Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (3) : 513-521
Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems
Haifa RAJHI1,Daniel PUYOL2,Mirna C. MARTÍNEZ3,Emiliano E. DÍAZ3,José L. SANZ1,*()
1. Department of Molecular Biology, University Autonoma of Madrid, Madrid 28049, Spain
2. Section of Chemical Engineering, University Autonoma of Madrid, Madrid 28049, Spain
3. MYGEN Laboratory, Cantoblanco, Madrid 28049, Spain
Download: PDF(530 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The successful operation of any type of hydrogen-producing bioreactor depends on the performance of the microorganisms present in the system. Both substrate and partial gas pressures are crucial factors affecting dark fermentation metabolic pathways. The main objective of this study was to evaluate the impact of both factors on hydrogen production using anaerobic granular sludge as inoculum and, secondly, to study the metabolic shifts of an anaerobic community subjected to low partial gas pressures. With this goal in mind, seven different wastewater (four synthetic media, two industrial wastewater, and one domestic effluent) and the effect of applying vacuum on the systems were analyzed. The application of vacuum promoted an increase in the diversity of hydrogen-producing bacteria, such as Clostridium, and promoted the dominance of acetoclastic- over hydrogenotrophic methanogens. The application of different media promoted a wide variety of metabolic pathways. Nevertheless, reduction of the hydrogen partial pressure by application of vacuum lead to further oxidation of reaction intermediates irrespective of the medium used, which resulted in higher hydrogen and methane production, and improved the COD removal. Interestingly, vacuum greatly promoted biogenic hydrogen production from a real wastewater, which opens possibilities for future application of dark fermentation systems to enhance biohydrogen yields.

Keywords dark fermentation      biohydrogen      wastewaters      vacuum     
Corresponding Authors: José L. SANZ   
Online First Date: 05 March 2015    Issue Date: 05 April 2016
 Cite this article:   
Haifa RAJHI,Daniel PUYOL,Mirna C. MARTíNEZ, et al. Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems[J]. Front. Environ. Sci. Eng., 2016, 10(3): 513-521.
E-mail this article
E-mail Alert
Articles by authors
Daniel PUYOL
Emiliano E. DíAZ
José L. SANZ
media composition (mg·L-1) (mg COD·L-1)
synthetic wastewaters reactor (MR) sucrose 2000
meat extract 1000 4000
glucose (MG) glucose 4000 4250
meat extract (ME) meat extract 3000 3850
olive oil (MO) olive oil 1 mL·L-1
real wastewaters wastewater from a brewery (Mahou SA, Spain) (IW1) 3900
industrial oil recovery plant (Madrid, Spain) (IW2) 4000
domestic wastewater treatment plant (Universidad Autónoma, Madrid, Spain) (DW) 900
macronutrients solution NH4CL 280
K2HPO4 328
MgSO4 100
NaHCO3 500
Yeast extract 500
Tab.1  Composition of the different media used in the batch experiments
Fig.1  DGGE analyses of the bacterial (a) and archaeal (b) communities established in the different media assayed. The band fragments were excised and the phylogenetic affiliation of the successfully sequenced are presented in Supporting information (SI-Table 1 and SI-Table 2)
media final pH COD removed/% main fermentative pathwaya)
MR 5.3 29.3±0.1 (36.4)b) mixed acid, heterolactic
MRV 6.8 52.5±0.2 (47.4)
MG 4.4 25±0.4 (24.3) mixed acid
MGV 3.9 75±0.1 (94.9)
ME 7 15±0.6 (36.5) propionic, Stickland reaction
MEV 7.6 32.3±0.4 (43.7)
MO 7.2 91.8±0.1 (95.5)c) β-oxidation
MOV 7.5 97.4±0.1 (97.2)c)
IW1 7.1 72.3±0.1 (74.8) propionic
IW1V 8.3 97.3±0.1 (99.9)
IW2 7 84.3±0.2 (79.6) mixed acid
IW2V 6.6 80.8±0.2 (92.8)
DW 7.2 81.9±0.1 (81.7) butyric, mixed acid
DWV 8.1 81±0.1 (92.4)
Tab.2  Final pH, COD removal efficiency, and main fermentative pathways in the different media studied
Fig.2  Fermentation end products from synthetic (MR, MG, ME and MO) and real (IW1, IW2 and DW) media operated under no vacuum (black-bars) and vacuum (gray-bars) conditions. Error bars are standard deviations from duplicate measurements.
media H2/(mL·L-1) H2/(mg COD·L-1)a) CH4/(mL·L-1) CH4/(mg COD·L-1)a) COD closing balance/%b) H2 variation/(mg COD·L-1)d) CH4 variation/(mg COD·L-1)d)
MR 449 632 425 1053 100.7 -28 241
MRV 429 604 523 1294 100.8
MG 486 685 196 486 100.3 2526 363
MGV 2280 3211 343 849 99.3
ME 0 0 1100 2724 100.3 1585 -1314
MEV 1125 1585 570 1410 99.2
MO 0 0.4 212 524 -c) 385 -251
MOV 273 385 110 273 -c)
IW1 0 0 1218 3016 98.2 3223 -2249
IW1V 2288 3223 310 767 98.7
IW2 1432 2017 439 1086 101.7 834 -248
IW2V 2024 2851 339 838 98.8
DW 0 0 338 836 98.4 690 -595
DWV 490 690 97 241 100.9
Tab.3  Methane and hydrogen produced in the different media studied and COD closing balance
1 Stronach S M, Rudd T, Lester J N. Anaerobic Digestion Processes in Industrial Wastewater Treatment. Biotechnology Monographs. Berlin: Germany Springer-Verlag, 1986
2 Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273
3 Mizuno O, Dinsdale R, Hawkes F R, Hawkes D L, Noile T. Enhancement of hydrogen production by nitrogen gas sparging. Bioresource Technology, 2000, 73(1): 59–65
4 Karlsson A, Vallin L, Ejelertsson J. Effects of temperature hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation food industry residues and manure. International Journal of Hydrogen Energy, 2008, 33(3): 953–962
5 Liang T M, Cheng S S, Wu K L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. International Journal of Hydrogen Energy, 2002, 27(11–12): 1157–1165
6 Clark I C, Zhang R H, Upadhyaya S K. The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. International Journal of Hydrogen Energy, 2012, 37(15): 11504–11513
7 Lee K S, Tseng T S, Liu Y W, Hsiao Y D. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. International Journal of Hydrogen Energy, 2012, 37(20): 15556–15562
8 Show K Y, Lee D J, Chang J S. Bioreactor and process design for biohydrogen production. Bioresource Technology, 2011, 102(18): 8524–8533 pmid: 21624834
9 Tang G L, Huang J, Sun Z J, Tang Q Q, Yan C H, Liu G Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering, 2008, 106(1): 80–87 pmid: 18691536
10 Fang H H P, Liu H, Zhang T. Characterization of a hydrogen-producing granular sludge. Biotechnology and Bioengineering, 2002, 78(1): 44–52 pmid: 11857280
11 Lee K S, Wu J F, Lo Y S, Lo Y C, Lin P J, Chang J S. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnology and Bioengineering, 2004, 87(5): 648–657 pmid: 15352063
12 Hawkes F R, Hussy I, Kyazze G, Dinsdale R, Hawkes D L. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. International Journal of Hydrogen Energy, 2007, 32(2): 172–184
13 Niu K, Zhang X, Tan W S, Zhu M L. Characterization of fermentative hydrogen production with Klebsiella pneumoniae ECU-15 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2010, 35(1): 71–80
14 Garcia Mancha N, Puyol D, Monsalvo V M, Rajhi H, Mohedano A F, Rodriguez J J. Anaerobic treatment of wastewater from used industrial oil recovery. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2012, 87(9): 1320–1328
15 Sanz J L, Rodríguez N, Amils R. The action of antibiotics on the anaerobic digestion process. Applied Microbiology and Biotechnology, 1996, 46(5–6): 587–592 pmid: 9008891
16 Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association/American Water Works Association/Water Environment Federation, 1998
17 Fang H H P, Zhang T, Liu H. Microbial diversity of a mesophilic hydrogen-producing sludge. Applied Microbiology and Biotechnology, 2002, 58(1): 112–118 pmid: 11833529
18 Lo Y C, Chen W M, Hung C H, Chen S D, Chang J S. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Research, 2008, 42(4–5): 827–842 pmid: 17889245
19 Kanso S, Dasri K, Tingthong S, Watanapokasin R Y. Diversity of cultivable hydrogen-producing bacteria isolated from agricultural soils, waste water sludge and cow dung. International Journal of Hydrogen Energy, 2011, 36(14): 8735–8742
20 Toh H, Sharma V K, Oshima K, Kondo S, Hattori M, Ward F B, Free A, Taylor T D. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell. Journal of Bacteriology, 2011, 193(22): 6411–6412 pmid: 22038970
21 Liu W T, Chan O C, Fang H H P. Characterization of microbial community in granular sludge treating brewery wastewater. Water Research, 2002, 36(7): 1767–1775 pmid: 12044076
22 Liu F, Fang B. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnology Journal, 2007, 2(3): 374–380 pmid: 17260330
23 Sun W, Sierra-Alvarez R, Milner L, Field J A. Anaerobic oxidation of arsenite linked to chlorate reduction. Applied and Environmental Microbiology, 2010, 76(20): 6804–6811 pmid: 20729322
24 Diaz E E, Stams F, Amils R, Sanz J L. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale UASB reactor treating brewery wastewaters. Applied and Environmental Microbiology, 2006, 72(7): 4942–4949 pmid: 16820491
25 Jun Y S, Yu S H, Ryu K G, Lee T J. Kinetic study of pH effects on biological hydrogen production by a mixed culture. Journal of Microbiology and Biotechnology, 2008, 18(6): 1130–1135
pmid: 18600058
26 Nicolau J M, Guwy A, Dinsdale R, Premier G, Esteves S. Production of hydrogen from sewage biosolids in a continuously fed bioreactor: Effect of hydraulic retention time and sparging. International Journal of Hydrogen Energy, 2010, 35(2): 469–478
27 Mead G C. The amino acid-fermenting clostridia. Journal of General Microbiology, 1971, 67(1): 47–56 pmid: 5124513
28 Staples C A, Williams J B, Craig G R, Roberts K M. Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere, 2001, 43(3): 377–383 pmid: 11302583
29 Antonopoulou G, Gaval N, Skiadas I V, Lyberatos G. Influence of pH fermentative hydrogen production from sweet sorghum extract. International Journal of Hydrogen Energy, 2010, 35(5): 1921–1928
30 Lay J J, Fan K S, Chang J L, Ku C H. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock sludge. International Journal of Hydrogen Energy, 2003, 28(12): 1361–1367
31 Hussy I, Hawkes F R, Dinsdale R, Hawkes D L. Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnology and Bioengineering, 2003, 84(6): 619–626 pmid: 14595774
32 Kalia V C, Purohit H J. Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology & Biotechnology, 2008, 35(5): 403–419 pmid: 18193465
33 Speece R E. Anaerobic Biotechnology (for Industrial wastewater). Nashville, Tennessee: Archae Press, 1996
Related articles from Frontiers Journals
[1] WU Yuehui,WANG Guoliang,WANG Zhen,LIU Yi,GU Ping,SUN Dezhi. Comparative study on the efficiency and environmental impact of two methods of utilizing polyvinyl chloride waste based on life cycle assessments[J]. Front.Environ.Sci.Eng., 2014, 8(3): 451-462.
[2] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[3] Hailong LIN, Weiguang LI, Changhong GUO, Sihang QU, Nanqi REN. Advances in the study of directed evolution for cellulases[J]. Front Envir Sci Eng Chin, 2011, 5(4): 519-525.
[4] Guanghong ZHENG, Zhuhui KANG, Yifan QIAN, Lei WANG, . Enhanced biohydrogen generation from organic wastewater containing N H 4 + by phototrophic bacteria Rhodobacter sphaeroides AR-3[J]. Front.Environ.Sci.Eng., 2009, 3(4): 387-392.
[5] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
[6] Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG. Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects[J]. Front.Environ.Sci.Eng., 2009, 3(4): 375-379.
Full text