Please wait a minute...

Frontiers of Environmental Science & Engineering

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (1) : 53-62
Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China
Xuemei WANG1,Weihua CHEN1,Duohong CHEN2,Zhiyong WU1,Qi Fan1,*()
1. School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
2. Guangdong Environmental Monitoring Center, Guangzhou 510275, China
Download: PDF(1478 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Understanding the trends in PM2.5 levels is essential for formulating clean air plans. This paper analyzes PM2.5 data from various published sources for the years 2000 to 2010 in the Pearl River Delta Economic Zone (PRDEZ). The long-term variation in PM2.5 mass concentration is analyzed. Results show that PM2.5, organic carbon (OC), elemental carbon (EC), and SO42 show a similar trend, increasing before 2005 and then decreasing slightly. The annual average PM2.5 concentration ranges from 49.1 μg·m−3 in 2000 to 64.3 μg·m−3 in 2010, with a peak of 84.1 μg·m−3 in 2004. None of these 11 years meets the new National Ambient Air Quality standard (NAAQS) for PM2.5 (35 μg·m−3). Overall average concentrations of OC, EC, and SO42 are 13.0, 6.5, and 11.8 μg·m−3, respectively. NO3 and NH4+ respectively have concentrations of 1.5 μg·m−3 and 2.9 μg·m−3 in 2000 and 6.4 μg·m−3 and 5.3 μg·m−3 in 2010, with a statistically significant average annual trend of+ 0.2 μg·m−3·yr−1 and+ 0.1 μg·m−3·yr−1. In certain geographic regions, OC and EC contribute most of the PM2.5, while in other regions secondary water-soluble ions are more important. In general, OC and SO42 are the dominant components of PM2.5, contributing 20.6% and 18.6%, respectively. These results provide, for the first time, a better understanding of the long-term PM2.5 characteristics and trends, on a species-by-species basis, in the PRDEZ. The results indicate that PM2.5 abatement needs to prioritize secondary species.

Keywords long-term trends      fine particulate matter      chemical components      Pearl River Delta Economic Zone (PRDEZ)     
Corresponding Authors: Qi Fan   
Online First Date: 12 June 2014    Issue Date: 03 December 2015
 Cite this article:   
Xuemei WANG,Weihua CHEN,Duohong CHEN, et al. Long-term trends of fine particulate matter and chemical composition in the Pearl River Delta Economic Zone (PRDEZ), China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 53-62.
E-mail this article
E-mail Alert
Articles by authors
Xuemei WANG
Weihua CHEN
Duohong CHEN
Zhiyong WU
Qi Fan
Fig.1  Topography of PRDEZ and location of monitoring stations
standard deviation40.
Tab.1  Summary statistics for concentration of PM2.5 and its chemical components from 2000 to 2010 in PRDEZ
Fig.2  Whisker-box plot of trends in the concentration of PM2.5 and its chemical components from 2000 to 2010 (the red dashed and dotted lines connote annual average values and linear fitting lines). In each box, the central mark is the average value, the edges of the box are 25th and 75th percentiles, the lower and upper edges which out of the box are minimum and maximum; (a) PM2.5, (b) OC, (c) EC, (d) SO42, (e) NO3, (f) NH4+
Fig.3  Time series of annual average concentration of air pollutants in PRDEZ excluding ZQ and HZ from 2000 to 2010; (a) SO2, (b)NO2, and (c) PM10
Fig.4  Whisker plot of time series of the mass ratio of NO3 to SO42 between 2000 and 2010 in PRDEZ
Fig.5  Whisker plot of time series of annual average molar ratio of NH4+ to SO42 between 2000 and 2010 in PRDEZ
Fig.6  Proportion of secondary species in PM2.5 from 2000 to 2010 in PRDEZ
Fig.7  Whisker-box plots of concentration of PM2.5 and its chemical components between 2000 and 2010 in different functional areas; (a) PM2.5, (b) OC, (c) EC, (d) SO42, (e) NO3, (f) NH4+
1 Wang  K, Dickinson  R E, Liang  S. Clear sky visibility has decreased over land globally from 1973 to 2007. Science, 2009, 323(5920): 1468–1470 pmid: 19286553
2 Appel  B R, Tokiwa  Y, Hsu  J, Kothny  E L, Hahn  E. Visibility as related to atmospheric aerosol constituents. Atmospheric Environment, 1985, 19(9): 1525–1534
3 Murray  C J L, Ezzati  M, Flaxman  A D, Lim  S, Lozano  R, Michaud  C, Naghavi  M, Salomon  J A, Shibuya  K, Vos  T, Wikler  D, Lopez  A D. GBD 2010: design, definitions, and metrics. Lancet, 2012, 380(9859): 2063–2066 pmid: 23245602
4 CCICED Special Policy Study Executive Report, Regional air quality integrated control system research. Beijing, 2012, 1–27
5 Liu  H, Wang  X M, Pang  J M, He  K B. Feasibility and difficulties of China’s new air quality standard compliance: PRD case of PM2.5 and ozone from 2010 to 2025. Atmospheric Chemistry and Physics, 2013, 13(23): 12013–12027
6 Peng  G, Wang  X, Wu  Z, Wang  Z, Yang  L, Zhong  L, Chen  D. Characteristics of particulate matter pollution in the Pearl River Delta region, China: an observational-based analysis of two monitoring sites. Journal of Environmental Monitoring, 2011, 13(7): 1927–1934 pmid: 21614393
7 Che  W W, Zheng  J Y, Wang  S S, Zhong  L J, Lau  A. Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 2011, 45(9): 1740–1751
8 Zhang  Y H, Hu  M, Zhong  L J, Wiedensohler  A, Liu  S C, Andreae  M O, Wang  W, Fan  S J. Regional Integrated Experiments on Air Quality over Pearl River Delta 2004 (PRIDE-PRD2004): Overview. Atmospheric Environment, 2008, 42(25): 6157–6173
9 Zhang  Y H, Hu  M, Shao  M, Brauers  M, Chang  C C, Hofzumahaus  A, Holland  F, Li  X, Lu  K, Kita  K, Kondo  Y, Nowak  A, Poschi  U, Rohrer  F, Zeng  L, Wiedensohler  A, Wahner  A. Amplified Trace Gas Removal in the Troposphere. Science, 2009, 324 (5935): 1702–1704
10 Hua  W, Chen  Z M, Jie  C Y, Kondo  Y, Hofzumahaus  A, Takegawa  N, Chang  C C, Lu  K D, Miyazaki  Y, Kita  K, Wang  H L, Zhang  Y H, Hu  M. Atmospheric hydrogen peroxide and organic hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and contribution to secondary aerosols. Atmospheric Chemistry and Physics, 2008, 8(22): 6755–6773
11 Nie  W, Wang  T, Wang  W X, Wei  X L, Liu  Q. Atmospheric concentrations of particulate sulfate and nitrate in Hong Kong during 1995–2008: Impact of local emission and super-regional transport. Atmospheric Environment, 2013, 76: 43–51
12 Yuan  Z B, Yadav  V, Turner  J R, Louie  P K K, Lau  A K H. Long-term trends of ambient particulate matter emission source contributions and the accountability of control strategies in Hong Kong over 1998-2008. Atmospheric Environment, 2013, 76: 21–31
13 Lu  Q, Zheng  J Y, Ye  S Q, Shen  X L, Yuan  Z B, Yin  S S. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmospheric Environment, 2013, 76: 11–20
14 Wang  X M, Wu  Z Y, Liang  G X. WRF/CHEM modeling of impacts of weather conditions modified by urban expansion on secondary organic aerosol formation over Pearl River Delta. Particuology, 2009a, 7(5): 384–391
15 Wang  X M, Chen  F, Wu  Z Y, Zhang  M G, Tewari  M, Guenther  A, Wiedinmyer  C. Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 2009b, 26(5): 962–972
16 Liu  S, Hu  M, Wu  Z J, Wehner  B, Wiedensohler  A, Cheng  Y F. Aerosol number size distribution and new particle formation at a rural/coastal site in Pearl River Delta (PRD) of China. Atmospheric Environment, 2008, 42(25): 6275–6283
17 Turpin  B J, Huntzicker  J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment, 1995, 29(23): 3527–3544
18 Pathak  R K, Louie  P K K, Chan  C K. Characteristics of aerosol acidity in Hong kong. Atmospheric Environment, 2004, 38(19): 2965–2974
19 Yao  X, Chan  C K, Fang  M, Cadle  S, Chan  T, Mulawa  P, He  K, Ye  B. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment, 2002, 36(26): 4223–4234
20 Vutukuru  S, Dabdub  D. Modeling the effects of ship emissions on coastal air quality: A case study of southern California. Atmospheric Environment, 2008, 42(16): 3751–3764
21 Zhang  L J, Zheng  J Y, Yin  S S, Peng  K, Zhong  L J. Development of non-road mobile source emission inventory for the Pearl River Delta region. Environmental Sciences, 2010, 31(4): 886–891 (in Chinese)
pmid: 20527166
22 Wang  H, Fu  L, Zhou  Y, Du  X, Ge  W. Trends in vehicular emissions in China’s mega cities from 1995 to 2005. Environ Pollution, 2010, 158(2): 394–400 pmid: 19775789
23 Ying  S S. Study on anthropogenical ammonia emission inventory in the Pearl River Delta and effects of source contribution to particulate matter formation. Dissertation for the Master Degree. Guangzhou: South China University of Technology, 2011 (in Chinese)
24 Huebert  B J, Wang  M X, Lü  W X. Atmospheric nitrate, sulphate, ammonium and calcium concentrations in China. Tellus B, 1988, 40B (4): 260–269
25 Hu  M, Wu  Z J, Slanina  J, Lin  P, Liu  S, Zeng  L M. Acidic gases, ammonia and water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China. Atmospheric Environment, 2008, 42(25): 6310–6320
26 Louie  P K K, Ho  J W K, Tsang  R C W, Blake  D R, Lau  A K H, Yu  J Z, Yuan  Z B, Wang  X M, Shao  M, Zhong  L J. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China. Atmospheric Environment, 2013, 76: 125–135
27 Wang  T, Wei  X L, Ding  A J, Poon  C N, Lam  K S, Li  Y S, Chan  L Y, Anson  M. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmospheric Chemistry and Physics, 2009, 9(16): 6217–6227
28 Jones  A M, Harrison  R M. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmospheric Environment, 2005, 39(37): 7114–7126
29 Street  D G, Bond  T C, Carmichael  G R, Fernandes  S D, Fu  Q, He  D, Klimont  Z, Nelson  S M, Tsai  N Y, Wang  M Q, Woo  J H, Yarber  K F. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research, 2003, 108(D21): 8809 1029/2002JD003093
30 Zheng  J Y, Yin  S S, Kang  D W, Che  W W, Zhong  L J. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China. Atmospheric Chemistry and Physics, 2012, 12(15): 7041–7058
31 Yang  Z P. Estimation of ammonia emission from livestock in China based on mass-flow method and regional comparison. Dissertation for the Master Degree. Beijing: Peking University, China, 2008 (in Chinese)
32 Kean  A J, Littlejohn  D, Ban-weiss  G A, Harley  R A, Kirchstetter  T W, Lunden  M M. Trends in on-road vehicle emissions of ammonia. Atmospheric Environment, 2009, 43(8): 1565–1570
33 Plessow  K, Spindler  G, Zimmermann  F, Matschullat  J. Seasonal variations and interactions of N-containing gases and particles over a coniferous forest, Saxony, Germany. Atmospheric Environment, 2005, 39(37): 6995–7007
34 Schauer  J J, Kleeman  M J, Cass  G R, Simoneit  B R T. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol, 2002, 36(6): 1169–1180 pmid: 11944666
35 Harrison  R M, Jones  A M, Lawrence  R G. Major component composition of PM10 and PM2.5 from roadside and urban background sites. Atmospheric Environment, 2004, 38(27): 4531–4538
Related articles from Frontiers Journals
[1] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
Full text