Please wait a minute...

Frontiers of Environmental Science & Engineering

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (2) : 129-151     https://doi.org/10.1007/s11783-009-0022-7
FEATURE ARTICLE |
Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)
Chad D. VECITIS1, Hyunwoong PARK1, Jie CHENG1, Brian T. MADER2, Michael R. HOFFMANN1(email.png)
1. 1. W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, USA; 2. 2. 3M Environmental Laboratory, 3M Center, Building 260-05-N-17, Maplewood, MN 55144-1000, USA
Download: PDF(391 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fluorochemicals (FCs) are oxidatively recalcitrant, environmentally persistent, and resistant to most conventional treatment technologies. FCs have unique physiochemical properties derived from fluorine which is the most electronegative element. Perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) have been detected globally in the hydrosphere, atmosphere and biosphere. Reducing treatment technologies such as reverses osmosis, nano-filtration and activated carbon can? remove ?FCs ?from ?water. ?However,? incineration ?of the concentrated waste is required for complete FC destruction. Recently, a number of alternative technologies for FC decomposition have been reported. The FC degradation technologies span a wide range of chemical processes including direct photolysis, photocatalytic oxidation, photochemical oxidation, photochemical reduction, thermally-induced reduction, and sonochemical pyrolysis. This paper reviews these FC degradation technologies in terms of kinetics, mechanism, energetic cost, and applicability. The optimal PFOS/PFOA treatment method is strongly dependent upon the FC concentration, background organic and metal concentration, and available degradation time.

Keywords fluorochemical (FC) degradation technologies      perfluoroctanesulfonate (PFOS)      perfluorooctanoate      (PFOA)      oxidation      reduction      photolysis      thermolysis      review     
Corresponding Authors: HOFFMANN Michael R.,Email:mrh@caltech.edu   
Issue Date: 05 June 2009
 Cite this article:   
Chad D. VECITIS,Hyunwoong PARK,Jie CHENG, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Front Envir Sci Eng Chin, 2009, 3(2): 129-151.
 URL:  
http://journal.hep.com.cn/fese/EN/10.1007/s11783-009-0022-7
http://journal.hep.com.cn/fese/EN/Y2009/V3/I2/129
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chad D. VECITIS
Hyunwoong PARK
Jie CHENG
Brian T. MADER
Michael R. HOFFMANN
techniqueconditionspower(W)& volume(mL)k(Lab)a)productb)energyc) /kJref.
UV direct photolysis1.35 mmolL-1 of PFOAl = 220-460 nm200220.69 d-1t1/2 = 1440 min33% F-38% CO265% PFacids792000(1170 kJ?μmol-1)[93]
UV phosphotungstic photocatalysis1.35 mmol?L-1 of PFOAl = 220-460 nm0.48 MPa of O26.6 m mol?L-1 of PTA200222.0 d-1t1/2 = 500 min30% F-25% CO270% PF acids276000(410 kJ?μmol-1)[93]
TiO2 photocatalysis1.0 mmol?L-1 of PFOAl = 310-400 nmpH= 2-30.1 g of TiO275500.69 d-1t1/2 = 1440 min50% F-50% CO2132000(265 kJ?μmol-1)[104]
UV direct photolysis50 mmol?L-1 of PFOAl = 185 nm2310000.017 min-1t1/2 = 41 min10% F-90% PFacids49(1 kJ?μmol-1)[94]
UV persulfatephotolysis50 μmol?L-1 of PFOAl = 254 nm1.5 mmol?L-1 of S2O82-2310000.012 min-1t1/2 = 58 min5% F-95% PFacids69(1.2 kJ?μmol-1)[94]
UV persulfatephotolysis1.35 mmol?L-1 of PFOAl = 220-460 nm0.48 MPa of O2pH= 2-310 mmol?L-1 of S2O82-200220.69 h-1t1/2 = 58 min12% F-85% PFacids33600(50 kJ?μmol-1)[99]
photocatalysisTiO2/Ni-Cu50 m mol?L-1 of PFOAl = 254 nm232500.0077 min-1t1/2 = 90 min10 % F-90% PFacids500(20 kJ?μmol-1)[102]
photoelectro-catalysisTiO2/Ni-Cu50 mmol?L-1 of PFOAl = 254 nm-0.1 V232500.015 min-1t1/2 = 45 min20% F-80% PFacids250(10 kJ?μmol-1)[102]
persulfate photolysis2.5 mmol?L-1 of PFBAl = 254 nm50 mmol?L-1 of S2O82-602000.0096 min-1t1/2 = 72 min~ 104 L?mol-1?s-1dSO4.- + PFBA-1300(1.0 kJ?μmol-1)[101]
hydrogen peroxide photolysis2.5 mmol?L-1 of PFBAl = 254 nm250 mmol?L-1 of H2O2602003.0e-5 min-1t1/2 = 23100 minn/a420000(320 kJ?μmol-1)[101]
flash photolysis5×10-5 mol?L-1 of Fe(CN)60.02-0.1 mol?L-1 of PFOA266 nm10 ns3 mJ/pulse~107 L?mol-1?s-1dn/an/a[198]
sonolysis20 mmol?L-1 of PFOAf = 354 kHz1506000.018 min-1t1/2 = 39 min95% F-670(67 kJ?μmol-1)[108]
sonolysis200 nmol?L-1 of PFOAf = 354 kHz1506000.047 min-1t1/2 = 15 min95% F-260(1300 kJ?μmol-1)[108]
UV-KI photolysis20 mmol?L-1 of PFOAl = 254 nm1.5300.0014 min-1t1/2 = 500 min10% F-gaseous fluoroalkanes1500(150 kJ?μmol-1)[216]
UV-KI photolysis200 nmol?L-1 of PFOAl = 254 nm1.5300.0025 min-1t1/2 = 280 min10% F-Gaseous fluoroalkanes820(8200 kJ?μmol-1)[216]
Ferro-photolysis2.5 mmol?L-1 of Fe2(SO4)367 mmol?L-1 of PFBAl = 220-460 nm2001050.028 h-1t1/2 = 1490 min45% F-55% short chains89400(2.7 kJ?μmol-1)[168]
Tab.1  Summary of reported results for PFOA degradation
techniqueconditionspower/W& volume/mLk(lab)a)productsb)energyc/kJref.
sub-criticalFe(0)370 μmol?L-1 of PFOS0.5 g of Fe(0)350 oC, 20 MPa0100.013 min-1t1/2 = 53 min50% F-2000(11 kJ?μmol-1)[177]
UV directphotolysis40 μmol?L-1 of PFOSl = 254 nm327500.13 d-1t1/2 = 7700 min71% F-90% SO42-17000(850 kJ?μmol-1)[96]
UV alkaline IPA photolysis40 μmol?L-1 of PFOSl = 254 nm327500.93 d-1t1/2 = 1070 minNaF(s)2500(125 kJ?μmol-1)[96]
sonolysis20 μmol?L-1 of PFOSf = 354 kHz1506000.011 min-1t1/2 = 63 min95% F-100% SO42-945(95 kJ?μmol-1)[108]
sonolysis200 nmol?L-1 of PFOSf = 354 kHz1506000.023 min-1t1/2 = 30 min95% F-100% SO42-450(4500 kJ?μmol-1)[108]
UV-KIphotolysis20 μmol?L-1 of PFOSl =254 nm[KI] = 10 mmol?L-11.5300.002 min-1t1/2 = 350 min50% F-50% fluoroalkanes960(96 kJ?μmol-1)[216]
UV-KIphotolysis200 nmol?L-1 of PFOSl = 254 nm[KI] = 10 mmol?L-11.5300.008 min-1t1/2 = 87 min50% F-50% fluoroalkanes260(1250 kJ?μmol-1)[216]
Tab.2  Summary of reported data for PFOS degradation
1 Goss K U. The pK(a) values of PFOA and other highly fluorinated carboxylic acids. Environmental Science & Technology , 2008, 42(2): 456-458
doi: 10.1021/es702192c
2 Goss K U, Bronner, G. What is so special about the sorption behavior of highly fluorinated compounds? Journal of Physical Chemistry A , 2006, 110(30): 9518-9522
doi: 10.1021/jp062684o
3 Goss K U, Bronner G, Harner T, Monika H, Schmidt T C. The partition behavior of fluorotelomer alcohols and olefins. Environmental Science & Technology , 2006, 40(11): 3572-3577
doi: 10.1021/es060004p
4 Wardman P. Reduction potentials of one-electron couples involving free-radicals in aqueous-solution. Journal of Physical and Chemical Reference Data , 1989, 18(4): 1637-1755
5 Office of Pollution Prevention and Toxics, Docket AR226-0547, ed. The Science of Organic Fluorochemistry. Washington DC: US Environmental Protection Agency, 1999, 12
6 Office of Pollution Prevention & Toxics, Docket AR226-1699, ed. Removal of PFOA with Granular Activated Carbon: 3M Wastewater Treatment System Monitoring. Washington DC: US Environmental Protection Agency, 2004, 5
7 Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environmental Science & Technology , 2006, 40(5): 1408-1414
doi: 10.1021/es051798v
8 Schultz M M, Higgins C P, Huset C A, Luthy R G, Barofsky D F, Field J A. Fluorochemical mass flows in a municipal wastewater treatment facility. Environmental Science & Technology , 2006, 40: 7350-7357
doi: 10.1021/es061025m
9 Shinoda K, Hato M, Hayashi T. Physicochemical properties of aqueous-solutions of fluorinated surfactants. Journal of Physical Chemistry , 1972, 76(6): 909-914
doi: 10.1021/j100650a021
10 Lopez-Fontan J L, Sarmiento F, Schulz P C. The aggregation of sodium perfluorooctanoate in water. Colloid & Polymer Science , 2005, 283(8): 862-871
doi: 10.1007/s00396-004-1228-7
11 Lu J R, Ottewill R H, Rennie A R. Adsorption of ammonium perfluorooctanoate at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2001, 183: 15-26
doi: 10.1016/S0927-7757(01)00536-2
12 Simister E A, Lee E M, Lu J R, Thomas R K, Ottewill R H, Rennie A R, Penfold J. Adsorption of ammonium perfluorooctanoate and ammonium decanoate at the air solution interface. Journal of the Chemical Society, Faraday Transactions articles , 1992, 88(20): 3033-3041
13 Boulanger B, Peck A M, Schnoor J L, Hornbuckle K C. Mass budget of perfluorooctane surfactant in Lake Ontario. Environmental Science & Technology , 2005, 39(1): 74-79
doi: 10.1021/es049044o
14 Boulanger B, Vargo J, Schnoor J L, Hornbuckle K C. Detection of perfluorooctane surfactants in Great Lakes water. Environmental Science & Technology , 2004, 38(15): 4064-4070
doi: 10.1021/es0496975
15 Hansen K J, Johnson H O, Eldridge J S, Butenhoff J L, Dick L A. Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology , 2002, 36(8): 1681-1685
doi: 10.1021/es010780r
16 Harada K, Saito N, Sasaki K, Inoue K, Koizumi A. Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: Estimated effects on resident serum levels. Bulletin of Environmental Contamination and Toxicology , 2003, 71(1): 31-36
doi: 10.1007/s00128-003-0126-x
17 Kim S K, Kannan K. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: Relative importance of pathways to contamination of urban lakes. Environmental Science & Technology , 2007, 41(24): 8328-8334
doi: 10.1021/es072107t
18 McLachlan M S, Holmstrom K E, Reth M, Berger U. Riverine discharge of perfluorinated carboxylates from the European continent. Environmental Science & Technology , 2007, 41(21): 7260-7265
doi: 10.1021/es071471p
19 Moody C A, Hebert G N, Strauss S H, Field J A. Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring , 2003, 5(2): 341-345
doi: 10.1039/b212497a
20 Moody C A, Martin J W, Kwan W C, Muir D C G, Mabury S C. Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etohicoke Creek. Environmental Science & Technology , 2002, 36(4): 545-551
doi: 10.1021/es011001+
21 Schultz M M, Barofsky D F, Field J A. Fluorinated alkyl surfactants , 2003, 20(5): 487-501
22 Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin , 2005, 51(8-12): 658-668
23 Office of Pollution Prevention & Toxics, Docket AR226-0620, ed. Sulfonated perfluorochemicals in the environment: Sources, dispersion, fate and effects. Washington DC: US Environmental Protection Agency, 2000, 51
24 Armitage J, Cousins I T, Buck R C, Prevedouros K, Russell M H, MacLeod M, Korzeniowski S H. Modeling global-scale fate and transport of perfluorooctanoate emitted from direct sources. Environmental Science & Technology , 2006, 40(22): 6969-6975
doi: 10.1021/es0614870
25 Saito N, Harada K, Inoue K, Sasaki K, Yoshinaga T, Koizumi A. Perfluorooctanoate and perfluorooctane sulfonate concentrations in surface water in Japan. Journal of Occupational Health , 2004, 46(1): 49-59
doi: 10.1539/joh.46.49
26 Schultz M M, Barofsky D F, Field J A. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science & Technology , 2004, 38(6): 1828-1835
doi: 10.1021/es035031j
27 Scott B F, Moody C A, Spencer C, Small J M, Muir D C G, Mabury S A. Analysis for perfluorocarboxylic acids/anions in surface waters and precipitation using GC-MS and analysis of PFOA from large-volume samples. Environmental Science & Technology 2006, 40(20): 6405-6410
doi: 10.1021/es061131o
28 Scott B F, Spencer C, Mabury S A, Muir D C G. Poly and perfluorinated carboxylates in north American precipitation. Environmental Science & Technology , 2006, 40(23): 7167-7174
doi: 10.1021/es061403n
29 Senthilkumar K, Ohi E, Sajwan K, Takasuga T, Kannan K. Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bulletin of Environmental Contamination and Toxicology , 2007, 79(4): 427-431
doi: 10.1007/s00128-007-9243-2
30 So M K, Miyake Y, Yeung W Y, Ho Y M, Taniyasu S, Rostkowski P, Yamashita N, ZhouB S, Shi X J, Wang J X, Giesy J P, Yu H , Lam P K S. Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere 2007, 68(11): 2085-2095 .
31 So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology , 2004, 38(15): 4056-4063
doi: 10.1021/es049441z
32 Yamashita N, Kannan K, Taniyasu S, Horii Y, Okazawa T, Petrick G, Gamo T. Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry. Environmental Science & Technology , 2004, 38(21): 5522-5528
doi: 10.1021/es0492541
33 Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam P K S, Kannan K. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere , 2008, 70(7): 1247-1255
doi: 10.1016/j.chemosphere.2007.07.079
34 Calafat A M, Kuklenyik Z, Caudill S P, Reidy J A, Needham L L. Perfluorochemicals in pooled serum samples from United States residents in 2001 and 2002. Environmental Science & Technology , 2006, 40(7): 2128-2134
doi: 10.1021/es0517973
35 Calafat A M, Needham L L, Kuklenyik Z, Reidy J A, Tully J S, Aguilar-Villalobos M, Naeher L P. Perfluorinated chemicals in selected residents of the American continent. Chemosphere , 2006, 63(3): 490-496
doi: 10.1016/j.chemosphere.2005.08.028
36 Martin J W, Whittle D M, Muir D C G, Mabury S A. Perfluoroalkyl contaminants in a food web from lake Ontario. Environmental Science & Technology , 2004, 38(20): 5379-5385
doi: 10.1021/es049331s
37 Martin J W, Smithwick M M, Braune B M, Hoekstra P F, Muir D C G, Mabury S A. Identification of long-chain perfluorinated acids in biota from the Canadian Arctic. Environmental Science & Technology , 2004, 38(2): 373-380
doi: 10.1021/es034727+
38 Giesy J P, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology , 2001, 35(7): 1339-1342
doi: 10.1021/es001834k
39 Holmstrom K E, Jarnberg U, Bignert A. Temporal trends of PFOS and PFOA in guillemot eggs from the Baltic Sea, 1968-2003. Environmental Science & Technology , 2005, 39(1): 80-84
doi: 10.1021/es049257d
40 Houde M, Balmer B C, Brandsma S, Wells R S, Rowles T K, Solomon K R, Muir D C G. Perfluoroalkyl compounds in relation to life-history and reproductive parameters in bottlenose dolphins (Tursiops truncatus) from Sarasota Bay, Florida, USA. Environmental Toxicology and Chemistry , 2006, 25(9): 2405-2412
doi: 10.1897/05-499R.1
41 Houde M, Martin J W, Letcher R J, Solomon K R, Muir D C G. Biological monitoring of polyfluoroalkyl substances: A review. Environmental Science & Technology , 2006, 40(11): 3463-3473
doi: 10.1021/es052580b
42 Kannan K, Choi J W, Iseki N, Senthilkumar K, Kim D H, Masunaga S, Giesy J P. Concentrations of perfluorinated acids in livers of birds from Japan and Korea. Chemosphere , 2002, 49(3): 225-231
doi: 10.1016/S0045-6535(02)00304-1
43 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar K S, Loganathan B G, Mohd M A, Olivero J, Van Wouwe N, Yang J H, Aldous K M. Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental Science & Technology , 2004, 38(17): 4489-4495
doi: 10.1021/es0493446
44 Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in marine mammals, fishes, and birds from coasts of the Baltic and the Mediterranean Seas. Environmental Science & Technology , 2002, 36(15): 3210-3216
doi: 10.1021/es020519q
45 Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany J F, Hansen K J, Jones P D, Helle E, Nyman M, Giesy J P. Accumulation of perfluorooctane sulfonate in marine mammals. Environmental Science & Technology , 2001, 35(8): 1593-1598
doi: 10.1021/es001873w
46 Kannan K, Newsted J, Halbrook R S, Giesy J P. Perfluorooctanesulfonate and related fluorinated hydrocarbons in mink and river otters from the United States. Environmental Science & Technology , 2002, 36(12): 2566-2571
doi: 10.1021/es0205028
47 Kannan K, Tao L, Sinclair E, Pastva S D, Jude D J, Giesy J P. Perfluorinated compounds in aquatic organisms at various trophic levels in a Great Lakes food chain. Archives of Environmental Contamination and Toxicology , 2005, 48(4): 559-566
doi: 10.1007/s00244-004-0133-x
48 Nakata H, Kannan K, Nasu T, Cho H S, Sinclair E, Takemura A. Perfluorinated contaminants in sediments and aquatic organisms collected from shallow water and tidal flat areas of the Ariake Sea, Japan: Environmental fate of perfluorooctane sulfonate in aquatic ecosystems. Environmental Science & Technology , 2006, 40(16): 4916-4921
doi: 10.1021/es0603195
49 Olsen G W, Church T R, Larson E B, van Belle G, Lundberg J K, Hansen K J, Burris J M, Mandel J H, Zobel L R. Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle, Washington. Chemosphere , 2004, 54(11): 1599-1611
doi: 10.1016/j.chemosphere.2003.09.025
50 Olsen G W, Church T R, Miller J P, Burris J M, Hansen K J, Lundberg J K, Armitage J B, Herron R M, Medhdizadehkashi Z, Nobiletti J B, O'Neill E M, Mandel J H, Zobel L R. Perfluorooctanesulfonate and other fluorochemicals in the serum of American Red Cross adult blood donors. Environmental Health Perspectives , 2003, 111(16): 1892-1901
51 Olsen G W, Huang H Y, Helzlsouer K J, Hansen K J, Butenhoff J L, Mandel J H. Historical comparison of perfluorooctanesulfonate, perfluorooctanoate, and other fluorochemicals in human blood. Environmental Health Perspectives , 2005, 113(5): 539-545
52 Olsen G W, Mair D C, Reagen W K, Ellefson M E, Ehresman D J, Butenhoff J L, Zobel L R. Preliminary evidence of a decline in perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations in American Red Cross blood donors. Chemosphere , 2007, 68(1): 105-111
doi: 10.1016/j.chemosphere.2006.12.031
53 Sinclair E, Mayack D T, Roblee K, Yamashita N, Kannan K. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State. Archives of Environmental Contamination and Toxicology , 2006, 50(3): 398-410
doi: 10.1007/s00244-005-1188-z
54 Smithwick M, Mabury S A, Solomon K R, Sonne C, Martin J W, Born E W, Dietz R, Derocher A E, Letcher R J, Evans T J, Gabrielsen G W, Nagy J, Stirling I, Taylor M K, Muir D C G. Circumpolar study of perfluoroalkyl contaminants in polar bears (Ursus maritimus). Environmental Science & Technology , 2005, 39(15): 5517-5523
doi: 10.1021/es048309w
55 Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N. A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology , 2003, 37(12): 2634-2639
doi: 10.1021/es0303440
56 Tomy G T, Budakowski W, Halldorson T, Helm P A, Stern G A, Friesen K, Pepper K, Tittlemier S A, Fisk A T. Fluorinated organic compounds in an eastern Arctic marine food web. Environmental Science & Technology , 2004, 38(24): 6475-6481
doi: 10.1021/es049620g
57 Van de Vijver K I, Hoff P T, Das K, Van Dongen W, Esmans E L, Siebert U, Bouquegneau J M, Blust R, De Coen W M. Baseline study of perfluorochemicals in harbour porpoises (Phocoena phocoena) from Northern Europe. Marine Pollution Bulletin , 2004, 48(9-10): 992-997
doi: 10.1016/j.marpolbul.2004.02.021
58 Verreault J, Berger U, Gabrielsen G W. Trends of perfluorinated alkyl substances in herring gull eggs from two coastal colonies in northern norway: 1983-2003. Environmental Science & Technology , 2007, 41(19): 6671-6677
doi: 10.1021/es070723j
59 Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology , 2006, 40(1): 32-44
doi: 10.1021/es0512475
60 Kubwabo C, Stewart B, Zhu J P, Marro L. Occurrence of perfluorosulfonates and other perfluorochemicals in dust from selected homes in the city of Ottawa, Canada. Journal of Environmental Monitoring , 2005, 7(11): 1074-1078
doi: 10.1039/b507731c
61 Moriwaki H, Takata Y, Arakawa R. Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in vacuum cleaner dust collected in Japanese homes. Journal of Environmental Monitoring , 2003, 5(5): 753-757
doi: 10.1039/b307147m
62 Ellis D A, Mabury S A, Martin J W, Muir D C G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature , 2001, 412(6844): 321-324
doi: 10.1038/35085548
63 Tittlemier S A, Pepper K, Seymour C, Moisey J, Bronson R, Cao X L, Dabeka R W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. Journal of Agricultural and Food Chemistry , 2007, 55(8): 3203-3210
doi: 10.1021/jf0634045
64 Begley T H, White K, Honigfort P, Twaroski M L, Neches R, Walker R A. Perfluorochemicals: Potential sources of and migration from food packaging. Food Additives and Contaminants , 2005, 22(10): 1023-1031
doi: 10.1080/02652030500183474
65 Young C J, Furdui V I, Franklin J, Koerner R M, Muir D C G, Mabury S A. Perfluorinated acids in arctic snow: New evidence for atmospheric formation. Environmental Science & Technology , 2007, 41(10): 3455-3461
doi: 10.1021/es0626234
66 D'Eon J C, Hurley M D, Wallington T J, Mabury S A. Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: Kinetics and mechanism of reaction with OH. Environmental Science & Technology , 2006, 40(6): 1862-1868
doi: 10.1021/es0520767
67 Martin J W, Ellis D A, Mabury S A, Hurley M D, Wallington T J. Atmospheric chemistry of perfluoroalkanesulfonamides: Kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environmental Science & Technology , 2006, 40(3): 864-872
doi: 10.1021/es051362f
68 Office of Pollution Prevention and Toxics, Docket AR226-0380, ed. Study of the Stability of MeFOSEA in Aqueous Buffers. Washington DC: US Environmental Protection Agency, 1999, 69
69 Tomy G T, Tittlemier S A, Palace V P, Budakowski W R, Braekevelt E, Brinkworth L, Friesen K. Biotransformation of N-ethyl perfluorooctanesulfonamide by rainbow trout (Onchorhynchus mykiss) liver microsomes. Environmental Science & Technology , 2004, 38(3): 758-762
doi: 10.1021/es034550j
70 Xu L, Krenitsky D M, Seacat A M, Butenhoff J L, Anders M W. Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooetanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chemical Research in Toxicology , 2004, 17(6): 767-775
doi: 10.1021/tx034222x
71 Office of Pollution Prevention and Toxics, Docket AR226-0163, ed. Additional Characterization of Metabolites of T-6292, T-6293 and T-6294 from Rat and Human Hepatocytes. Washington DC: US Environmental Protection Agency, 1998, 69
72 Office of Pollution Prevention and Toxics, Docket AR226-0166, ed. Effect of N-Alkyl Perfluorooctylsulfonamides on Mitochondrial Bioenergetics In Vitro. Washington DC: US Environmental Protection Agency, 1998, 10.
73 Hagen D F, Belisle J, Johnson J D, Venkateswarlu P. Characterization of Fluorinated Metabolites by a Gas Chromatographic-Helium Microwave Plasma Detector—the Biotransformation of 1h,1h,2h,2h-Perfluorodecanol to Perfluorooctanoate. Analytical Biochemistry , 1981, 118(2): 336-343
doi: 10.1016/0003-2697(81)90591-1
74 Ellis D A, Martin J W, De Silva A O, Mabury S A, Hurley M D, Andersen M P S, Wallington T J. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology , 2004, 38(12): 3316-3321
doi: 10.1021/es049860w
75 Stock N L, Lau F K, Ellis D A, Martin J W, Muir D C G, Mabury S A. Polyfluorinated telomer alcohols and sulfonamides in the worth American troposphere. Environmental Science & Technology , 2004, 38(4): 991-996
doi: 10.1021/es034644t
76 Shoeib M, Harner T, Vlahos P. Perfluorinated chemicals in the Arctic atmosphere. Environmental Science & Technology , 2006, 40(24) : 7577-7583
doi: 10.1021/es0618999
77 Office of Pollution Prevention & Toxics, Docket AR226-0588, ed. Phase-out Plan for POSF-Based Products. Washington DC: US Environmental Protection Agency, 2000, 11
78 Yarwood G, Kemball-Cook S, Keinath M, Waterland R L, Korzeniowski S H, Buck R C, Russell M H, Washburn S T. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere. Environmental Science & Technology , 2007, 41(16): 5756-5762
doi: 10.1021/es0708971
79 Investigation of Perfluorochemical (PFC) Contamination in Minnesota In Phase 1 ed. Minnesota: Senate Environment Committee , 2006, 79
80 Lampert D J, Frisch M A, Speitel G E. Removal of Perfluorooctanoic Acid and Perfluorooctane Sulfonate from Wastewater by Ion Exchange. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management , 2007, 11(1): 60-68
doi: 10.1061/(ASCE)1090-025X(2007)11:1(60)
81 Tsang W, Burgess D R, Babushok V. On the incinerability of highly fluorinated organic compounds. Combustion Science and Technology , 1998, 139(1-6): 385-402
82 Higgins C P, Field J A, Criddle C S, Luthy R G. Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environmental Science & Technology , 2005, 39(11): 3946-3956
doi: 10.1021/es048245p
83 Schroder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents. Journal of Chromatography A , 2003, 1020(1): 131-151
doi: 10.1016/S0021-9673(03)00936-1
84 Hollingsworth J, Sierra-Alvarez R, Zhou M, Ogden K L, Field J A. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere , 2005, 59(9): 1219-1228
doi: 10.1016/j.chemosphere.2004.11.067
85 Key B D, Howell R D, Criddle C S. Defluorination of organofluorine sulfur compounds by Pseudomonas sp. strain D2. Environmental Science & Technology , 1998, 32(15): 2283-2287
doi: 10.1021/es9800129
86 Office of Pollution Prevention & Toxics, Docket AR226-0489, ed. Biodegradation studies of fluorocarbons—III. Washington DC: US Environmental Protection Agency, 1978, 19
87 Office of Pollution Prevention & Toxics, Docket AR226-0058, ed. Biodegradation studies of Fluorocarbons. Washington DC: US Environmental Protection Agency, 1994, 4
88 Oppenlander T. Photochemical Purification of Water and Air. Weinheim: Wiley-VCH , 2003
89 Schroder H F, Meesters R J W. Stability of fluorinated surfactants in advanced oxidation processes—A follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. Journal of Chromatography A , 2005, 1082(1): 110-119
doi: 10.1016/j.chroma.2005.02.070
90 Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Science & Technology , 2005, 39(9): 3388-3392
doi: 10.1021/es040342v
91 Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology , 2004, 38(22): 6118-6124
doi: 10.1021/es049719n
92 Chen J, Zhang P. Photodegradation of perfluorooctanoic acid in water under irradiation of 254 nm and 185 nm light by use of persulfate. Water Science & Technology , 2006, 54(11-12): 317-325
doi: 10.2166/wst.2006.731
93 Chen J, Zhang P, Liu J. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. Journal of Environmental Sciences , 2007, 19(4): 387-390
doi: 10.1016/S1001-0742(07)60064-3
94 Yamamoto T, Noma Y, Sakai S, Shibata Y. Photodegradation of perfluorooctane sulfonate by UV irradiation in water and alkaline 2-propanol. Environmental Science & Technology , 2007, 41(16): 5660-5665
doi: 10.1021/es0706504
95 Office of Pollution Prevention & Toxics, Docket AR226-0056, ed. Summary of Photolysis Studies using Simulated Sunlight on the Potassium Salt of Perfluorooctanesulfonic Acid. Washington DC: US Environmental Protection Agency, 1978, 17
96 Office of Pollution Prevention & Toxics, Docket AR226-0490, ed. FC-143 Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1979, 15
97 Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamashita N, Kutsuna S, Kiatagawa H, Arakawa R. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environmental Science & Technology , 2005, 39(7): 2383-2388
doi: 10.1021/es0484754
98 Hori H, Yamamoto A, Kutsuna S. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system. Environmental Science & Technology , 2005, 39(19): 7692-7697
doi: 10.1021/es050753r
99 Kutsuna S, Hori H. Rate constants for aqueous-phase reactions of SO4- with C2F5C(O)O- and C3F7C(O)O- at 298 K. International Journal of Chemical Kinetics , 2007, 39(5) 276-288
doi: 10.1002/kin.20239
100 Chen J, Zhang P Y, Zhang L. Photocatalytic decomposition of environmentally persistent perfluorooctanoic acid. Chemistry Letters , 2006, 35(2): 230-231
doi: 10.1246/cl.2006.230
101 Hori H, Hayakawa E, Koike K, Einaga H, Ibusuki T. Decomposition of nonafluoropentanoic acid by heteropolyacid photocatalyst H3PW12O40 in aqueous solution. Journal of Molecular Catalysis A—Chemical , 2004, 211(1-2): 35-41
doi: 10.1016/j.molcata.2003.09.029
102 Kutsuna S, Nagaoka Y, Takeuchi K, Hori H. TiO2-induced heterogeneous photodegradation of a fluorotelomer alcohol in air. Environmental Science & Technology , 2006, 40, 6824-6829
doi: 10.1021/es060852k
103 Yuan Q, Ravikrishna R, Valsaraj K T. Reusable adsorbents for dilute solution separation. 5. Photodegradation of organic compounds on surfactant-modified titania. Separation and Purification Technology , 2001, 24(1-2): 309-318
doi: 10.1016/S1383-5866(01)00136-8
104 Hidaka H, Jou H, Nohara K, Zhao J. Photocatalytic degradation of the hydrophobic pesticide permethrin in fluoro surfactant/TiO2 aqueous dispersions. Chemosphere , 1992, 25(11): 1589-1597
doi: 10.1016/0045-6535(92)90307-D
105 Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Kinetics and mechanism of the sonolytic conversion of the aqueous perfluorinated surfactants, perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS) into inorganic products. Journal of Physical Chemistry A , 2008, 112(18): 4261–4270
doi: 10.1021/jp801081y
106 Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Enhancement of perlfuorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces. Journal of Physical Chemistry C , 2008, 112(43): 16850–16857
doi: 10.1021/jp804050p
107 Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: Environmental matrix effects. Environmental Science & Technology , 2008, 42(21): 8057–8063
doi: 10.1021/es8013858
108 Sundstrom D W, Klei H E. Wastewater Treatment. Englewood Cliffs: Prentice-Hall , 1979
109 Investigation of Perfluorochemical (PFC) Contamination in Minnesota. In: Phase 1 ed. Minnesota: Senate Environment Committee , 2006, 79
110 Boulanger B, Vargo J D, Schnoor J L, Hornbuckle K C. Evaluation of perfluorooctane surfactants in a wastewater treatment system and in a commercial surface protection product. Environmental Science & Technology , 2005, 39(15): 5524-5530
doi: 10.1021/es050213u
111 Loganathan B G, Sajwan K S, Sinclair E, Kumar K S, Kannan K. Perfluoroalkyl sulfonates and perfluorocarboxylates in two wastewater treatment facilities in Kentucky and Georgia. Water Research , 2007, 41(20): 4611-4620
doi: 10.1016/j.watres.2007.06.045
112 Office of Pollution Prevention and Toxics, Docket AR226-1264, ed. Accelerated Biodegradation of 8-2 Telomer B Alcohol. Washington DC: US Environmental Protection Agency, 2003, 45
113 Yamada T, Taylor P H, Buck R C, Kaiser M A, Giraud R J. Thermal degradation of fluorotelomer treated articles and related materials. Chemosphere , 2005, 61(7): 974-984
doi: 10.1016/j.chemosphere.2005.03.025
114 Tang C Y Y, Fu Q S, Robertson A P, Criddle C S, Leckie J O. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater. Environmental Science & Technology , 2006, 40(23): 7343-7349
doi: 10.1021/es060831q
115 Tang C Y, Fu Q S, Criddle C S, Leckie J O. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science & Technology , 2007, 41(6): 2008-2014
doi: 10.1021/es062052f
116 Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology , 2006, 40(23): 7251-7256
doi: 10.1021/es061000n
117 Johnson R L, Anschutz A J, Smolen J M, Simcik M F, Penn R L. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces. Journal of Chemical and Engineering Data , 2007, 52(4): 1165-1170
doi: 10.1021/je060285g
118 Pera-Titus M, Garcia-Molina V, Banos M A, Gimenez J, Esplugas S. Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis B—Environmental , 2004, 47(4): 219-256
doi: 10.1016/j.apcatb.2003.09.010
119 Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today , 1999, 53(1): 51-59
doi: 10.1016/S0920-5861(99)00102-9
120 Legrini O, Oliveros E, Braun A M. Photochemical processes for water-treatment. Chemical Reviews , 1993, 93(2): 671-698
doi: 10.1021/cr00018a003
121 Kochany J, Bolton J R. Mechanism of photodegradation of aqueous organic pollutants. 2. Measurement of the primary rate constants for reaction of hydroxyl radicals with benzene and some halobenzenes using an EPR spin-trapping method following the photolysis of hydrogen peroxide. Environmental Science & Technology , 1992, 26(2): 262-265
doi: 10.1021/es00026a004
122 Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 1. Non-dissociating organic-compounds. Water Research , 1983, 17(2): 173-183
doi: 10.1016/0043-1354(83)90098-2
123 Hoigne J, Bader H. Rate constants of reactions of ozone with organic and inorganic-compounds in water. 2. Dissociating organic-compounds. Water Research , 1983, 17(2): 185-194
doi: 10.1016/0043-1354(83)90099-4
124 Zepp R G, Faust B C, Hoigne J. Hydroxyl radical formation in aqueous reactions (PH 3-8) of iron (Ⅱ) with hydrogen peroxide: the photo-Fenton reaction. Environmental Science & Technology , 1992, 26(2): 313-319
doi: 10.1021/es00026a011
125 Hua I, Hoffmann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environmental Science & Technology , 1997, 31(8): 2237-2243
doi: 10.1021/es960717f
126 Acero J L, Haderlein S B, Schmidt T C, Suter M J F, Von Gunten U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: Efficiency of the processes and bromate formation. Environmental Science & Technology , 2001, 35(21): 4252-4259
doi: 10.1021/es010044n
127 Buxton G V, Greenstock C L, Helman W P, Ross A B. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (?OH/?O-) in aqueous solution. Journal of Physical and Chemical Reference Data , 1988, 17(2): 513-886
128 An Y J, Jeong S W. Interactions of perfluorinated surfactant with polycyclic aromatic hydrocarbons: Critical micelle concentration and solubility enhancement measurements. Journal of Colloid and Interface Science , 2001, 242(2): 419-424
doi: 10.1006/jcis.2001.7883
129 An Y J, Carraway E R, Schlautman M A. Solubilization of polycyclic aromatic hydrocarbons by perfluorinated surfactant micelles. Water Research , 2002, 36(1): 300-308
doi: 10.1016/S0043-1354(01)00205-6
130 Huang Q, Hong C S. TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro surfactant. Chemosphere , 2000, 41(6): 871-879
doi: 10.1016/S0045-6535(99)00492-0
131 Gromadzka K, Swietlik J. Organic micropollutants degradation in ozone-loaded system with perfluorinated solvent. Water Research , 2007, 41(12): 2572-2580
doi: 10.1016/j.watres.2007.02.008
132 Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: Kinetics and products. Environmental Science & Technology , 2007, 41(3): 1010-1015
doi: 10.1021/es062237m
133 Lau T K, Chu W, Graham N J D. The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: Study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology , 2007, 41(2): 613-619
doi: 10.1021/es061395a
134 Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology , 2004, 38(13): 3705-3712
doi: 10.1021/es035121o
135 Anipsitakis G P, Dionysiou D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environmental Science & Technology , 2003, 37(20): 4790-4797
doi: 10.1021/es0263792
136 Ball D L, Edwards J O. The Kinetics and mechanism of the decomposition of Caros acid. 1. Journal of the American Chemical Society , 1956, 78(6): 1125-1129
doi: 10.1021/ja01587a011
137 Dogliott L, Hayon E. Flash photolysis of persulfate ions in aqueous solutions. Study of sulfate and ozonide radical anions. Journal of Physical Chemistry , 1967, 71(8): 2511-2516
doi: 10.1021/j100867a019
138 Kolthoff I M, Miller I K. The Chemistry of Persulfate. 1. The Kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society , 1951, 73(7): 3055-3059
doi: 10.1021/ja01151a024
139 Maruthamuthu P, Padmaja S, Huie R E. Rate constants for some reactions of free-radicals with haloacetates in aqueous solution. International Journal of Chemical Kinetics , 1995, 27(6): 605-612
doi: 10.1002/kin.550270610
140 Neta P, Huie R E, Ross A B. Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data , 1988, 17(3): 1027-1284
141 Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. 2nd ed. New York: Wiley, 2003
142 Zepp R G, Cline D M. Rates of direct photolysis in aquatic environment. Environmental Science & Technology , 1977, 11(4): 359-366
doi: 10.1021/es60127a013
143 Office of Pollution Prevention & Toxics, Docket AR226-0363, ed. FM-3422: Photolysis Study using Simulated Sunlight. Washington DC: US Environmental Protection Agency, 1981, 20
144 Gauthier S A, Mabury S A. Aqueous photolysis of 8 : 2 fluorotelomer alcohol. Environmental Toxicology and Chemistry , 2005, 24(8): 1837-1846
doi: 10.1897/04-591R.1
145 Lee C, Choi W, Kim Y G, Yoon J. UV photolytic mechanism of N-nitrosodimethylamine in water: Dual pathways to methylamine versus dimethylamine. Environmental Science & Technology , 2005, 39(7): 2101-2106
doi: 10.1021/es0488941
146 Getoff N, Schenck G O. Primary products of liquid water photolysis at 1236, 1470 and 1849 ?. Photochemistry and Photobiology , 1968, 8(3): 167-178
doi: 10.1111/j.1751-1097.1968.tb05859.x
147 Fricke H, Hart E J. Studies of reactions induced by the photoactivation of the water molecule. I. Journal of Chemical Physics , 1936, 4(7): 418-422
doi: 10.1063/1.1749872
148 Oppenlander T, Gliese S. Mineralization of organic micropollutants (homologous alcohols and phenols) in water by vacuum-UV-oxidation (H2O-VUV) with an incoherent xenon-excimer lamp at 172 nm. Chemosphere , 2000, 40(1): 15-21
doi: 10.1016/S0045-6535(99)00222-2
149 Jakob L, Hashem T M, Burki S, Guindy N M, Braun A M. Vacuum-ultraviolet (VUV) photolysis of water: Oxidative degradation of 4-chlorophenol. Journal of Photochemistry and Photobiology A: Chemistry , 1993, 75(2) 97-103
doi: 10.1016/1010-6030(93)80189-G
150 Quici N, Litter M I, Braun A A, Oliveros E. Vacuum-UV-photolysis of aqueous solutions of citric and gallic acids. Journal of Photochemistry and Photobiology A: Chemistry , 2008, 197(2-3): 306-312
doi: 10.1016/j.jphotochem.2008.01.008
151 Hori H, Nagaoka Y, Murayama M, Kutsuna S. Efficient decomposition of perfluorocarboxylic acids and alternative fluorochemical surfactants in hot water. Environmental Science & Technology , 2008, 42, 7438-7443
doi: 10.1021/es800832p
152 Osborne M C, Li Q, Smith I W M. Products of the ultraviolet photodissociation of trifluoroacetic acid and acrylic acid. Physical Chemistry Chemical Physics , 1999, 1(7): 1447-1454
doi: 10.1039/a809064e
153 Ozer R R, Ferry J L. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems. Environmental Science & Technology , 2001, 35(15): 3242-3246
doi: 10.1021/es0106568
154 Fox M A, Cardona R, Gaillard E. Photoactivation of metal-oxide surfaces: Photocatalyzed oxidation of alcohols by heteropolytungstates. Journal of the American Chemical Society , 1987, 109(21): 6347-6354
doi: 10.1021/ja00255a019
155 Lee J, Kim J, Choi W. Oxidation on zerovalent iron promoted by polyoxometalate as an electron shuttle. Environmental Science & Technology , 2007, 41(9): 3335-3340
doi: 10.1021/es062430g
156 Weinstock I A. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chemical Reviews , 1998, 98(1): 113-170
doi: 10.1021/cr9703414
157 Akid R, Darwent J R. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water. Journal of the Chemical Society . Dalton Transactions, 1985, 2: 395-399
doi: 10.1039/dt9850000395
158 Hori H, Takano Y, Koike K, Takeuchi K, Einaga H. Decomposition of environmentally persistent trifluoroacetic acid to fluoride ions by a homogeneous photocatalyst in water. Environmental Science & Technology , 2003, 37(2): 418-422
doi: 10.1021/es025783y
159 Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews , 1995, 95(1): 69-96
doi: 10.1021/cr00033a004
160 Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloroform and other organic-molecules in aqueous TiO2 suspensions. Environmental Science & Technology , 1991, 25(3): 494-500
doi: 10.1021/es00015a018
161 Dillert R, Bahnemann D, Hidaka H. Light-induced degradation of perfluorocarboxylic acids in the presence of titanium dioxide. Chemosphere , 2007, 67(4): 785-792
doi: 10.1016/j.chemosphere.2006.10.023
162 Guan B, Zhi J, Zhang X, Murakami T, Fujishima A. Electrochemical route for fluorinated modification of boron-doped diamond surface with perfluorooctanoic acid. Electrochemistry Communications , 2007, 9(12): 2817-2821
doi: 10.1016/j.elecom.2007.10.003
163 Lee J, Seliger H H. Quantum yield of ferrioxalate actinometer. Journal of Chemical Physics , 1964, 40(2): 519-523
doi: 10.1063/1.1725147
164 Hatchard C G, Parker C A. A new sensitive chemical actinometer. 2. Potassium ferrioxalate as a standard chemical actinometer. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences , 1956, 235(1203): 518-536
doi: 10.1098/rspa.1956.0102
165 Parker C A. A new sensitive chemical actinometer. 1. Some trials with potassium ferrioxalate. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences , 1953, 220(1140): 104-116
doi: 10.1098/rspa.1953.0175
166 Allmand A J, Webb W W. The photolysis of potassium ferrioxalate solutions. Part 1. Experimental. Journal of the Chemical Society , 1929: 1518-1531
doi: 10.1039/jr9290001518
167 Hori H, Yamamoto A, Koike K, Kutsuna S, Osaka I, Arakawa R. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions. Chemosphere , 2007, 68(3): 572-578
doi: 10.1016/j.chemosphere.2006.12.038
168 Sayles G D, You G R, Wang M X, Kupferle M J. DDT, DDD, and DDE dechlorination by zero-valent iron. Environmental Science & Technology , 1997, 31(12): 3448-3454
doi: 10.1021/es9701669
169 Yak H K, Wenclawiak B W, Cheng I F, Doyle J G, Wai C M. Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environmental Science & Technology , 1999, 33(8): 1307-1310
doi: 10.1021/es981066l
170 Jones C G, Silverman J, Al-Sheikhly M, Neta P, Poster D L. Dechlorination of polychlorinated biphenyls in industrial transformer oil by radiolytic and photolytic methods. Environmental Science & Technology , 2003, 37(24): 5773-5777
doi: 10.1021/es030412i
171 Hinz D C, Wai C M, Wenclawiak B W. Remediation of a nonachloro biphenyl congener with zero-valent iron in subcritical water. Journal of Environmental Monitoring , 2000, 2(1): 45-48
doi: 10.1039/a908026k
172 Zhang W X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research , 2003, 5(3-4): 323-332
doi: 10.1023/A:1025520116015
173 Wang C B, Zhang W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology , 1997, 31(7): 2154-2156
doi: 10.1021/es970039c
174 Hori H, Nagaoka Y, Sano T, Kutsuna S. Iron-induced decomposition of perfluorohexanesulfonate in sub- and supercritical water. Chemosphere , 2008, 70(5): 800-806
doi: 10.1016/j.chemosphere.2007.07.015
175 Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology , 2006, 40(3): 1049-1054
doi: 10.1021/es0517419
176 Macnicol D D, Robertson C D. New and unexpected reactivity of saturated fluorocarbons. Nature , 1988, 332(6159): 59-61
doi: 10.1038/332059a0
177 Shoute L C T, Mittal J P, Neta P. Fluoride elimination upon reaction of pentafluoroaniline with e(aq)(-), H, and OH radicals in aqueous solution. Journal of Physical Chemistry , 1996, 100(27): 11355-11359
doi: 10.1021/jp960876l
178 Shoute L C T, Mittal J P, Neta P. Reduction and defluorination of pentafluorophenol in aqueous solutions. Journal of Physical Chemistry , 1996, 100(8): 3016-3019
doi: 10.1021/jp9513374
179 Watson P L, Tulip T H, Williams I. Defluorination of perfluoroolefins by divalent lanthanoid reagents: Activating C–F Bonds. Organometallics , 1990, 9(7): 1999-2009
doi: 10.1021/om00157a006
180 Combellas C, Kanoufi F, Thiebault A. Reduction of polyfluorinated compounds. Journal of Physical Chemistry B , 2003, 107(39): 10894-10905
doi: 10.1021/jp034846b
181 Corvaja C, Farnia G, Formenton G, Navarrini W, Sandona G, Tortelli V. Electrochemical-behavior and EPR of radical-anions of perfluoroalkyl-substituted olefins. Journal of Physical Chemistry , 1994, 98(9): 2307-2313
doi: 10.1021/j100060a017
182 Marsella J A, Gilicinski A G, Coughlin A M, Pez G P. Selective reduction of saturated perfluorocarbons. Journal of Organic Chemistry , 1992, 57(10): 2856-2860
doi: 10.1021/jo00036a019
183 Pud A A, Shapoval G S, Kukhar V P, Mikulina O E, Gervits L L. Electrochemical reduction of some saturated and unsaturated perfluorocarbons. Electrochimica Acta , 1995, 40(9): 1157-1164
doi: 10.1016/0013-4686(95)00030-I
184 Chen X D, Lemal D M. Functionalization of saturated fluorocarbons with and without light. Journal of Fluorine Chemistry , 2006, 127(9): 1158-1167
doi: 10.1016/j.jfluchem.2006.06.005
185 Szajdzinska-Pietek E, Gebicki J L. Pulse radiolytic investigation of perfluorinated surfactants in aqueous solutions. Research on Chemical Intermediates , 2000, 26(9): 897-912
doi: 10.1163/156856700X00381
186 Huang L, Dong W B, Hou H Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters , 2007, 436(1-3): 124-128
doi: 10.1016/j.cplett.2007.01.037
187 Ono T, Fukaya H, Hayashi E, Saida H, Abe T, Henderson P B, Fernandez R E, Scherer K V. Persistent perfluoroalkyl radical investigations under reductive environment: Reaction with electron-donating reagents. Journal of Fluorine Chemistry , 1999, 97(1-2): 173-182
doi: 10.1016/S0022-1139(99)00046-9
188 Ochoa-Herrera V, Sierra-Alvarez R, Somogyi A, Jacobsen N E, Wysocki V H, Field J A. Reductive defluorination of perfluorooctane sulfonate. Environmental Science & Technology , 2008, 42(9): 3260-3264
doi: 10.1021/es702842q
189 Johnson T L, Scherer M M, Tratnyek P G. Kinetics of halogenated organic compound degradation by iron metal. Environmental Science & Technology , 1996, 30(8): 2634-2640
doi: 10.1021/es9600901
190 Roberts A L, Totten L A, Arnold W A, Burris D R, Campbell T J. Reductive elimination of chlorinated ethylenes by zero valent metals. Environmental Science & Technology , 1996, 30(8): 2654-2659
doi: 10.1021/es9509644
191 Puls R W, Paul C J, Powell R M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: A field test. Applied Geochemistry , 1999, 14(8): 989-1000
doi: 10.1016/S0883-2927(99)00010-4
192 Tratnyek P G, Johnson T L, Scherer M M, Eykholt G R. Remediating ground water with zero-valent metals: Chemical considerations in barrier design. Ground Water Monitoring and Remediation , 1997, 17(4): 108-114
doi: 10.1111/j.1745-6592.1997.tb01270.x
193 Cantrell K J, Kaplan D I, Wietsma T W. Zero-Valent Iron for the in-situ remediation of selected metals in groundwater. Journal of Hazardous Materials , 1995, 42(2): 201-212
doi: 10.1016/0304-3894(95)00016-N
194 Liu Y Q, Majetich S A, Tilton R D, Sholl D S, Lowry G V. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology , 2005, 39(5): 1338-1345
doi: 10.1021/es049195r
195 Elliott D W, Zhang W X. Field assessment of nanoscale biometallic particles for groundwater treatment. Environmental Science & Technology , 2001, 35(24): 4922-4926
doi: 10.1021/es0108584
196 Kim Y H, Carraway E R. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environmental Science & Technology , 2000, 34(10): 2014-2017
doi: 10.1021/es991129f
197 Zhang W X, Wang C B, Lien H L, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today , 1998, 40(4): 387-395
doi: 10.1016/S0920-5861(98)00067-4
198 Bransfield S J, Cwiertny D M, Livi K, Fairbrother D H. Influence of transition metal additives and temperature on the rate of organohalide reduction by granular iron: Implications for reaction mechanisms. Applied Catalysis B: Environmental , 2007, 76(3-4): 348-356
doi: 10.1016/j.apcatb.2007.06.003
199 Cwiertny D M, Bransfield S J, Livi K J T, Fairbrother D H, Roberts A L. Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. Environmental Science & Technology , 2006, 40(21): 6837-6843
doi: 10.1021/es060921v
200 Marshall W D, Kubatova A, Lagadec A J M, Miller D J, Hawthorne S B. Zero-valent metal accelerators for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chemistry , 2002, 4(1): 17-23
doi: 10.1039/b108337f
201 Hart E J, Anbar M. The Hydrated Electron. New York: John Wiley & Sons, Inc., 1970
202 Mezyk S P, Helgeson T, Cole S K, Cooper W J, Fox R V, Gardinali P R, Mincher B J. Free radical chemistry of disinfection-byproducts. 1. Kinetics of hydrated electron and hydroxyl radical reactions with halonitromethanes in water. Journal of Physical Chemistry A , 2006, 110(6): 2176-2180
doi: 10.1021/jp054962+
203 Milosavljevic B H, LaVerne J A, Pimblott S M. Rate coefficient measurements of hydrated electrons and hydroxyl radicals with chlorinated ethanes in aqueous solutions. Journal of Physical Chemistry A , 2005, 109(34): 7751-7756
doi: 10.1021/jp051249b
204 Johnson H D, Cooper W J, Mezyk S P, Bartels D M. Free radical reactions of monochloramine and hydroxylamine in aqueous solution. Radiation Physics and Chemistry , 2002, 65(4-5): 317-326
doi: 10.1016/S0969-806X(02)00332-8
205 Nickelsen M G, Cooper W J, Secker D A, Rosocha L A, Kurucz C N, Waite T D. Kinetic modeling and simulation of PCE and TCE removal in aqueous solutions by electron-beam irradiation. Radiation Physics and Chemistry , 2002, 65(4-5): 579-587
doi: 10.1016/S0969-806X(02)00362-6
206 Rahn R O, Stephan M I, Bolton J R, Goren E, Shaw P S, Lykke K R. Quantum yield of the iodide–iodate chemical actinometer: Dependence on wavelength and concentration. Photochemistry and Photobiology , 2003, 78(2): 146-152
doi: 10.1562/0031-8655(2003)078<0146:QYOTIC>2.0.CO;2
207 Anbar M, Hart E J. The reaction of haloaliphatic compounds with hydrated electrons. The Journal of Physical Chemistry , 1965, 69(1): 271-274
doi: 10.1021/j100885a041
208 Czapski G, Schwarz H A. The nature of reducing radical in water radiolysis. The Journal of Physical Chemistry , 1962, 66(3): 471-474
doi: 10.1021/j100809a024
209 Matheson M S, Mulac W A, Rabani J. Formation of hydrated electron in flash photolysis of aqueous solutions. Journal of Physical Chemistry , 1963, 67(12): 2613-2617
doi: 10.1021/j100806a027
210 Hart, E. J.; Boag, J. W., Absorption Spectrum of Hydrated Electron in Water and in Aqueous Solutions. Journal of the American Chemical Society , 1962, 84(21): 4090-4095
doi: 10.1021/ja00880a025
211 Thomas-Smith T E, Blough N V. Photoproduction of hydrated electron from constituents of natural waters. Environmental Science & Technology , 2001, 35(13): 2721-2726
doi: 10.1021/es010552x
212 Hoigne J, Faust B C, Haag W R, Scully F E, Zepp R G. Aquatic humic substances as sources and sinks of photochemically produced transient reactants. ACS Symposium Series , 1989, 219: 363-381
213 Zepp R G, Braun A M, Hoigne J, Leenheer J A. Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environmental Science & Technology , 1987, 21(5): 485-490
doi: 10.1021/es00159a010
214 Park H, Vecitis C D, Cheng J, Mader B T, Hoffmann M R. Reductive defluorination of aqueous perfluorinated alkyl surfactants: Effects of ionic headgroupand chain length. Journal of Physical Chemistry A , 2009, 113(4): 690–696
doi: 10.1021/jp807116q
215 Lian R, Oulianov D A, Crowell R A, Shkrob I A, Chen X Y, Bradforth S E. Electron photodetachment from aqueous anions. 3. Dynamics of geminate pairs derived from photoexcitation of mono-vs polyatomic anions. Journal of Physical Chemistry A , 2006, 110(29): 9071-9078
doi: 10.1021/jp0610113
216 Nishiwaki T, Usui M, Anda K, Hida M. Dechlorination of polychlorinated biphenyls by UV-irradiation. 5. Reaction of 2,4,6-trichlorobiphenyl in neutral and alkaline alcoholic solution. Bulletin of the Chemical Society of Japan , 1979, 52(3): 821-825
doi: 10.1246/bcsj.52.821
217 Yao Y, Kakimoto K, Ogawa H I, Kato Y, Hanada Y, Shinohara R, Yoshino E. Reductive dechlorination of non-ortho substituted polychlorinated biphenyls by ultraviolet irradiation in alkaline 2-propanol. Chemosphere , 1997, 35(12): 2891-2897
doi: 10.1016/S0045-6535(97)00282-8
218 Hawari J, Demeter A, Samson R. Sensitized photolysis of polychlorobiphenyls in alkaline 2-propanol: Dechlorination of aroclor 1254 in soil samples by solar-radiation. Environmental Science & Technology , 1992, 26(10): 2022-2027
doi: 10.1021/es00034a022
219 Schwarz H A, Dodson R W. Reduction potentials of Co2- and the alcohol radicals. Journal of Physical Chemistry , 1989, 93(1): 409-414
doi: 10.1021/j100338a079
220 Murakami Y, Kikuchi J, Hisaeda Y, Hayashida O. Artificial enzymes. Chemical Reviews , 1996, 96(2): 721-758
doi: 10.1021/cr9403704
221 Gantzer C J, Wackett L P. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environmental Science & Technology , 1991, 25(4): 715-722
doi: 10.1021/es00016a017
222 Costentin C, Robert M, Saveant J M. Does catalysis of reductive dechlorination of tetra- and trichloroethylenes by vitamin B12 and corrinoid-based dehalogenases follow an electron transfer mechanism?Journal of the American Chemical Society , 2005, 127(35): 12154-12155
doi: 10.1021/ja0520464
223 Glod G, Angst W, Holliger C, Schwarzenbach R P. Corrinoid-mediated reduction of tetrachloroethene, trichloroethene, and trichlorofluoroethene in homogeneous aqueous solution: Reaction kinetics and reaction mechanisms. Environmental Science & Technology , 1997, 31(1): 253-260
doi: 10.1021/es9603867
224 Wood J M, Kennedy F S, Wolfe R S. Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry , 1968, 7(5): 1707-1713
doi: 10.1021/bi00845a013
225 Lexa D, Saveant J M. Electrochemistry of vitamin-B12. 3. One-electron intermediates in reduction of methylcobalamin and methylcobinamide. Journal of the American Chemical Society , 1978, 100(10): 3220-3222
doi: 10.1021/ja00478a048
226 Lexa D, Saveant J M, Zickler J. Electrochemistry of vitamin-B12. 2. Redox and acid-base equilibria in B12a/B12r system. Journal of the American Chemical Society , 1977, 99(8): 2786-2790
doi: 10.1021/ja00450a061
227 Zehnder A J B, Wuhrmann K. Titanium(Iii) citrate as a nontoxic oxidation-reduction buffering system for culture of obligate anaerobes. Science , 1976, 194(4270): 1165-1166
doi: 10.1126/science.793008
228 Shey J, van der Donk W A. Mechanistic studies on the vitamin B-12-catalyzed dechlorination of chlorinated alkenes. Journal of the American Chemical Society , 2000, 122(49): 12403-12404
doi: 10.1021/ja0055965
229 Schrauze Gn, Deutsch E, Windgass Rj. The nucleophilicity of vitamin B12s. Journal of the American Chemical Society , 1968, 90(9): 2441-2442
230 Krusic P J, Marchione A A, Roe D C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid. Journal of Fluorine Chemistry , 2005, 126(11-12): 1510-1516
doi: 10.1016/j.jfluchem.2005.08.016
231 Ainagos A F. Mechanism and kinetics of pyrolysis of perfluorohexane. AF AINAGOS Kinetics and catalysis , 1991, 32(4): 720-725
232 Hynes R G, Mackie J C, Masri A R. Shock-tube study of the pyrolysis of the halon replacement molecule CF3CHFCF3. Journal of Physical Chemistry A , 1999, 103(1): 54-61
doi: 10.1021/jp9832084
233 Atkinson B, McKeagan D. The thermal decomposition of perfluorocyclopropane. Chemical Communications , 1966, 7: 189-190
doi: 10.1039/c19660000189
234 Bauer S H, Hou K C, Resler E L. Single-pulse shock-tube studies of pyrolysis of fluorocarbons and of oxidation of perfluoroethylene. Physics of Fluids , 1969, 12(5): I-125-I-132
doi: 10.1063/1.1692591
235 Blake P G, Tomlinso A D. Thermal decomposition of fluoroaceticacid. Journal of the Chemical Society B: Physical Organic , 1971, 8: 1596-1597
236 Brown C E, Smith D R. The infrared multiphoton dissociation of hexafluoroethane. Canadian Journal of Chemistry: Revue Canadienne De Chimie , 1988, 66(4): 609-614
doi: 10.1139/v88-104
237 Chowdhury P K. IR multiphoton dissociation dynamics of octafluorocyclopentene: Time-resolved observation of concerted products :CF2 and hexafluorobutadiene. The Journal of Physical Chemistry , 1995, 99(32): 12084-12089
doi: 10.1021/j100032a006
238 Longfellow C A, Smoliar L A, Lee Y T, Lee Y R, Yeh C Y, Lin S M. Competing pathways in the infrared multiphoton dissociation of hexafluoropropene. Journal of Physical Chemistry A , 1997, 101(4): 338-344
doi: 10.1021/jp960653v
239 Matula R A. Thermal decomposition of perfluoropropene. The Journal of Physical Chemistry , 1968, 72(8): 3054-3056
doi: 10.1021/j100854a076
240 Millward G E, Tschuiko E. Kinetic analysis of shock-wave decomposition of 1,1,1,2-tetrafluoroethane. The Journal of Physical Chemistry , 1972, 76(3): 292-298
doi: 10.1021/j100647a002
241 Tschuiko E. RRKM theory calculation of unimolecular decomposition of hexafluoroethane: Thermal activation. The Journal of Chemical Physics , 1968, 49(7): 3115-3121
doi: 10.1063/1.1670557
242 Lee M C, Choi W. Development of thermochemical destruction method of perfluorocarbons (PFCs). Journal of Industrial and Engineering Chemistry , 2004, 10(1): 107-114
243 Burgess D R, Zachariah M R, Tsang W, Westmoreland P R. Thermochemical and chemical kinetic data for fluorinated hydrocarbons. Progress in Energy and Combustion Science , 1995, 21(6): 453-529
doi: 10.1016/0360-1285(95)00009-7
244 Lines D, Sutcliffe H. Preparation and properties of some salts of perfluorooctanoic acid. Journal of Fluorine Chemistry , 1984, 25(4): 505-512
doi: 10.1016/S0022-1139(00)81482-7
245 Lazerte J D, Hals L J, Reid T S, Smith G H. Pyrolyses of the salts of the perfluoro carboxylic acids. Journal of the American Chemical Society , 1953, 75(18): 4525-4528
doi: 10.1021/ja01114a040
246 Gl?ckner V, Lunkwitz K, Prescher D. Zur chemischen und thermischen Stabilit?t von Fluortensiden. Tenside Surfactants Detergents , 1989, 26(6): 376-380 (in German)
247 Krusic P J, Roe D C. Gas-phase NMR technique for studying the thermolysis of materials: Thermal decomposition of ammonium perfluorooctanoate. Analytical Chemistry , 2004, 76(13): 3800-3803
doi: 10.1021/ac049667k
248 Office of Pollution Prevention & Toxics, Docket AR226-1366, ed. Laboratory-Scale Thermal Degradation of Perfluorooctanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 13
249 Ravishankara A R, Solomon S, Turnipseed A A, Warren R F. Atmospheric lifetimes of long-lived halogenated species. Science , 1993, 259(5092): 194-199
doi: 10.1126/science.259.5092.194
250 Office of Pollution Prevention & Toxics, Docket AR226-1367, ed. Final Report: Laboratory-Scale Thermal Degradation of Perfluoro-Octanyl Sulfonate and Related Substances. Washington DC: US Environmental Protection Agency, 2003, 142
251 Leighton T G. The Acoustic Bubble. London: Academic Press, 1994, 316-335
252 Mason T J, Lorimer J P. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry. New York: Halsted Press, 1988
253 Suslick K S. Ultrasound: It's Chemical, Physical, and Biological Effects. New York: VCH Publishers, 1988
254 Destaillats H, Hung H M, Hoffmann M R. Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environmental Science & Technology , 2000, 34(2): 311-317
doi: 10.1021/es990384x
255 Kotronarou A, Mills G, Hoffmann M R. Ultrasonic irradiation of para-nitrophenol in aqueous solution. Journal of Physical Chemistry , 1991, 95(9): 3630-3638
doi: 10.1021/j100162a037
256 Vinodgopal K, Ashokkumar M, Grieser F. Sonochemical degradation of a polydisperse nonylphenol ethoxylate in aqueous solution. Journal of Physical Chemistry B , 2001, 105(16): 3338-3342
doi: 10.1021/jp004178j
257 Manousaki E, Psillakis E, Kalogerakis N, Mantzavinos D. Degradation of sodium dodecylbenzene sulfonate in water by ultrasonic irradiation. Water Research , 2004, 38(17): 3751-3759
doi: 10.1016/j.watres.2004.06.002
258 Petrier C, Lamy M F, Francony A, Benahcene A, David B, Renaudin V, Gondrexon N. Sonochemical degradation of phenol in dilute aqueous solutions: Comparison of the reaction-rates at 20-Khz and 487-Khz. Journal of Physical Chemistry , 1994, 98(41): 10514-10520
doi: 10.1021/j100092a021
259 Hung H M, Hoffmann M R. Kinetics and mechanism of the sonolytic degradation of chlorinated hydrocarbons: Frequency effects. Journal of Physical Chemistry A , 1999, 103(15): 2734-2739
doi: 10.1021/jp9845930
260 Jennings B H, Townsend S N. Sonochemical reactions of carbon tetrachloride and chloroform in aqueous suspension in an inert atmosphere. Journal of Physical Chemistry , 1961, 65(9): 1574-1579
doi: 10.1021/j100905a025
261 Petrier C, David B, Laguian S. Ultrasonic degradation at 20 khz and 500 khz of atrazine and pentachlorophenol in aqueous solution: Preliminary results. Chemosphere , 1996, 32(9): 1709-1718
doi: 10.1016/0045-6535(96)00088-4
262 Suslick K S, Hammerton D A, Cline R E. The sonochemical hot-spot. Journal of the American Chemical Society , 1986, 108(18): 5641-5642
doi: 10.1021/ja00278a055
263 Price G J, Ashokkumar M, Hodnett M, Zequiri B, Grieser F. Acoustic emission from cavitating solutions: Implications for the mechanisms of sonochemical reactions. Journal of Physical Chemistry B , 2005, 109(38): 17799-17801
doi: 10.1021/jp0543227
264 Sunartio D, Ashokkumar M, Grieser F. Study of the coalescence of acoustic bubbles as a function of frequency, power, and water-soluble additives. Journal of the American Chemical Society , 2007, 129(18): 6031-6036
doi: 10.1021/ja068980w
265 Brennen C E. Cavitation and Bubble Dynamics. New York: Oxford University Press, 1995
266 Didenko Y T, McNamara W B, Suslick K S. Hot spot conditions during cavitation in water. Journal of the American Chemical Society , 1999, 121(24): 5817-5818
doi: 10.1021/ja9844635
267 Ciawi E, Rae J, Ashokkumar M, Grieser F. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. Journal of Physical Chemistry B , 2006, 110(27): 13656-13660
doi: 10.1021/jp061441t
268 Ashokkumar M, Grieser F. A comparison between multibubble sonoluminescence intensity and the temperature within cavitation bubbles. Journal of the American Chemical Society , 2005, 127(15): 5326-5327
doi: 10.1021/ja050804k
269 Eddingsaas N C, Suslick K S. Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. Journal of the American Chemical Society , 2007, 129(13): 3838-3839
doi: 10.1021/ja070192z
270 Sostaric J Z, Riesz P. Sonochemistry of surfactants in aqueous solutions: An EPR spin-trapping study. Journal of the American Chemical Society , 2001, 123(44): 11010-11019
doi: 10.1021/ja010857b
271 Kato S, Makide Y, Tominaga T, Takeuchi K. Infrared multiphoton dissociation of heptafluoropropane. Journal of Physical Chemistry , 1987, 91(16): 4278-4284
doi: 10.1021/j100300a016
272 Wilhelmi A R, Knopp P V. Wet air oxidation: An alternative to incineration. Chemical Engineering Progress , 1979, 75(8): 46-52
273 Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: A review of process technologies and aspects in reactor design. Chemical Engineering Journal , 1999, 73(2): 143-160
doi: 10.1016/S1385-8947(99)00022-4
274 Chang M B, Chang J S. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review. Industrial & Engineering Chemistry Research , 2006, 45(12): 4101-4109
doi: 10.1021/ie051227b
275 Destaillats H, Colussi A J, Joseph J M, Hoffmann M R. Synergistic effects of sonolysis combined with ozonolysis for the oxidation of azobenzene and methyl orange. Journal of Physical Chemistry A , 2000, 104(39): 8930-8935
doi: 10.1021/jp001415+
276 Weavers L K, Malmstadt N, Hoffmann M R. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation. Environmental Science & Technology , 2000, 34(7): 12801285
doi: 10.1021/es980795y
277 Lesko T, Colussi A J, Hoffmann M R. Sonochemical decomposition of phenol: Evidence for a synergistic effect of ozone and ultrasound for the elimination of total organic carbon from water. Environmental Science & Technology , 2006, 40(21): 6818-6823
doi: 10.1021/es052558i
278 Weavers L K, Ling F H, Hoffmann M R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environmental Science & Technology , 1998, 32(18): 2727-2733
doi: 10.1021/es970675a
Related articles from Frontiers Journals
[1] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[2] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[3] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[4] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[5] Ming Cheng, Huapeng Qin, Kangmao He, Hongliang Xu. Can floor-area-ratio incentive promote low impact development in a highly urbanized area? —A case study in Changzhou City, China[J]. Front. Environ. Sci. Eng., 2018, 12(2): 8-.
[6] Dong Xu, Yang Li, Lifeng Yin, Yangyuan Ji, Junfeng Niu, Yanxin Yu. Electrochemical removal of nitrate in industrial wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(1): 9-.
[7] Linbi Zhou, Hongbin Cao, Claude Descorme, Yongbing Xie. Phenolic compounds removal by wet air oxidation based processes[J]. Front. Environ. Sci. Eng., 2018, 12(1): 1-.
[8] Jun Xia, Hongping Wang, Richard L. Stanford, Guoyan Pan, Shaw L. Yu. Hydrologic and water quality performance of a laboratory scale bioretention unit[J]. Front. Environ. Sci. Eng., 2018, 12(1): 14-.
[9] Halima Sassi, Gwendoline Lafaye, Hédi Ben Amor, Abdelaziz Gannouni, Mohamed Razak Jeday, Jacques Barbier-Jr. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation[J]. Front. Environ. Sci. Eng., 2018, 12(1): 2-.
[10] Pan Gao, Yuan Song, Shaoning Wang, Claude Descorme, Shaoxia Yang. Fe2O3-CeO2-Bi2O3/γ-Al2O3 catalyst in the catalytic wet air oxidation (CWAO) of cationic red GTL under mild reaction conditions[J]. Front. Environ. Sci. Eng., 2018, 12(1): 8-.
[11] Xiaoxia Ou, Jianfang Yan, Fengjie Zhang, Chunhua Zhang. Accelerated degradation of orange G over a wide pH range in the presence of FeVO4[J]. Front. Environ. Sci. Eng., 2018, 12(1): 7-.
[12] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[13] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[14] Shuhan Zhang, Yingying Meng, Jiao Pan, Jiangang Chen. Pollutant reduction effectiveness of low-impact development drainage system in a campus[J]. Front. Environ. Sci. Eng., 2017, 11(4): 14-.
[15] Weiman Li, Haidi Liu, Yunfa Chen. Promotion of transition metal oxides on the NH3-SCR performance of ZrO2-CeO2 catalyst[J]. Front. Environ. Sci. Eng., 2017, 11(2): 6-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed