Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Research, 2011, 45(2): 535–544 pmid: 20926111
14 Hernández-Gordillo A, González V R. Silver nanoparticles loaded on Cu-doped TiO2 for the effective reduction of nitro-aromatic contaminants. Chemical Engineering Journal, 2015, 261: 53–59
15 Behnajady M A, Eskandarloo H. Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, 2013, 228: 1207–1213
16 Fang J, Liu H, Shang C, Zeng M, Ni M, Liu W.E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science & Engineering, 2014, 8(4): 547–552
17 Anastasi E M, Wohlsen T D, Stratton H M, Katouli M. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Research, 2013, 47(17): 6670–6679 pmid: 24091189
18 Vélez-Colmenares J J, Acevedo A, Nebot E. Effect of recirculation and initial concentration of microorganisms on the disinfection kinetics of Escherichia coli. Desalination, 2011, 280(1–3): 20–26
19 Venieri D, Gounaki I, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Applied Catalysis B: Environmental, 2015, 178: 54–64 doi:10.1016/j.apcatb.2014.10.052
20 Sigstam T, Rohatschek A, Zhong Q, Brennecke M, Kohn T. On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide. Water Research, 2014, 48: 82–89 pmid: 24139105
21 Zhang Q, Rao G, Rogers J, Zhao C, Liu L, Li Y. Novel anti-fouling Fe2O3/TiO2 nanowire membranes for humic acid removal from water. Chemical Engineering Journal, 2015, 271: 180–187
22 Li M, Noriega-Trevino M E, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek E M V. Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environmental Science & Technology, 2011, 45(20): 8989–8995 pmid: 21866941
23 Yadav H M, Otari S V, Koli V B, Mali S S, Hong C K, Pawar S H, Delekar S D. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A Chemistry, 2014, 280: 32–38
24 Giesche H. Mercury porosimetry: a general (practical) overview. Particle & Particle Systems Characterization, 2006, 23(1): 1–11
25 Lynch C T. CRC Handbook of Materials Science, Volume II: Material Composites and Refractory Materials. Florida: CRC Press, 1975.
26 Li J, Xu J, Dai W, Fan K. Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. Journal of Physical Chemistry C, 2009, 113(19): 8343–8349
27 Zhang J, Wang J, Zhao Z, Yu T, Feng J, Yuan Y, Tang Z, Liu Y, Li Z, Zou Z. Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UV-irradiation for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14(14): 4763–4769 pmid: 22382572
28 Carbonell E, Ramiro-Manzano F, Rodríguez I, Corma A, Meseguer F, García H. Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochemical & Photobiological Sciences, 2008, 7(8): 931–935 pmid: 18688500
29 Kubitschek H E. Cell volume increase in Escherichia coli after shifts to richer media. Journal of Bacteriology, 1990, 172(1): 94–101
pmid: 2403552
30 Stockley P G, Stonehouse N J, Valegård K. Molecular mechanism of RNA phage morphogenesis. International Journal of Biochemistry, 1994, 26(10–11): 1249–1260 pmid: 7851629
31 Zhang X, Du A J, Lee P, Sun D D, Leckie J O. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. Journal of Membrane Science, 2008, 313(1-2): 44–51
32 Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez P J J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723 pmid: 19046755
33 Kaitainen S, Mähönen A J, Lappalainen R, Kröger H, Lammi M J, Qu C. TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication, 2013, 5(2): 025009 pmid: 23592549
34 Chen S, Guo Y, Zhong H, Chen S, Li J, Ge Z, Tang J. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chemical Engineering Journal, 2014, 256: 238–246
35 United States Environmental Protection Agency. Retrieved from: (accessed <Date>November 25, 2015</Date>)
[1] FSE-16017-OF-RGY_suppl_1 Download
Related articles from Frontiers Journals
[1] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[2] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[3] Bao Jiang, Dechun Su, Xiaoqing Wang, Jifang Liu, Yibing Ma. Field evidence of decreased extractability of copper and nickel added to soils in 6-year field experiments[J]. Front. Environ. Sci. Eng., 2018, 12(2): 7-.
[4] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
[5] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[6] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[7] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[8] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[9] Haiqian LI, Yonglong LU, Li LI. PCDD/Fs emission, risk characterization, and reduction in China’s secondary copper production industry[J]. Front Envir Sci Eng, 2013, 7(4): 589-597.
[10] Sandeep PANDA, Nilotpala PRADHAN, Umaballav MOHAPATRA, Sandeep K. PANDA, Swagat S. RATH, Danda S. RAO, Bansi D. NAYAK, Lala B. SUKLA, Barada K. MISHRA. Bioleaching of copper from pre and post thermally activated low grade chalcopyrite contained ball mill spillage[J]. Front Envir Sci Eng, 2013, 7(2): 281-293.
[11] Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN. Competitive adsorption and desorption of copper and lead in some soil of North China[J]. Front Envir Sci Eng, 2012, 6(4): 484-492.
[12] Shenghung WANG, Kuohua WANG, Jihmirn JEHNG, Lichen LIU. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity[J]. Front Envir Sci Eng, 2012, 6(3): 304-312.
[13] Tianxiang XIA, Xuehua LIU. Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel, Cristaria plicata, under laboratory conditions[J]. Front Envir Sci Eng Chin, 2011, 5(2): 236-242.
[14] Hua ZHANG, Zhiliang ZHU, Noboru YOSHIKAWA. Microwave enhanced stabilization of copper in artificially contaminated soil[J]. Front Envir Sci Eng Chin, 2011, 5(2): 205-211.
[15] Zhijian LI, Shubo DENG, Xueying ZHANG, Wei ZHOU, Jun HUANG, Gang YU. Removal of fluoride from water using titanium-based adsorbents[J]. Front Envir Sci Eng Chin, 2010, 4(4): 414-420.
Full text