Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 412-419
Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid
Qing ZHOU, Mengqiao WANG, Aimin LI(), Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU
State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
Download: PDF(253 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

A novel hyper-crosslinked resin (MENQ) modified with an anion exchange group was prepared using divinylbenzene (DVB) and methyl acrylate (MA) as comonomers via four steps: suspension polymerization, post-crosslinking, ammonolysis and alkylation reactions. The obtained resin had both a high specific surface area (793.34 m2·g-1) and a large exchange capacity (strong base anion exchange capacity, SEC: 0.74 mmol·g-1, weak base anion exchange capacity, WEC: 0.45 mmol·g-1). XAD-4 was selected as an adsorbent for comparison to investigate the adsorption behavior of tetracycline (TC) and humic acid (HA) onto the adsorbents. The results revealed that MENQ could effectively remove both TC and HA. The adsorption capacity of XAD-4 for TC was similar to that of MENQ, but XAD-4 exhibited poor performance for the adsorption of HA. The adsorption isotherms of TC and HA were well-fitted with the Freundlich model, which indicated the existence of heterogeneous adsorption through cation-π bonding and π–π interactions. The optimal solution condition for the adsorption of TC was at a pH of 5–6, whereas the adsorption of HA was enhanced with increasing pH of the solution.

Keywords high surface area      adsorption      anion exchange      micropollutant      dissolved organic matters     
Corresponding Authors: LI Aimin,   
Issue Date: 01 June 2013
 Cite this article:   
Qing ZHOU,Mengqiao WANG,Aimin LI, et al. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid[J]. Front Envir Sci Eng, 2013, 7(3): 412-419.
E-mail this article
E-mail Alert
Articles by authors
Mengqiao WANG
Aimin LI
Chendong SHUANG
Mancheng ZHANG
Xiaohan LIU
Liuyan WU
Fig.1  Steps for preparing the bifunctional resin (MENQ)
Fig.2  FTIR spectra of the bifunctional resin: (a) poly(DVB-co-MA); (b) post-crosslinked resin; (c) ammonolysed resin and (d) alkylated resin (MENQ)
Fig.3  SEM image of MENQ
resinmatrixWEC /(mmol·g-1)SEC /(mmol·g-1)specific surface area /(m2·g-1)average pore diameter /nm
MENQDVB-MA (7:3)0.450.74793.345.42
Tab.1  Physicochemical properties of the employed resins
Fig.4  Adsorption kinetics of (a) TC and (b) HA onto MENQ and XAD-4 at 288 K, and modeling of the adsorption onto the adsorbates (initial concentrations= 100 mg·L)
resintarget compoundfirst-order kinetic modelsecond-order kinetic model
Tab.2  Kinetic parameters for the adsorption of TC and HA onto the investigated resins
Fig.5  Effects of the pH of the solution on the adsorption of TC and HA onto both adsorbents
Fig.6  Adsorption isotherms of (a) TC on MENQ; (b) TC on XAD-4; (c) HA on MENQ at 288K, 303K, and 318K
adsorbenttarget compoundT/KLangmuir modelFreundlich model
KL /(10-3, L·mg-1)Qm /(mg·g-1)R2KF /(mg·g-1)n1/nR2
Tab.3  Constants for the Langmuir and Freundlich equations at 288 K, 303 K, and 318 K
Fig.7  Effect of HA on the adsorption of TC onto MENQ
Fig.8  Effect of regeneration cycles on the adsorption capacity of MENQ for HA and TC (initial concentrations= 100 mg·L)
1 Deng S B, Yu Q, Huang J, Yu G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry. Water Research , 2010, 44(18): 5188-5195
doi: 10.1016/j.watres.2010.06.038 pmid:20605036
2 Bolto B, Dixon D, Eldridge R, King S, Linge K. Removal of natural organic matter by ion exchange. Water Research , 2002, 36(20): 5057-5065
doi: 10.1016/S0043-1354(02)00231-2 pmid:12448554
3 Humbert H, Gallard H, Suty H, Croué J P. Performance of selected anion exchange resins for the treatment of a high DOC content surface water. Water Research , 2005, 39(9): 1699-1708
doi: 10.1016/j.watres.2005.02.008 pmid:15899268
4 Shuang C D, Pan F, Zhou Q, Li A M, Li P H, Yang W. Magnetic polyacrylic anion exchange resin: preparation, characterization and adsorption behavior of humic acid. Industrial & Engineering Chemistry Research , 2012, 51(11): 4380-4387
doi: 10.1021/ie201488g
5 Wang J N, Li A M, Zhou Y, Xu L. Study on the influence of humic acid of different molecular weight on basic ion exchange resin’s adsorption capacity. Chinese Chemical Letters , 2009, 20(12): 1478-1482
doi: 10.1016/j.cclet.2009.07.013
6 Beaber J W, Hochhut B, Waldor M K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature , 2004, 427(6969): 72-74
7 Humbert H, Gallard H, Suty H, Croué J P. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Research , 2008, 42(6-7): 1635-1643
doi: 10.1016/j.watres.2007.10.012 pmid:18006038
8 Senevirathna S T M L D, Tanaka S, Fujii S, Kunacheva C, Harada H, Ariyadasa B H A K T, Shivakoti B R. Adsorption of perfluorooctane sulfonate (n-PFOS) onto non ion-exchange polymers and granular activated carbon: Batch and column test. Desalination , 2010, 260(1-3): 29-33
doi: 10.1016/j.desal.2010.05.005
9 Yang W B, Lu Y P, Zheng F F, Xue X X, Li N, Liu D M. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chemical Engineering Journal , 2012, 179(1): 112-118
doi: 10.1016/j.cej.2011.10.068
10 Yang W B, Zheng F F, Lu Y P, Xue X X, Li N. Adsorption interaction of tetracyclines with porous synthetic resins. Industrial & Engineering Chemistry Research , 2011, 50(24): 13892-13898
doi: 10.1021/ie202166g
11 Zhou Q, Li Z Q, Shuang C D, Li A M, Zhang M C, Wang M Q. Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chemical Engineering Journal , 2012, 210(11): 350-356
doi: 10.1016/j.cej.2012.08.081 pmid:22539917
12 Wang J N, Li A M, Zhou Y D, Zhang Q X. Adsorption of humic acid on weakly basic resin with macropores. Chemical Journal of Chinese Universties , 2009, 30(1): 181-184 (in China)
13 Wang J N, Li A M, Xu L, Zhou Y. Adsorption of tannic and gallic acids on a new polymeric adsorbent and the effect of Cu(II) on their removal. Journal of Hazardous Materials , 2009, 169(1-3): 794-800
doi: 10.1016/j.jhazmat.2009.04.013
14 Shuang C D, Li P H, Li A M, Zhou Q, Zhang M, Zhou Y. Quaternized magnetic microspheres for the efficient removal of reactive dyes. Water Research , 2012, 46(14): 4417-4426
doi: 10.1016/j.watres.2012.05.052 pmid:22726352
15 Zhou Q, Zhang M C, Shuang C D, Li A M, Li A M. Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment. Chinese Chemical Letters , 2012, 23(6): 745-748
doi: 10.1016/j.cclet.2012.01.039
16 Dwivedi C P, Sahu J N, Mohanty C R, Mohan B R, Meikap B C. Column performance of granular activated carbon packed bed for Pb(II) removal. Journal of Hazardous Materials , 2008, 156(1-3): 596-603
doi: 10.1016/j.jhazmat.2007.12.097 pmid:18249492
17 Xu L C, Dai J D, Pan J M, Li X, Huo P, Yan Y, Zou X, Zhang R. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chemical Engineering Journal , 2011, 174(1): 221-230
doi: 10.1016/j.cej.2011.09.003
18 Ji L L, Liu F L, Xu Z Y, Zheng S R, Zhu D Q. Adsorption of pharmaceutical antibiotics on template-synthesized ordered micro- and mesoporous carbons. Environmental Science & Technology , 2010, 44(8): 3116-3122
doi: 10.1021/es903716s pmid:20201519
19 Wang J N, Zhou Y, Li A M, Xu L. Adsorption of humic acid by bi-functional resin JN-10 and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials , 2010, 176(1-3): 1018-1026
doi: 10.1016/j.jhazmat.2009.11.142 pmid:20074851
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[3] Shanshan Ding, Wen Huang, Shaogui Yang, Danjun Mao, Julong Yuan, Yuxuan Dai, Jijie Kong, Cheng Sun, Huan He, Shiyin Li, Limin Zhang. Degradation of Azo dye direct black BN based on adsorption and microwave-induced catalytic reaction[J]. Front. Environ. Sci. Eng., 2018, 12(1): 5-.
[4] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[5] Shraddha Khamparia,Dipika Kaur Jaspal. Adsorption in combination with ozonation for the treatment of textile waste water: a critical review[J]. Front. Environ. Sci. Eng., 2017, 11(1): 8-.
[6] Liuyan WU,Lijuan JIA,Xiaohan LIU,Chao LONG. The prediction of adsorption isotherms of ester vapors on hypercrosslinked polymeric adsorbent[J]. Front. Environ. Sci. Eng., 2016, 10(3): 482-490.
[7] Jiawei JU,Ruiping LIU,Zan HE,Huijuan LIU,Xiwang ZHANG,Jiuhui QU. Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion[J]. Front. Environ. Sci. Eng., 2016, 10(3): 467-476.
[8] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[9] Md. Lutfor RAHMAN,Shaheen M. SARKAR,Mashitah Mohd YUSOFF. Efficient removal of heavy metals from electroplating wastewater using polymer ligands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 352-361.
[10] Lijing DONG,Zhiliang ZHU,Yanling QIU,Jianfu ZHAO. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite[J]. Front. Environ. Sci. Eng., 2016, 10(1): 28-36.
[11] Juan QIU,Ping NING,Xueqian WANG,Kai LI,Wei LIU,Wei CHEN,Langlang WANG. Removing carbonyl sulfide with metal-modified activated carbon[J]. Front. Environ. Sci. Eng., 2016, 10(1): 11-18.
[12] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[13] Bhanukiran SUNKARA,Yang SU,Jingjing ZHAN,Jibao HE,Gary L. MCPHERSON,Vijay T. JOHN. Iron-carbon composite microspheres prepared through a facile aerosol-based process for the simultaneous adsorption and reduction of chlorinated hydrocarbons[J]. Front. Environ. Sci. Eng., 2015, 9(5): 939-947.
[14] Rongbing FU,Na MU,Xiaopin GUO,Zhen XU,Dongsu BI. Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron[J]. Front. Environ. Sci. Eng., 2015, 9(5): 867-878.
[15] Shubo DENG,Yue BEI,Xinyu LU,Ziwen DU,Bin WANG,Yujue WANG,Jun HUANG,Gang YU. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Front. Environ. Sci. Eng., 2015, 9(5): 784-792.
Full text