Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  学科浏览  |  专题文章  |  热点文章  |  下载排行
Frontiers of Environmental Science & Engineering    2020, Vol. 14 Issue (1) : 7-     https://doi.org/10.1007/s11783-019-1186-4
RESEARCH ARTICLE
Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents
Mohsen Jalali(), Ziba Hurseresht
Department of Soil Science, College of Agriculture, Bu_Ali Sina University, Hamedan, Iran
全文: PDF(2189 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 had similar behavior.

• In NH4OAc, DTPA, and EDTA, the possibility of re-adsorption of trace elements is low.

• CaCl2 may be more suitable than other extracts in calcareous soils.

Understanding trace elements mobility in soils, extracting agents, and their relationships with soil components, are essential for predicting their movement in soil profile and availability to plants. A laboratory study was conducted to evaluate extractability of cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), and zinc (Zn) from calcareous soils utilizing various extracting agents to be specific CaCl2, DTPA, EDTA, HNO3, MgCl2, NaNO3, NH4NO3, and NH4OAc. Cluster analysis indicated that DTPA and NH4OAc, HNO3 and EDTA, and MgCl2 and NH4NO3 extracting agents yielded comparative values, whereas NaNO3 and CaCl2 have shown different behavior than other extracting agents for all studied trace elements. The speciation of extracted trace elements in solutions indicated that in the CaCl2, NaNO3, NH4NO3, and MgCl2 extracting agents most extracted Cd, Co, Ni, Zn, and part of Cu were as free ions and may be re-adsorbed on soils, leading to lower extractability, whereas, in the case of HNO3 extracting agent, the likelihood of re-adsorption of trace elements may be little. The results of speciation of trace elements using NH4OAc, DTPA, and EDTA extracting agents showed that Me-(Acetate)3, Me-(Acetate)2(aq), Me(DTPA)3, Me(EDTA)2, and MeH(EDTA) complexes dominated in solutions indicating that the extracted trace elements may not be re-adsorbed on soils, leading to higher extractability. The results of this study are useful for short and long-term evaluations of trace elements mobility and further environmental impacts.

Keywords Mobility      Calcareous soils      Extracting agents      Trace elements     
发布日期: 2019-11-19
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Mohsen Jalali
Ziba Hurseresht
引用本文:   
Mohsen Jalali,Ziba Hurseresht. Assessment of mobile and potential mobile trace elements extractability in calcareous soils using different extracting agents[J]. Front. Environ. Sci. Eng., 2020, 14(1): 7.
网址:  
https://journal.hep.com.cn/fese/EN/10.1007/s11783-019-1186-4     OR     https://journal.hep.com.cn/fese/EN/Y2020/V14/I1/7
Fig.1  Boxplot of extracted trace elements by different extracting agents (open circles denote the mean value and filled circles denote the median value).
Fig.2  Comparison between the Cd, Co, Cu, Ni, and Zn-extractable fraction of total trace element content (%) by CaCl2, DTPA, EDTA, HNO3, MgCl2, NaNO3, NH4NO3 and NH4OAc. Different letters show significant differences at p<0.05.
Metal Method Equation r
Cd CaCl2 0.192 ? 0.025 OM ? 0.004 Clay 0.85***
DTPA ? ?
EDTA 1.267 ? 0.007 Clay 0.42*
HNO3 0.494+ 1.441 EC 0.54**
MgCl2 0.642+ 0.004 Silt 0.68***
NaNO3 -0.142+ 0.017 CEC+ 0.119 OM+ 0.014 Clay ? 0.004 Silt 0.86***
NH4NO3 0.093 ? 0.192 EC+ 0.004 CEC+ 0.011 OM 0.89***
NH4OAc 1.137+ 0.018 CaCO3?0.008 Clay?0.009 Silt 0.75***
Co CaCl2 0.32 ? 0.01 Clay 0.54**
DTPA ? ?
EDTA ? ?
HNO3 4.52 ? 0.09 CaCO3 0.65***
MgCl2 1.31 ? 0.01 Clay 0.47*
NaNO3 0.29 ? 0.68 EC+ 0.002 Silt 0.82***
NH4NO3 0.11+ 0.001 Silt 0.40*
NH4OAc 3.49+ 0.07 CaCO3 ? 0.05 Silt 0.72***
Cu CaCl2 0.18+ 0.85 EC ? 0.06 OM ? 0.01 Clay 0.90***
DTPA 18.78 ? 2.64 pH+ 37.86 EC ? 0.92 OM 0.80***
EDTA 17.40 ? 1.50 OM ? 0.33 Clay 0.71***
HNO3 38.81 ? 4.23 pH ? 0.16 Clay 0.71***
MgCl2 ? ?
NaNO3 0.67- 0.09 pH+ 0.03 OM 0.47*
NH4NO3 -0.03+ 2.76 EC 0.57**
NH4OAc 1.81+ 3.37 EC ? 0.01 Silt 0.68***
Ni CaCl2 0.597 ? 0.070 OM ? 0.014 Clay 0.75***
DTPA 3.690 ? 0.461 CEC+ 0.280 Clay 0.49*
EDTA 7.814 ? 0.780 OM ? 0.265 CaCO3 + 0.079 Silt 0.59**
HNO3 8.786 ? 0.253 CaCO3 0.57**
MgCl2 ? ?
NaNO3 0.269+ 0.003 Clay 0.44*
NH4NO3 0.938 ? 0.090 pH+ 0.004 Silt 0.73***
NH4OAc 2.60 ? 0.020 Silt 0.59**
Zn CaCl2 ? ?
DTPA 11.63 ? 0.47 CEC 0.42*
EDTA 24.84 ? 0.67 Clay 0.53**
HNO3 101.00 ? 10.27 pH ? 0.66 Clay 0.68***
MgCl2 9.20 ? 1.08 pH ? 0.038 CEC+ 0.06 CaCO3 0.67***
NaNO3 0.01+ 0.02 CEC 0.58**
NH4NO3 1.12 ? 0.12 pH 0.47*
NH4OAc ? ?
Tab.1  Multiple regressions between Cd, Co, Cu, Ni, and Zn extracted by different extracting agents and soil properties
Fig.3  Results of the linear regression analysis between extractable Cd, Co, Cu, Ni and Zn by different extracting agents (*p<0.05, ** p<0.01).
Fig.4  Dendrogram of trace elements extracted by different extracting agents.
Fig.5  Dendrograms of extracting agents for each trace element.
Fig.6  (a) Dendrograms of extracted trace elements (mean of extracting agents) and (b) extracting agents (mean of extracted trace elements).
Species Extracting agent
CaCl2 MgCl2 DTPA EDTA HNO3 NaNO3 NH4NO3 NH4OAc
Trace elements % Trace elements % Trace elements % Trace elements % Trace elements % Trace elements % Trace elements % Trace elements %
Cd Cd2+ 48.94 Cd2+ 0.35 ? ? ? ? Cd2+ 67.61 Cd2+ 83.56 Cd2+ 38.25 Cd2+ 0.27
CdCl+ 47.12 CdCl+ 25.57 ? ? ? ? ? ? ? ? ? ? ? ?
CdCl2 (aq) 2.75 CdCl2 (aq) 74.05 ? ? ? ? ? ? ? ? ? ? ? ?
CdCO3 (aq) 0.35 ? ? ? ? ? ? ? ? CdCO3 (aq) 4.70 ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cd-(Acetate)3? 62.26
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cd-(Acetate)2 (aq) 26.79
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cd-Acetate+ 8.63
? ? ? ? ? ? ? ? ? ? ? ? CdNH32+ 2.76 CdNH32+ 0.92
? ? ? ? ? ? ? ? CdNO3+ 29.01 CdNO3+ 9.60 CdNO3+ 47.20 ? ?
? ? ? ? ? ? ? ? Cd(NO3)2 (aq) 3.38 Cd(NO3)2 (aq) 0.28 Cd(NO3)2 (aq) 11.74 ? ?
? ? ? ? Cd-DTPA3 99.97 CdEDTA2? 94.83 ? ? ? ? ? ? ? ?
? ? ? ? CdH-DTPA2 0.04 CdHEDTA? 5.16 ? ? ? ? ? ? ? ?
? ? ? ? - - CdH2EDTA (aq) 0.01 ? ? ? ? ? ? ? ?
Co Co2+ 95.01 Co2+ 66.27 ? ? ? ? Co2+ 75.93 Co2+ 85.91 Co2+ 44.11 Co2+ 7.68
CoCl+ 0.43 CoCl+ 22.89 ? ? ? ? ? ? ? ? ? ? ?
CoCO3 (aq) 0.55 CoCO3 (aq) 1.03 ? ? ? ? ? ? CoCO3 (aq) 3.93 ? ? ? ?
CoHCO3+ 3.84 CoHCO3+ 9.67 ? ? ? ? ? ? CoHCO3+ 3.49 ? ? CoHCO3+ 1.94
? ? ? ? ? ? ? ? CoNO3+ 16.33 CoNO3+ 4.95 CoNO3+ 27.28 ? ?
? ? ? ? ? ? ? ? Co(NO3)2 (aq) 7.75 Co(NO3)2 (aq) 0.59 Co(NO3)2 (aq) 27.64 ? ?
? ? ? ? ? ? ? ? ? ? ? ? Co(NH3)2+ 0.96 Co(NH3)2+ 7.95
? ? ? ? ? ? ? ? ? ? ? ? ? ? Co(NH3)22+ 2.21
? ? ? ? ? ? ? ? ? ? ? ? ? ? Co-Acetate+ 71.37
? ? ? ? ? ? ? ? ? ? ? ? ? ? Co-(Acetate)2 (aq) 8.35
? ? ? ? Co-DTPA3? 99.95 CoEDTA2? 93.57 ? ? ? ? ? ? ? ?
? ? ? ? CoH-DTPA2? 0.05 CoHEDTA? 6.41 ? ? ? ? ? ? ? ?
? ? ? ? ? ? CoH2EDTA (aq) 0.02 ? ? ? ? ? ? ? ?
Cu Cu2+ 31.96 Cu2+ 12.27 ? ? ? ? Cu2+ 69.37 Cu2+ 5.47 Cu2+ 17.89 Cu2+ 0.02
CuOH+ 9.08 CuOH+ 3.83 ? ? ? ? ? ? CuOH+ 10.59 CuOH+ 0.13 ? ?
CuCl+ 0.64 CuCl+ 18.93 ? ? ? ? ? ? ? ? ? ? ? ?
? ? CuCl2 (aq) 3.62 ? ? ? ? ? ? ? ? ? ? ?
CuCO3 (aq) 56.88 CuCO3 (aq) 59.10 ? ? ? ? ? ? CuCO3 (aq) 77.35 ? ? ? ?
Cu(CO3)22? 0.18 Cu(CO3)22? 0.67 ? ? ? ? ? ? Cu(CO3)22? 3.83 ? ? ? ?
? ? ? ? ? ? ? ? CuNO3+ 29.76 CuNO3+ 0.63 CuNO3+ 22.07 ? ?
? ? ? ? ? ? ? ? ? ? ? ? CuNH32+ 38.04 CuNH32+ 0.87
? ? ? ? ? ? ? ? ? ? ? ? Cu(NH3)32+ 2.32 Cu(NH3)32+ 26.54
? ? ? ? ? ? ? ? ? ? ? ? Cu(NH3)22+ 18.12 Cu(NH3)22+ 9.28
? ? ? ? ? ? ? ? ? ? ? ? Cu(NH3)42+ 0.06 Cu(NH3)42+ 14.80
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cu-Acetate+ 1.16
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cu-(Acetate)2 (aq) 8.86
? ? ? ? ? ? ? ? ? ? ? ? ? ? Cu-(Acetate)3? 38.48
? ? ? ? Cu-DTPA3? 99.97 CuEDTA2? 92.02 ? ? ? ? ? ? ? ?
? ? ? ? CuH-DTPA2? 0.03 CuHEDTA? 7.93 ? ? ? ? ? ? ? ?
? ? ? ? ? ? CuH2EDTA (aq) 0.05 ? ? ? ? ? ? ? ?
Ni Ni2+ 92.58 Ni2+ 64.22 ? ? ? ? Ni2+ 74.58 Ni2+ 79.80 Ni2+ 47.85 Ni2+ 1.56
NiCl+ 0.35 NiCl+ 18.45 ? ? ? ? ? ? ? ? ? ?
NiCO3 (aq) 1.04 NiCO3 (aq) 1.95 ? ? ? ? ? ? NiCO3 (aq) 7.12 ? ? ?
NiHCO3+ 5.93 NiHCO3+ 14.86 ? ? ? ? ? ? NiHCO3+ 5.14 ? ? ?
? ? ? ? ? ? ? ? NiNO3+ 25.42 NiNO3+ 7.28 NiNO3+ 46.90 ?
? ? ? ? ? ? ? ? ? ? ? ? NiNH32+ 5.10 NiNH32+ 3.72
? ? ? ? ? ? ? ? ? ? ? ? Ni(NH3)22+ 0.15 Ni(NH3)22+ 2.38
? ? ? ? ? ? ? ? ? ? ? ? ? ? Ni-Acetate+ 16.68
? ? ? ? ? ? ? ? ? ? ? ? ? ? Ni-(Acetate)2 (aq) 75.15
? ? ? ? Ni-DTPA3? 99.77 NiEDTA2? 92.06 ? ? ? ? ? ? ?
? ? ? ? NiH-DTPA2? 0.23 NiHEDTA- 7.94 ? ? ? ? ? ? ?
Zn Zn2+ 93.14 Zn2+ 9.80 ? ? ? ? Zn2+ 73.72 Zn2+ 72.21 Zn2+ 47.36 Zn2+ 3.00
ZnOH+ 0.84 ZnCl+ 21.86 ? ? ? ? ? ? ? ? ? ? ? ?
Zn(OH)2 (aq) 0.13 ZnCl42? 23.11 ? ? ? ? ? ? ? ? ? ? ? ?
ZnCl+ 2.71 ZnCl3? 29.24 ? ? ? ? ? ? ? ? ? ? ? ?
ZnCl2 (aq) 0.04 ZnCl2 (aq) 14.84 ? ? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ZnOH+ 4.42 ? ? ZnOH+ 0.02
? ? ? ? ? ? ? ? ZnNO3+ 25.12 ZnNO3+ 6.59 ZnNO3+ 46.42 ? ?
? ? ? ? ? ? ? ? Zn(NO3)2 (aq) 1.17 Zn(OH)2 (aq) 5.47 Zn(NO3)2 (aq) 4.60 ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
ZnCO3 (aq) 1.62 ZnCO3 (aq) 0.46 ? ? ? ? ? ? ZnCO3 (aq) 9.98 ? ? ? ?
? ? ? ? ? ? ? ? ? ? ? ? ? ? Zn-Acetate+ 43.23
? ? ? ? ? ? ? ? ? ? ? ? ? ? Zn-(Acetate)2 (aq) 46.73
? ? ? ? Zn-DTPA3? 99.79 ZnEDTA2? 93.59 ? ? ? ? ? ? ? ?
? ? ? ? ZnH-DTPA2? 0.21 ZnHEDTA? 6.41 ? ? ? ? ? ? ? ?
Tab.2  Average species and percentage of metals using different extracting agents
1 D C Adriano (2001). Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risk of Heavy Metals. 2nd ed. Berlin: Springer, 896
2 J D Allison, D S Brown, K Novo-Gradac (1991). MINTEQA2=PRODEFA2—A Geochemical Assessment Model for Environmental Systems—Version 3.11 Databases and Version 3.0. User’s Manual, Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, Ga
3 A Argyraki, E Kelepertzis, F Botsou, V Paraskevopoulou, I Katsikis, M Trigoni (2018). Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. Journal of Geochemical Exploration, 187: 201–213
https://doi.org/10.1016/j.gexplo.2017.09.004
4 G J Bouyoucos (1962). Hydrometer method improved for making particles size of soils. Agronomy Journal, 54(5): 464–465
https://doi.org/10.2134/agronj1962.00021962005400050028x
5 R C Cancela, C de Abreu, A Paz-Gonza’lez (2002). DTPA and Mehlich-3 micronutrient extractability in natural soils. Communications in Soil Science and Plant Analysis, 33(15-18): 2879–2893
https://doi.org/10.1081/CSS-120014488
6 A de Santiago-Martín, I Valverde-Asenjo, J R Quintana, A Vázquez, A L Lafuente, C González-Huecas (2013). Metal extractability patterns to evaluate (potentially) mobile fractions in periurban calcareous agricultural soils in the Mediterranean area-analytical and mineralogical approaches. Environmental Science and Pollution Research International, 20(9): 6392–6405
https://doi.org/10.1007/s11356-013-1684-z pmid: 23589262
7 F Degryse, A Voegelin, J Olivier, R Kretzschmar, E Smolders (2011). Characterization of zinc in contaminated soils: Complementary insights from isotopic exchange, batch extractions and XAFS spectroscopy. European Journal of Soil Science, 62(2): 318–330
https://doi.org/10.1111/j.1365-2389.2010.01332.x
8 F E Ennoukh, R Bchitou, F Mohammed, D Guillaume, H Harhar, A Bouhaouss (2017). Study of the effects of extraction methods on Argan oil quality through its metal content. Industrial Crops and Products, 109: 182–184
https://doi.org/10.1016/j.indcrop.2017.08.039
9 V Ettler, M Mihaljevic, O Sebek, T Grygar (2007). Assessment of single extractions for the determination of mobile forms of metals in highly polluted soils and sediments—Analytical and thermodynamic approaches. Analytica Chimica Acta, 602(1): 131–140
https://doi.org/10.1016/j.aca.2007.09.017 pmid: 17936117
10 P S Fedotov, W Kordel, M Miro, W J G M Peijnenburg, R Wennrich, P-M Huang (2012). Extraction and fractionation methods for exposure assessment of trace metals, metalloids and hazardous organic compounds in terrestrial environment. Critical Reviews in Environmental Science and Technology, 42(11): 1117–1171
https://doi.org/10.1080/10643389.2011.556544
11 M García-Carmona, A Romero-Freire, M S Aragón, F J Martín Peinado (2019). Effectiveness of ecotoxicological tests in relation to physicochemical properties of Zn and Cu polluted Mediterranean soils. Geoderma, 338: 259–268
https://doi.org/10.1016/j.geoderma.2018.12.016
12 A K Gupta, S Sinha (2007). Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Journal of Hazardous Materials, 149(1): 144–150
https://doi.org/10.1016/j.jhazmat.2007.03.062 pmid: 17475401
13 S K Gupta, C C Aten (1993). Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. International Journal of Environmental Analytical Chemistry, 51(1-4): 25–46
https://doi.org/10.1080/03067319308027609
14 D Hammer, C Keller (2002). Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. Journal of Environmental Quality, 31(5): 1561–1569
https://doi.org/10.2134/jeq2002.1561 pmid: 12371173
15 M Iglesias, E Marguí, F Camps, M Hidalgo (2018). Extractability and crop transfer of potentially toxic elements from Mediterranean agricultural soils following long-term sewage sludge applications as a fertilizer replacement to barley and maize crops. Waste Management (New York, N.Y.), 75: 312–318
https://doi.org/10.1016/j.wasman.2018.01.024 pmid: 29395735
16 M Jalali, Z V Khanlari (2008). Environmental contamination of Zn, Cd, Ni, Cu, and Pb from industrial areas in Hamadan Province, western Iran. Environmental Geology, 55(7): 1537–1543
https://doi.org/10.1007/s00254-007-1103-1
17 M Jalali, M Majeri (2016). Cobalt sorption–desorption behavior of calcareous soils from some Iranian soils. Chemie der Erde, 76(1): 95–102
https://doi.org/10.1016/j.chemer.2015.11.004
18 M Jalali, M Majeri, S Najafi (2019). Kinetic release and fractionation of cobalt in some calcareous soils. Journal of Geochemical Exploration, 204: 131–141
https://doi.org/10.1016/j.gexplo.2019.02.006
19 C Jorge Mendoza, R Tatiana Garrido, R Cristian Quilodrán, C Matías Segovia, A José Parada (2017). Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere, 176: 81–88
https://doi.org/10.1016/j.chemosphere.2017.02.066 pmid: 28259082
20 A Kabata-Pendias (2011). Trace Element in Soils and Plants. 4th ed. Boca Raton: Taylor and Francis Group .
21 E Kelepertzis, V Paraskevopoulou, A Argyraki, G Fligos, O Chalkiadaki (2015). Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). Journal of Soils and Sediments, 15(11): 2265–2275
https://doi.org/10.1007/s11368-015-1163-x
22 E J Kim, E K Jeon, K Baek (2016). Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA. Chemosphere, 152: 274–283
https://doi.org/10.1016/j.chemosphere.2016.03.005 pmid: 26974482
23 G S R Krishnamurti, L H Smith, R Naidu (2000). Method for assessing plant-available cadmium in soils. Australian Journal of Soil Research, 38(4): 823–836
https://doi.org/10.1071/SR99122
24 L Li, H Wu, C A van Gestel, W J G M Peijnenburg, H E Allen (2014). Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. Environmental Pollution, 188: 144–152
https://doi.org/10.1016/j.envpol.2014.02.003 pmid: 24583712
25 W L Lindsay, W A Norvell (1978). Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42(3): 421–428
https://doi.org/10.2136/sssaj1978.03615995004200030009x
26 E Meers, R Samson, F M G Tack, A Ruttens, M Vandegehuchte, J Vangronsveld, M G Verloo (2007). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany, 60(3): 385–396
https://doi.org/10.1016/j.envexpbot.2006.12.010
27 C Micó, M Peris, L Recatalá, J Sánchez (2007). Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Science of the Total Environment, 378(1-2): 13–17
https://doi.org/10.1016/j.scitotenv.2007.01.010 pmid: 17306340
28 G Mühlbachová, T Simon, M Pechová (2005). The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant, Soil and Environment, 51(1): 26–33
https://doi.org/10.17221/3552-PSE
29 I Novozamsky, T H M Lexmond, V J G A Houba (1993). Single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51(1-4): 47–58
https://doi.org/10.1080/03067319308027610
30 G A O’Connor (1988). Use and misuse of the DTPA soil test. Journal of Environmental Quality, 17(4): 715–718
https://doi.org/10.2134/jeq1988.00472425001700040033x
31 T Pardo, R Clemente, M P Bernal (2011). Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere, 84(5): 642–650
https://doi.org/10.1016/j.chemosphere.2011.03.037 pmid: 21492902
32 W J G M Peijnenburg, M Zablotskaja, M G Vijver (2007). Monitoring metals in terrestrial environments within a bioavailability framework and a focus on soil extraction. Ecotoxicology and Environmental Safety, 67(2): 163–179
https://doi.org/10.1016/j.ecoenv.2007.02.008 pmid: 17445889
33 R W Peters (1999). Chelant extraction of heavy metals from contaminated soils. Journal of Hazardous Materials, 66(1-2): 151–210
https://doi.org/10.1016/S0304-3894(99)00010-2 pmid: 10379036
34 E Pinto, A A Almeida, I M P L V O Ferreira (2015). Assessment of metal(loid)s phytoavailability in intensive agricultural soils by the application of single extractions to rhizosphere soil. Ecotoxicology and Environmental Safety, 113: 418–424
https://doi.org/10.1016/j.ecoenv.2014.12.026 pmid: 25544651
35 M Pueyo, J F Lopez-Sanchez, G Rauret (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. International Journal of Environmental Analytical Chemistry, 504: 217–226
36 M Rajkumar, S Sandhya, M N Prasad, H Freitas (2012). Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30(6): 1562–1574
https://doi.org/10.1016/j.biotechadv.2012.04.011 pmid: 22580219
37 J J Ramos-Miras, L Roca-Perez, M Guzmán-Palomino, R Boluda, C Gil (2011). Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). Journal of Geochemical Exploration, 110(2): 186–192
https://doi.org/10.1016/j.gexplo.2011.05.009
38 C R M Rao, A Sahuquillo, J F López-Sánchez (2008). A review of different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soil and related materials. Water, Air, and Soil Pollution, 189(1-4): 291–333
https://doi.org/10.1007/s11270-007-9564-0
39 D L Rowell (1994). Soil Science: Methods and Applications. Essex: Longman Scientific and Technical
40 A Sahuquillo, A Rigol, G Rauret (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends in Analytical Chemistry, 22(3): 152–159
https://doi.org/10.1016/S0165-9936(03)00303-0
41 M Sánchez-Camazano, M J Sánchez-Martin, L F Lorenzo (1998). Significance of soil properties for content and distribution of cadmium and lead in natural calcareous soils. Science of the Total Environment, 218(2-3): 217–226
https://doi.org/10.1016/S0048-9697(98)00212-5
42 J M Soriano-Disla, T W Speir, I Gómez, L M Clucas, R G McLaren, J Navarro-Pedreño (2010). Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water, Air, and Soil Pollution, 213(1-4): 471–483
https://doi.org/10.1007/s11270-010-0400-6
43 D L Sparks (1995). Environmental Soil Chemistry. San Diego: Academic Press, Inc. ,
44 G Sposito, L J Lund, A C Chang (1982). Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46(2): 260–264
https://doi.org/10.2136/sssaj1982.03615995004600020009x
45 R Tang, C Ding, F Dang, Y Ma, J Wang, T Zhang, X Wang (2018). NMR-based metabolic toxicity of low-level Hg exposure to earthworms. Environmental Pollution, 239: 428–437
https://doi.org/10.1016/j.envpol.2018.04.027 pmid: 29679940
46 R Tang, X Li, Y Mo, Y Ma, C Ding, J Wang, T Zhang, X Wang (2019). Toxic responses of metabolites, organelles and gut microorganisms of Eisenia fetida in a soil with chromium contamination. Environmental Pollution, 251: 910–920
https://doi.org/10.1016/j.envpol.2019.05.069 pmid: 31234257
47 A van der Ent, P N Nkrumah, M Tibbett, G Echevarria (2019). Evaluating soil extraction methods for chemical characterization of ultramafic soils in Kinabalu Park (Malaysia). Journal of Geochemical Exploration, 196: 235–246
https://doi.org/10.1016/j.gexplo.2018.10.004
48 S Vázquez, E Moreno, R O Carpena (2008). Bioavailability of metals and As from acidified multicontaminated soils: Use of white lupin to validate several extraction methods. Environmental Geochemistry and Health, 30(2): 193–198
https://doi.org/10.1007/s10653-008-9143-3 pmid: 18246434
49 A Venegas, A Rigol, M Vidal (2016). Changes in heavy metal extractability from contaminated soils bremediated with organic waste or biochar. Geoderma, 279: 132–140
https://doi.org/10.1016/j.geoderma.2016.06.010
50 J Vidal, C Perez, M J Martínez-Sánchez, M C Navarro (2004). Origin and behaviour of heavy metals in agricultural Calcaric Fluvisols in semiarid conditions. Geoderma, 121(3-4): 257–270
https://doi.org/10.1016/j.geoderma.2003.12.001
51 C Waterlot, C Pruvot, G Bidar, C Fritsch, De A Vaufleury, R Scheifler, F Douay (2016). Prediction of extractable Cd, Pb and Zn in contaminated woody habitat soils using a change point detection method. Pedosphere, 26(3): 282–298
https://doi.org/10.1016/S1002-0160(15)60043-1
52 J Zbíral (2016). Determination of plant-available micronutrients by the Mehlich 3 soil extractant: A proposal of critical values. Plant, Soil and Environment, 62: 527–531
https://doi.org/10.17221/564/2016-PSE
53 F Zeng, S Ali, H Zhang, Y Ouyang, B Qiu, F Wu, G Zhang (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1): 84–91
https://doi.org/10.1016/j.envpol.2010.09.019 pmid: 20952112
54 M Zhang, Z Liu, H Wang (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7): 820–831
https://doi.org/10.1080/00103621003592341
55 T Zhang, H Wei, X H Yang, B Xia, J M Liu, C Y Su, R L Qiu (2014). Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil. Chemosphere, 109: 1–6
https://doi.org/10.1016/j.chemosphere.2014.02.039 pmid: 24873699
[1] FSE-19084-OF-JM_suppl_1 Download
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn