Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 522-530     https://doi.org/10.1007/s11783-015-0779-9
RESEARCH ARTICLE |
Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene
Yuchen PANG1,Jingjing HUANG1,3,Jinying XI1,*(),Hongying HU1,2,*(),Yun ZHU4,5
1. Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
2. State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
3. China Power Engineering Consulting Group Corporation, Beijing 100120, China
4. Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
5. School of Life Sciences, Tsinghua University, Beijing 100084, China
Download: PDF(329 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Antibiotic resistance is a serious public health risk that may spread via potable and reclaimed water. Effective disinfection is important for inactivation of antibiotic-resistant bacteria and disruption of antibiotic resistance genes. Ampicillin is a widely prescribed antibiotic but its effectiveness is increasingly undermined by resistance. In this study, changes in ampicillin resistance for Escherichia coli (E. coli) CGMCC 1.1595 were analyzed after exposure to different doses of ultraviolet (UV) or chlorine, and damage incurred by the plasmid encoding ampicillin resistance gene blaTEM-1 was assessed. We reported a greater stability in ampicillin-resistant E. coli CGMCC 1.1595 after UV irradiation or chlorination when compared with previously published data for other E. coli strains. UV irradiation and chlorination led to a shift in the mortality frequency distributions of ampicillin-resistant E. coli when subsequently exposed to ampicillin. The ampicillin hemi-inhibitory concentration (IC50) without disinfection was 3800 mg·L-1, and an increment was observed after UV irradiation or chlorination. The IC50 of ampicillin-resistant E. coli was 1.5-fold higher at a UV dose of 40 mJ·cm-2, and was 1.4-fold higher when exposed to 2.0 mg·L-1 chlorine. These results indicate that UV irradiation and chlorination can potentially increase the risk of selection for E. coli strains with high ampicillin resistance. There was no evident damage to blaTEM-1 after 1–10 mg Cl2·L-1 chlorination, while a UV dose of 80 mJ·cm-2 yielded a damage ratio for blaTEM-1 of approximately 1.2-log. Therefore, high UV doses are required for effective disruption of antibiotic resistance genes in bacteria.

Keywords antibiotic resistance      Escherichia coli      ampicillin resistance gene      ultraviolet irradiation      chlorination     
Corresponding Authors: Jinying XI,Hongying HU   
Issue Date: 05 April 2016
 Cite this article:   
Yuchen PANG,Jingjing HUANG,Jinying XI, et al. Effect of ultraviolet irradiation and chlorination on ampicillin-resistant Escherichia coli and its ampicillin resistance gene[J]. Front. Environ. Sci. Eng., 2016, 10(3): 522-530.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-015-0779-9
http://journal.hep.com.cn/fese/EN/Y2016/V10/I3/522
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuchen PANG
Jingjing HUANG
Jinying XI
Hongying HU
Yun ZHU
primerTa/ °Camplicon length/bpsequence(5′-3′)
AMP-sense50506ATG AGT ATT CAA CAT TTC CGT GTC
AMP-antisense50506TTA CCA ATG CTT AAT CAG TGA GGC
Tab.1  PCR primers used for amplification of the ampicillin resistance gene blaTEM-1
Fig.1  Inactivation of ampicillin-resistant E. coli by UV irradiation. The initial concentration of suspended E. coli was 107 CFU·mL-1. Error bars indicate standard deviation for triple replicates from a single sample
Fig.2  Inactivation of ampicillin-resistant E. coli by chlorination. Initial concentrations of E. coli in water samples were 107 CFU·mL-1. Error bars indicate standard deviation for triple replicates from a single sample
Fig.3  Mortality frequency distribution of ampicillin-resistant E. coli exposed to ampicillin after UV irradiation. Error bars indicate standard deviation for triple replicates from a single sample
Fig.4  Mortality frequency distribution of ampicillin-resistant E. coli exposed to ampicillin after chlorination. Error bars indicate standard deviation for triple replicates from a single sample
Fig.5  Shift in hemi-inhibitory concentration (IC50) of ampicillin-resistant E. coli at each dose by UV irradiation or chlorination. Error bars indicate standard deviation for triple replicates from a single sample
Fig.6  Damage to the ampicillin resistance gene blaTEM-1 gene by UV irradiation or chlorination. Error bars indicate standard deviation for triple replicates from a single sample
1 Zhang X X, Zhang T, Fang H H. Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology, 2009, 82(3): 397–414
https://doi.org/10.1007/s00253-008-1829-z pmid: 19130050
2 Shah S Q A, Colquhoun D J, Nikuli H L, Sørum H. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environmental Science & Technology, 2012, 46(16): 8672–8679
https://doi.org/10.1021/es3018607 pmid: 22823142
3 Chee-Sanford J C, Aminov R I, Krapac I J, Garrigues-Jeanjean N, Mackie R I. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Applied and Environmental Microbiology, 2001, 67(4): 1494–1502
https://doi.org/10.1128/AEM.67.4.1494-1502.2001 pmid: 11282596
4 Storteboom H, Arabi M, Davis J G, Crimi B, Pruden A. Identification of antibiotic-resistance-gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environmental Science & Technology, 2010, 44(6): 1947–1953
https://doi.org/10.1021/es902893f pmid: 20158229
5 Schwartz T, Kohnen W, Jansen B, Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 2003, 43(3): 325–335
https://doi.org/10.1111/j.1574-6941.2003.tb01073.x pmid: 19719664
6 Xi C, Zhang Y, Marrs C F, Ye W, Simon C, Foxman B, Nriagu J. Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Applied and Environmental Microbiology, 2009, 75(17): 5714–5718
https://doi.org/10.1128/AEM.00382-09 pmid: 19581476
7 Pruden A, Pei R, Storteboom H, Carlson K H. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology, 2006, 40(23): 7445–7450
https://doi.org/10.1021/es060413l pmid: 17181002
8 Dodd M C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring, 2012, 14(7): 1754–1771
https://doi.org/10.1039/c2em00006g pmid: 22572858
9 McKinney C W, Pruden A. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater. Environmental Science & Technology, 2012, 46(24): 13393–13400
https://doi.org/10.1021/es303652q pmid: 23153396
10 Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy M C, Michael I, Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the Total Environment, 2013, 447: 345–360
https://doi.org/10.1016/j.scitotenv.2013.01.032 pmid: 23396083
11 Huang J J, Hu H Y, Lu S Q, Li Y, Tang F, Lu Y, Wei B. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China. Environment International, 2012, 42: 31–36
https://doi.org/10.1016/j.envint.2011.03.001 pmid: 21450343
12 Zhang T, Zhang X X, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE, 2011, 6(10): e26041
https://doi.org/10.1371/journal.pone.0026041 pmid: 22016806
13 LaPara T M, Burch T R, McNamara P J, Tan D T, Yan M, Eichmiller J J. Tertiary-treated municipal wastewater is a significant point source of antibiotic resistance genes into Duluth-Superior Harbor. Environmental Science & Technology, 2011, 45(22): 9543–9549
https://doi.org/10.1021/es202775r pmid: 21981654
14 Meckes M C. Effect of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents. Applied and Environmental Microbiology, 1982, 43(2): 371–377
pmid: 7059170
15 Huang J J, Hu H Y, Tang F, Li Y, Lu S Q, Lu Y. Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. Water Research, 2011, 45(9): 2775–2781
https://doi.org/10.1016/j.watres.2011.02.026 pmid: 21440281
16 Livermore D M, Yuan M. Antibiotic resistance and production of extended-spectrum beta-lactamases amongst Klebsiella spp. from intensive care units in Europe. The Journal of Antimicrobial Chemotherapy, 1996, 38(3): 409–424
https://doi.org/10.1093/jac/38.3.409 pmid: 8889716
17 Malouin F, Bryan L E. Modification of penicillin-binding proteins as mechanisms of beta-lactam resistance. Antimicrobial Agents and Chemotherapy, 1986, 30(1): 1–5
https://doi.org/10.1128/AAC.30.1.1 pmid: 3530121
18 Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). Journal of Microbiological Methods, 2004, 56(2): 277–286
https://doi.org/10.1016/j.mimet.2003.10.014 pmid: 14744456
19 Sutcliffe J G. Nucleotide-sequence of the ampicillin resistance gene of Escherichia-coli plasmid pBR322. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(8): 3737–3741
https://doi.org/10.1073/pnas.75.8.3737 pmid: 358200
20 Bolton J R, Linden K G. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Environmental Engineering, 2003, 129(3): 209–215
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
21 Guo M T, Hu H Y, Bolton J R, El-Din M G. Comparison of low- and medium-pressure ultraviolet lamps: photoreactivation of Escherichia coli and total coliforms in secondary effluents of municipal wastewater treatment plants. Water Research, 2009, 43(3): 815–821
https://doi.org/10.1016/j.watres.2008.11.028 pmid: 19081599
22 Hijnen W A M, Beerendonk E F, Medema G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Research, 2006, 40(1): 3–22
https://doi.org/10.1016/j.watres.2005.10.030 pmid: 16386286
23 Stewart M A, Olson B H. Bacterial Resistance to Potable Water Disinfectant. Cambridge: Cambridge University Press, 1996, 140–192
24 Armstrong J L, Shigeno D S, Calomiris J J, Seidler R J. Antibiotic-resistant bacteria in drinking water. Applied and Environmental Microbiology, 1981, 42(2): 277–283
pmid: 7283426
25 Li X Z, Mehrotra M, Ghimire S, Adewoye L. β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology, 2007, 121(3-4): 197–214
https://doi.org/10.1016/j.vetmic.2007.01.015 pmid: 17306475
26 Kim S, Park H, Chandran K. Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: a mathematical modeling approach. Chemosphere, 2010, 78(9): 1071–1077
https://doi.org/10.1016/j.chemosphere.2009.12.068 pmid: 20096919
27 Shi P, Jia S, Zhang X X, Zhang T, Cheng S, Li A. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Research, 2013, 47(1): 111–120
https://doi.org/10.1016/j.watres.2012.09.046 pmid: 23084468
28 Speer B S, Shoemaker N B, Salyers A A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical Microbiology Reviews, 1992, 5(4): 387–399
pmid: 1423217
29 Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 2001, 65(2): 232–260
https://doi.org/10.1128/MMBR.65.2.232-260.2001 pmid: 11381101
30 Guo M, Huang J, Hu H, Liu W, Yang J. UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: health safety concern about UV disinfection. Water Research, 2012, 46(13): 4031–4036
https://doi.org/10.1016/j.watres.2012.05.005 pmid: 22683407
31 Courcelle J, Donaldson J R, Chow K H, Courcelle C T. DNA damage-induced replication fork regression and processing in Escherichia coli. Science, 2003, 299(5609): 1064–1067
https://doi.org/10.1126/science.1081328 pmid: 12543983
32 Munakata N, Ikeda Y. Inactivation of transforming DNA by ultraviolet irradiation-A study with ultraviolet-sensitive mutants of Bacillus subtilis. Mutation Research, 1969, 7(2): 133–139
https://doi.org/10.1016/0027-5107(69)90025-6 pmid: 4978738
Related articles from Frontiers Journals
[1] Lifeng Cao, Weihua Sun, Yuting Zhang, Shimin Feng, Jinyun Dong, Yongming Zhang, Bruce E. Rittmann. Competition for electrons between reductive dechlorination and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 14-.
[2] Yu Liu, Qiao Zhang, Yu Hong. Formation of disinfection byproducts from accumulated soluble products of oleaginous microalga after chlorination[J]. Front. Environ. Sci. Eng., 2017, 11(6): 1-.
[3] Dawei Liang, Shanquan Wang. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs[J]. Front. Environ. Sci. Eng., 2017, 11(6): 2-.
[4] Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
[5] Bhanukiran SUNKARA,Yang SU,Jingjing ZHAN,Jibao HE,Gary L. MCPHERSON,Vijay T. JOHN. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
[6] Man ZHANG,Feng HE,Dongye ZHAO. Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic structure and nature of adsorption[J]. Front. Environ. Sci. Eng., 2015, 9(5): 888-896.
[7] Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment[J]. Front. Environ. Sci. Eng., 2015, 9(4): 625-633.
[8] Xiaomao WANG,Garcia Leal M I,Xiaolu ZHANG,Hongwei YANG,Yuefeng XIE. Haloacetic acids in swimming pool and spa water in the United States and China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 820-824.
[9] Yifei SUN, Xin FU, Wei QIAO, Wei WANG, Tianle ZHU, Xinghua LI. Dechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by thermal reaction with activated carbon-supported copper or zinc[J]. Front Envir Sci Eng, 2013, 7(6): 827-832.
[10] Bingbing XU, Zhonglin CHEN, Fei QI, Jimin SHEN, Fengchang WU. Factors influencing the photodegradation of N-nitrosodimethylamine in drinking water[J]. Front Envir Sci Eng Chin, 2009, 3(1): 91-97.
[11] QIANG Zhimin, BEN Weiwei, HUANG Chin-Pao. Fenton process for degradation of selected chlorinated aliphatic hydrocarbons exemplified by trichloroethylene, 1,1-dichloroethylene and chloroform[J]. Front.Environ.Sci.Eng., 2008, 2(4): 397-409.
[12] CHENG Rong, WANG Jianlong, ZHANG Weixian. Degradation of chlorinated phenols by nanoscale zero-valent iron[J]. Front.Environ.Sci.Eng., 2008, 2(1): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed