Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng    2013, Vol. 7 Issue (3) : 464-473
Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system
Yongfu GUO1,2, Naiqiang YAN1(), Ping LIU1, Shijian YANG1, Juan WANG1, Zan QU1
1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
Download: PDF(404 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

In this work, a catalytic membrane using Mn/Mo/Ru/Al2O3 as the catalyst was employed to remove elemental mercury (Hg0) from flue gas at low temperature. Compared with traditional catalytic oxidation (TCO) mode, Mn/Al2O3 membrane catalytic system had much higher removal efficiency of Hg0. After the incorporation of Mo and Ru, the production of Cl2 from the Deacon reaction and the retainability for oxidants over Mn/Al2O3 membrane were greatly enhanced. As a result, the oxidization of Hg0 over Mn/Al2O3 membrane was obviously promoted due to incorporation of Mo and Ru. In the presence of 8 ppmv HCl, the removal efficiency of Hg0 by Mn/Mo/Ru/Al2O3 membrane reached 95% at 423 K. The influence of NO and SO2 on Hg0 removal were insignificant even if 200 ppmv NO and 1000 ppmv SO2 were used. Moreover, compared with the TCO mode, the Mn/Mo/Ru/Al2O3 membrane catalytic system could remarkably reduce the demanded amount of oxidants for Hg0 removal. Therefore, the Mn/Mo/Ru/Al2O3 membrane catalytic system may be a promising technology for the control of Hg0 emission.

Keywords flue gas      elemental mercury      membrane      catalysis      transition metal     
Corresponding Authors: YAN Naiqiang,   
Issue Date: 01 June 2013
 Cite this article:   
Yongfu GUO,Naiqiang YAN,Ping LIU, et al. Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system[J]. Front Envir Sci Eng, 2013, 7(3): 464-473.
E-mail this article
E-mail Alert
Articles by authors
Yongfu GUO
Naiqiang YAN
Ping LIU
Shijian YANG
Zan QU
Fig.1  Experimental scheme of the MCs
Fig.2  X-ray diffraction patterns (a) Mn catalyst and (b) Mn-Mo-Ru catalyst
catalystsSBET/(m2·g-1)surface atom concentrations obtained by AAS or EDX/%pore diameter/μm
virgin tube4.1-46.2----4.7
Tab.1  Composition and properties of different catalysts
Fig.3  Adsorption curves of Hg with catalysts doped with various transition metals, at 423 K, [HCl] = [SO] = 0, was about 24 ppbv, air was used as carrier gas except Mn/N with N as carrier gas
Fig.4  Removal efficiencies of Hg with the catalysts doped with various transition metals, at 423 K, [HCl] = 8 ppmv, [SO] = 0, was about 23.5 ppbv, and air was used as carrier gas
Fig.5  Influence of Cl on Hg removal with Mn-Mo-Ru catalyst, at 423 K, air as carrier gas, was about 23 ppbv, [Cl] = 0.5 ppmv, [SO] = [HCl] = 0
Fig.6  Influence on Hg removal with intermittent injection of HCl in the MCs and the TCO mode, [HCl] = 8 ppmv, was about 23 ppbv, air as carrier gas, [SO] = 0, Mn-Mo-Ru as catalyst, = 423 K
Fig.7  Influence of SO on the removal for Hg, was about 23 ppbv, air as carrier gas, = 423 K
Fig.8  Influence on Hg removal with various concentration of SO (a, [HCl] = [NO] = 0; b, [HCl] = 0, [NO] = 100 ppmv; c, [HCl] = 8 ppmv, [NO] = 0; d, [HCl] = 8 ppmv, [NO] = 100 ppmv; and e, [HCl] = 8 ppmv, [NO] = 200 ppmv. Air was used as carrier gas, Mn-Mo-Ru as catalyst, = 423 K, was about 23.2 ppbv)
concentration of SO2removal efficiencies of Hg0/%
[NO] = 0[NO] = 100 ppmv[NO] = 200 ppmv
Tab.2  Influence of NO on sulfur-tolerance with Mn-Mo-Ru catalyst and 8 ppmv HCl
Fig.9  TPR profiles and the peak results (a) Mn catalyst, (b) Mn-Mo-Ru catalyst (dash is fitted results), symbol denotes the area of corresponding reduction peak
catalystsmaximum reduction temperature/Kratio of Mn4+/Mn3+ of TPR dataratio of Mn4+/Mn3+ of XPS data
Tab.3  Results of H2-TPR profiles of Mn and Mn-Mo-Ru catalysts
Fig.10  XPS spectroscopes of Mn 2p, Mo 3d, Ru 3d, Hg 4f and S 2P (dash is fitted results) (a) Mn 2p, N as carrier gas; (b) Mn 2p, air as carrier gas; (c) S 2p, air as carrier gas; (d) Mo 3d, air as carrier gas; (e) Ru 3d, air as carrier gas; (f) Hg 4f, air as carrier gas. Mn-Mo-Ru catalyst was used, was about 15-20 ppbv, [HCl] = 8 ppmv, [SO] = 1000 ppmv
Fig.11  Mercury speciation results of three replicate tests, Mn-Mo-Ru was used as catalyst, was about 23 ppbv, [HCl] = 8 ppmv, [SO] = 0, = 423 K
1 Liu Y, Kelly D J A, Yang H Q, Lin C C H, Kuznicki S M, Xu Z G. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant. Environmental Science & Technology , 2008, 42(16): 6205–6210
doi: 10.1021/es800532b pmid:18767688
2 Li Y, Murphy P D, Wu C Y, Powers K W, Bonzongo J C J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environmental Science & Technology , 2008, 42(14): 5304–5309
doi: 10.1021/es8000272 pmid:18754385
3 Guo Y F, Yan N Q, Yang S J, Qu Z, Wu Z B, Liu Y, Liu P, Jia J P. Conversion of elemental mercury with a novel membrane delivery catalytic oxidation system (MDCOs). Environmental Science & Technology , 2011, 45(2): 706–711
doi: 10.1021/es1020586 pmid:21158439
4 Niksa S, Fujiwara N. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations. Journal of the Air & Waste Management Association , 2005, 55(7): 970–977
5 Kim M H, Ham S W, Lee J B. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process. Applied Catalysis B: Environmental , 2010, 99(1-2): 272–278
doi: 10.1016/j.apcatb.2010.06.032
6 Lee W J, Bae G N. Removal of elemental mercury (Hg(O)) by nanosized V2O5/TiO2 catalysts. Environmental Science & Technology , 2009, 43(5): 1522–1527
doi: 10.1021/es802456y PMID:19350929
7 He S, Zhou J, Zhu Y, Luo Z, Ni M, Cen K. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy & Fuels , 2009, 23(1): 253–259
doi: 10.1021/ef800730f
8 Kamata H, Ueno S, Sato N, Naito T. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Processing Technology , 2009, 90(7-8): 947–951
doi: 10.1016/j.fuproc.2009.04.010
9 Straube S, Hahn T, Koeser H. Adsorption and oxidation of mercury in tail-end SCR-DeNOx plants—bench scale investigations and speciation experiments. Applied Catalysis B: Environmental , 2008, 79(3): 286–295
doi: 10.1016/j.apcatb.2007.10.031
10 Liu F D, He H, Ding Y, Zhang C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental , 2009, 93(1-2): 194–204
doi: 10.1016/j.apcatb.2009.09.029
11 Jing G H, Li J H, Yang D, Hao J M. Promotional mechanism of tungstation on selective catalytic reduction of NOx by methane over In/WO3/ZrO2. Applied Catalysis B: Environmental , 2009, 91(1-2): 123–134
doi: 10.1016/j.apcatb.2009.05.015
12 Presto A A, Granite E J. Noble metal catalysts for mercury oxidation in utility flue gas gold, palladium and platinum formulations. Platinum Metals Review , 2008, 52(3): 144–154
doi: 10.1595/147106708X319256
13 Poulston S, Granite E J, Pennline H W, Myers C R, Stanko D P, Hamilton H, Rowsell L, Smith A W J, Ilkenhans T, Chu W. Metal sorbents for high temperature mercury capture from fuel gas. Fuel , 2007, 86(14): 2201–2203
doi: 10.1016/j.fuel.2007.05.015
14 Li J F, Yan N Q, Qu Z, Qiao S H, Yang S J, Guo Y F, Liu P, Jia J P. Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. Environmental Science & Technology , 2010, 44(1): 426–431
doi: 10.1021/es9021206 pmid:19950921
15 Qiao S H, Chen J, Li J F, Qu Z, Liu P, Yan N Q, Jia J P. Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Industrial & Engineering Chemistry Research , 2009, 48(7): 3317–3322
doi: 10.1021/ie801478w
16 Zhao Y C, Zhang J Y, Liu J, Diaz-Somoano M, Martinez-Tarazona M R, Zheng C G. Study on mechanism of mercury oxidation by fly ash from coal combustion. Chinese Science Bulletin , 2010, 55(2): 163–167
doi: 10.1007/s11434-009-0567-7
17 Li J H, Liang X, Xu S C, Hao J M. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature. Applied Catalysis B: Environmental , 2009, 90(1-2): 307–312
doi: 10.1016/j.apcatb.2009.03.027
18 Galbreath K C, Zygarlicke C J. Mercury transformations in coal combustion flue gas. Fuel Processing Technology , 2000, 65-66: 289–310
doi: 10.1016/S0378-3820(99)00102-2
19 Pan H Y, Minet R G, Benson S W, Tsotsis T T. Process for converting hydrogen chloride to chlorine. Industrial & Engineering Chemistry Research , 1994, 33(12): 2996–3003
doi: 10.1021/ie00036a014
20 Li Y, Murphy P, Wu C Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology , 2008, 89(6): 567–573
doi: 10.1016/j.fuproc.2007.10.009
21 Cao Y, Chen B, Wu J, Cui H, Smith J, Chen C K, Chu P, Pan W P. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal. Energy & Fuels , 2007, 21(1): 145–156
doi: 10.1021/ef0602426
22 Lindbauer R L, Wurst F, Prey T. Combustion dioxin suppression in municipal solid-waste incineration with sulfur additives. Chemosphere , 1992, 25(7-10): 1409–1414
doi: 10.1016/0045-6535(92)90162-K
23 Norton G A, Yang H Q, Brown R C, Laudal D L, Dunham G E, Erjavec J. Heterogeneous oxidation of mercury in simulated post combustion conditions. Fuel , 2003, 82(2): 107–116
doi: 10.1016/S0016-2361(02)00254-5
24 Zhao Y X, Mann M D, Olson E S, Pavlish J H, Dunham G E. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. Journal of the Air & Waste Management Association (1995) , 2006, 56(5): 628–635
25 Krishnakumar B, Helble J J. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms. Environmental Science & Technology , 2007, 41(22): 7870–7875
doi: 10.1021/es071087s pmid:18075101
26 Niksa S, Helble J J, Fujiwara N. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environmental Science & Technology , 2001, 35(18): 3701–3706
doi: 10.1021/es010728v pmid:11783648
27 Agarwal H, Stenger H G, Wu S, Fan Z. Effects of H2O, SO2, and NO on homogeneous Hg oxidation by Cl2. Energy & Fuels , 2006, 20(3): 1068–1075
doi: 10.1021/ef050388p
28 Hall B, Schager P, Lindqvist O. Chemical reactions of mercury on combustion flue gases. Water, Air, and Soil Pollution , 1991, 56(1): 3–14
doi: 10.1007/BF00342256
29 Hrdlicka J A, Seames W S, Mann M D, Muggli D S, Horabik C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters. Environmental Science & Technology , 2008, 42(17): 6677–6682
doi: 10.1021/es8001844 pmid:18800548
30 álvarez-Galván M C, de la Pe?a O’Shea V A, Fierro J L G, Arias P L. Alumina-supported manganese- and manganese-palladium oxide catalysts for VOCs combustion. Catalysis Communications , 2003, 4(5): 223–228
doi: 10.1016/S1566-7367(03)00037-2
31 Ji L, Sreekanth P M, Smirniotis P G, Thiel S W, Pinto N G. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy & Fuels , 2008, 22(4): 2299–2306
doi: 10.1021/ef700533q
32 Liu H, Xu Y. H2-TPR study on Mo/HZSM-5 catalyst for CH4 dehydroaromatization. Chinese Journal of Catalysis , 2006, 27(4): 319–323
doi: 10.1016/S1872-2067(06)60020-X
33 Mazzieri V, Coloma-Pascual F, Arcoya A, L'Argentière P, Fígoli N S. XPS, FTIR and TPR characterization of Ru/Al2O3 catalysts. Applied Surface Science , 2003, 210(3-4): 222–230
doi: 10.1016/S0169-4332(03)00146-6
34 Bianchi C L. TPR and XPS investigations of Co/Al2O3 catalysts promoted with Ru, Ir and Pt. Catalysis Letters , 2001, 76(3-4): 155–159
doi: 10.1023/A:1012289211065
35 NIST XPS Database. August, 2007
36 López N, Gómez-Segura J, Marín R P, Pérez-Ramírez J. Mechanism of HCl oxidation (Deacon process) over RuO2. Journal of Catalysis , 2008, 255(1): 29–39
doi: 10.1016/j.jcat.2008.01.020
Related articles from Frontiers Journals
[1] Guangrong Sun, Chuanyi Zhang, Wei Li, Limei Yuan, Shilong He, Liping Wang. Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR[J]. Front. Environ. Sci. Eng., 2019, 13(1): 1-.
[2] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[3] Xiao Quan, Kai Huang, Mei Li, Meichao Lan, Baoan Li. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor[J]. Front. Environ. Sci. Eng., 2018, 12(6): 5-.
[4] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[5] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[6] Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1-.
[7] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[8] Shuai Wang, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times[J]. Front. Environ. Sci. Eng., 2018, 12(2): 3-.
[9] Ling Li, Yu He, Xia Lu. New insights into mercury removal mechanism on CeO2-based catalysts: A first-principles study[J]. Front. Environ. Sci. Eng., 2018, 12(2): 11-.
[10] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[11] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[12] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[13] Xiaorong Meng, Conghui Wang, Pan Zhou, Xiaoqiang Xin, Lei Wang. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium[J]. Front. Environ. Sci. Eng., 2017, 11(6): 9-.
[14] Yang-ying Zhao, Fan-xin Kong, Zhi Wang, Hong-wei Yang, Xiao-mao Wang, Yuefeng F. Xie, T. David Waite. Role of membrane and compound properties in affecting the rejection of pharmaceuticals by different RO/NF membranes[J]. Front. Environ. Sci. Eng., 2017, 11(6): 20-.
[15] Xiaorong Meng, Shanshan Huo, Lei Wang, Xudong Wang, Yongtao Lv, Weiting Tang, Rui Miao, Danxi Huang. Effect of electrokinetic property of charged polyether sulfone membrane on bovine serum albumin fouling behavior[J]. Front. Environ. Sci. Eng., 2017, 11(2): 2-.
Full text