Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng    2012, Vol. 6 Issue (1) : 17-25     https://doi.org/10.1007/s11783-011-0371-x
RESEARCH ARTICLE |
Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions
Yuchi LEE1, Shanglien LO1(), Jeff KUO2, Chinghong HSIEH1
1. Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, Taiwan University, Taipei 10672, China; 2. Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92834-6870, USA
Download: PDF(225 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate (S2O82-) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH= 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01–0.15 mol·L-1), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L-1 at 90°C and 0.06 mol·L-1 at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.

Keywords microwave      perfluorooctanoic acid      pH      persulfate      chloride ions      perfluorocarboxylic acids     
Corresponding Authors: LO Shanglien,Email:sllo@ntu.edu.tw   
Issue Date: 01 February 2012
 Cite this article:   
Yuchi LEE,Shanglien LO,Jeff KUO, et al. Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions[J]. Front Envir Sci Eng, 2012, 6(1): 17-25.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-011-0371-x
http://journal.hep.com.cn/fese/EN/Y2012/V6/I1/17
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuchi LEE
Shanglien LO
Jeff KUO
Chinghong HSIEH
Fig.1  Comparison of PFOA decomposition (254 μmol·L) at different temperatures with or without persulfate (PS, 10 mmol·L), and with or without MW
Fig.2  Comparison of the formation of during decomposition of PFOA (254 μmol·L) with 10 mmol·L and microwave at 60°C, 90°C, and 130°C
Fig.3  Comparison of PFOA decomposition with 10 mmol·L PS at 90°C under different pHs
Fig.4  Comparison of formation of during decomposition of PFOA with 10 mmol·L PS and MW at different pHs
Fig.5  Comparison of solution pH value on the defluorination ratios of PFOA (254 μmol·L) with 10 mmol·L and microwave at 90°C
Entryinitial pHrate constant/h-1 a)decomposition efficiency / final pH
0.5h b)1h b)2h b)4h b)
1 c)3.76— / 2.72— / 2.38— / 2.31— / 2.30
210.60.110.0%/ 10.23.91%/ 2.8419.8%/ 2.5224.9%/ 2.41
38.80.5320.5%/ 2.5445.3%/ 2.2764.9%/ 2.2174.2%/ 2.19
43.60.7529.8%/ 2.1751.1%/ 2.1478.5%/ 2.1181.4%/ 2.08
52.30.8238.2%/ 2.0462.1%/ 1.9981.8%/ 1.9485.7%/ 1.88
Tab.1  Calculated pseudo-first-order constants, decompsition ratio of PFOA and solution pH under MW irradiation at 90°C at different initial pH values. Initial pH value in the original 254 μmol·L PFOA solution (without pH adjustment) was around 3.6, pH adjustments were made by NaOH or HSO
Fig.6  Comparison of various ZVI applying on PFOA (240.7 μmol·L) decomposition under MW irradiation at 90°C
Fig.7  Comparison of chloride ions (0-0.15 mol·L) on persulfate oxidation constants of PFOA at 60°C and 90°C
Fig.8  Comparison of the PFOA concentration, defluorination ratio, and mass balance of F element during decomposition of PFOA (254 μmol·L) with 10 mmol·L PS and MW at 90°C under phosphate-buffered pH 2.5
Fig.9  Concentrations of intermediates formed at various reaction times by degradation of PFOA (254 μmol·L) with 10 mmol·L PS at 90°C
1 Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology , 2006, 40(1): 32-44
doi: 10.1021/es0512475 pmid:16433330
2 Renner R. Growing concern over perfluorinated chemicals. Environmental Science & Technology , 2001, 35(7): 154A-160A
doi: 10.1021/es012317k pmid:11348100
3 So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology , 2004, 38(15): 4056-4063
doi: 10.1021/es049441z pmid:15352441
4 Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere , 2008, 72(10): 1409-1412
doi: 10.1016/j.chemosphere.2008.05.034 pmid:18602659
5 Kannan K, Perrotta E, Thomas N J. Association between perfluorinated compounds and pathological conditions in southern sea otters. Environmental Science & Technology , 2006, 40(16): 4943-4948
doi: 10.1021/es060932o pmid:16955890
6 Tao L, Ma J, Kunisue T, Libelo E L, Tanabe S, Kannan K. Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental Science & Technology , 2008, 42(22): 8597-8602
doi: 10.1021/es801875v pmid:19068854
7 Brooke D, Footitt A, Nwaogu T A. Environmental Risk Evaluation Report: Perfluorooctane Sulfonate (PFOS). Building Research Establishment Ltd., Risk and Policy Analysts Ltd., and UK Environment Agency’s Science Group ; 2004 (Available at URL: http://www.environmentagency.gov.uk/commondata/105385/pfos_rer_sept04_864557.pdf)
8 Key B D, Howell R D, Criddle C S. Fluorinated organics in the biosphere. Environmental Science & Technology , 1997, 31(9): 2445-2454
doi: 10.1021/es961007c
9 Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of peerfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environmental Science & Technology , 2008, 42(21): 8057-8063
doi: 10.1021/es8013858 pmid:19031902
10 Wang Y, Zhang P, Pan G, Chen H. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. Journal of Hazardous Materials , 2008, 160(1): 181-186
doi: 10.1016/j.jhazmat.2008.02.105 pmid:18400382
11 Lee Y C, Lo S L, Chiueh P T, Chang D G. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research , 2009, 43(11): 2811-2816
doi: 10.1016/j.watres.2009.03.052 pmid:19443010
12 Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Research , 2010, 44(3): 886-892
doi: 10.1016/j.watres.2009.09.055 pmid:19879622
13 Yang S, Wang P, Yang X, Wei G, Zhang W, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Sciences (China) , 2009, 21(9): 1175-1180
doi: 10.1016/S1001-0742(08)62399-2 pmid:19999962
14 Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere , 2002, 49(4): 413-420
doi: 10.1016/S0045-6535(02)00330-2 pmid:12365838
15 House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews , 1962, 62(3): 185-203
doi: 10.1021/cr60217a001
16 Norman R O C, Storey P M, West P R. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. Journal of the Chemical Society, Section B: Physical Organic , 1970, 1087-1095
doi: 10.1039/j29700001087
17 Peyton G R. The free-radical chemistry of persulfate based total organic carbon analyzers. Marine Chemistry , 1993, 41(1-3): 91-103
doi: 10.1016/0304-4203(93)90108-Z
18 Yu X Y, Bao Z C, Baker J R. Free radical reaction involving Cl·, Cl2· and SO4-· in the 248 nm photolysis of aqueous solutions containing SO42- and Cl-. Journal of Physical Chemistry A , 2004, 108(2): 295-308
doi: 10.1021/jp036211i
19 Goulden P D, Anthony D H J. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry , 1978, 50(7): 953-958
doi: 10.1021/ac50029a032
20 Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology , 2004, 38(22): 6118-6124
doi: 10.1021/es049719n pmid:15573615
21 Furukawa Y, Kim J W, Watkins J, Wilkin R T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology , 2002, 36(24): 5469-5475
doi: 10.1021/es025533h pmid:12521177
22 Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology , 2006, 40(3): 1049-1054
doi: 10.1021/es0517419 pmid:16509356
23 Matheson L J, Tratnydk P G. Reductive dehalogenation of chlorinated methanes by Iron Metal. Environmental Science & Technology , 1994, 28(12): 2045-2053
doi: 10.1021/es00061a012
24 Anipsitakis G P, Tufano T P, Dionysiou D D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Research , 2008, 42(12): 2899-2910
doi: 10.1016/j.watres.2008.03.002 pmid:18384835
25 McKenna J H, Doering P H. Measurement of dissolved organic carbon by wet chemical oxidention with persulfate: Influence of chloride concentration and reagent volume. Marine Chemistry , 1995, 48(2): 109-114
doi: 10.1016/0304-4203(94)00049-J
26 Liang C, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C. The Science of the Total Environment , 2006, 370(2-3): 271-277
doi: 10.1016/j.scitotenv.2006.08.028 pmid:17014891
27 Buxton G V, Bydder M, Salmon G. The reactivity of chlorine atoms in aqueous solution. PartII The equilibrium SO4-·+Cl-Cl·+SO42- Physical Chemistry Chemical Physics , 1999, 1(2): 269-273
doi: 10.1039/a807808d
28 Nohara K, Toma M, Kutsuna S, Takeuchi K, Ibusuki T. Cl atom-initiated oxidation of three homologous methyl perfluoroalkyl ethers. Environmental Science & Technology , 2001, 35(1): 114-120
doi: 10.1021/es000895f pmid:11351993
29 de Bruyn W J, Shorter J A, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. Uptake of haloacetyl and carbonyl halides by water surfaces. Environmental Science & Technology , 1995, 29(5): 1179-1185
doi: 10.1021/es00005a007
30 Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Treatment technologies for aqueous perfuorooctanesulfonate (PFOS) and perfuorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 129-151
doi: 10.1007/s11783-009-0022-7
Related articles from Frontiers Journals
[1] Zhen Li, Zhaofu Qiu, Ji Yang, Benteng Ma, Shuguang Lu, Chuanhui Qin. Investigation of phosphate adsorption from an aqueous solution using spent fluid catalytic cracking catalyst containing lanthanum[J]. Front. Environ. Sci. Eng., 2018, 12(6): 15-.
[2] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[3] Xuejiao Wang, Xiang Feng, Jing Shang. Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photocatalyst or supporting electrolyte[J]. Front. Environ. Sci. Eng., 2018, 12(6): 11-.
[4] Ling Sun, Hui Wang, Yuanqing Kan, Shiliang Wang. Distribution of phytoplankton community and its influence factors in an urban river network, East China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 13-.
[5] Xiaotu Liu, Heidelore Fiedler, Wenwen Gong, Bin Wang, Gang Yu. Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview[J]. Front. Environ. Sci. Eng., 2018, 12(6): 1-.
[6] Quanhui Ye, Chengyue Liang, Chongyang Wang, Yun Wang, Hui Wang. Characterization of a phenanthrene-degrading methanogenic community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 4-.
[7] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[8] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[9] Yaobin Lu, Songli He, Dantong Wang, Siyuan Luo, Aiping Liu, Haiping Luo, Guangli Liu, Renduo Zhang. A pulsed switching peroxi-coagulation process to control hydroxyl radical production and to enhance 2,4-Dichlorophenoxyacetic acid degradation[J]. Front. Environ. Sci. Eng., 2018, 12(5): 9-.
[10] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[11] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[12] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[13] Zhichao Wu, Chang Zhang, Kaiming Peng, Qiaoying Wang, Zhiwei Wang. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation[J]. Front. Environ. Sci. Eng., 2018, 12(3): 15-.
[14] Jianzhang Sun, Baoyu Gao, Yuanxia Luo, Moxi Xue, Xing Xu, Qinyan Yue, Yan Wang. Application and mechanism of polysaccharide extracted from Enteromorpha to remove nano-ZnO and humic acid in coagulation process[J]. Front. Environ. Sci. Eng., 2018, 12(3): 11-.
[15] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed