Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways
Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways
Anaerobic phenanthrene biodegradation enriched process was described in detail.
The enriched bacterial communities were characterized under four redox conditions.
The enriched archaeal communities were stated under high percentage conditions.
Relatively intact pathways of anaerobic phenanthrene biodegradation were proposed.
Polycyclic aromatic hydrocarbons (PAHs) are widespread and persistent contaminants worldwide, especially in environments devoid of molecular oxygen. For lack of molecular oxygen, researchers enhanced anaerobic zones PAHs biodegradation by adding sulfate, bicarbonate, nitrate, and iron. However, microbial community reports of them were limited, and information of metabolites was poor except two-ring PAH, naphthalene. Here, we reported on four phenanthrene-degrading enrichment cultures with sulfate, bicarbonate, nitrate, and iron as electron acceptors from the same initial inoculum. The high-to-low order of the anaerobic phenanthrene biodegradation rate was the nitrate-reducing conditions>sulfate-reducing conditions>methanogenic conditions>iron-reducing conditions. The dominant bacteria populations were Desulfobacteraceae, Anaerolinaceae, and Thermodesulfobiaceae under sulfate-reducing conditions; Moraxellaceae, Clostridiaceae, and Comamonadaceae under methanogenic conditions; Rhodobacteraceae, Planococcaceae, and Xanthomonadaceae under nitrate-reducing conditions; and Geobacteraceae, Carnobacteriaceae, and Anaerolinaceae under iron-reducing conditions, respectively. Principal component analysis (PCA) indicated that bacteria populations of longtime enriched cultures with four electron acceptors all obtained significant changes from original inoculum, and bacterial communities were similar under nitrate-reducing and iron-reducing conditions. Archaea accounted for a high percentage under iron-reducing and methanogenic conditions, and Methanosarcinaceae and Methanobacteriaceae, as well as Methanobacteriaceae, were the dominant archaea populations under iron-reducing and methanogenic conditions. The key steps of phenanthrene biodegradation under four reducing conditions were carboxylation, further ring system reduction, and ring cleavage.
Phenanthrene / Anaerobic biodegradation / Bacterial populations / Archaea populations / Metabolic pathway
[1] |
Amann R, Fuchs B M (2008). Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews. Microbiology, 6(5): 339–348
CrossRef
ADS
Pubmed
Google scholar
|
[2] |
Annweiler E, Michaelis W, Meckenstock R U (2002). Identical ring cleavage products during anaerobic degradation of naphthalene, 2-methylnaphthalene, and tetralin indicate a new metabolic pathway. Applied and Environmental Microbiology, 68(2): 852–858
CrossRef
ADS
Pubmed
Google scholar
|
[3] |
APHA (1998). Standard Methods for the Examination of Water and Wastewater. Baltimore MD: American Public Health Association
|
[4] |
Bauer J E, Capone D G (1985). Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Applied and Environmental Microbiology, 50(1): 81–90
Pubmed
|
[5] |
Berdugo-Clavijo C, Dong X, Soh J, Sensen C W, Gieg L M (2012). Methanogenic biodegradation of two-ringed polycyclic aromatic hydrocarbons. FEMS Microbiology Ecology, 81(1): 124–133
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Chang B V, Chang S W, Yuan S Y (2003). Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Advances in Environmental Research, 7(3): 623–628
CrossRef
ADS
Google scholar
|
[7] |
Coates J D, Anderson R T, Woodward J C, Phillips E J P, Lovley D R (1996). Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environmental Science & Technology, 30(9): 2784–2789
CrossRef
ADS
Google scholar
|
[8] |
Davidova I A, Gieg L M, Duncan K E, Suflita J M (2007). Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment. The ISME journal, 1(5): 436–442
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Fang T, Pan R, Jiang J, He F, Wang H (2016). Effect of salinity on community structure and naphthalene dioxygenase gene diversity of a halophilic bacterial consortium. Frontiers of Environmental Science & Engineering, 10(6): 16
CrossRef
ADS
Google scholar
|
[10] |
Feng Z J, Zhu L Z (2018). Sorption of phenanthrene to biochar modified by base. Frontiers of Environmental Science & Engineering, 12 (2): 1 doi:10.1007/s11783-017-0978-7
|
[11] |
Fuchedzhieva N, Karakashev D, Angelidaki I (2008). Anaerobic biodegradation of fluoranthene under methanogenic conditions in presence of surface-active compounds. Journal of Hazardous Materials, 153(1–2): 123–127
CrossRef
ADS
Pubmed
Google scholar
|
[12] |
Galushko A, Minz D, Schink B, Widdel F (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium. Environmental Microbiology, 1(5): 415–420
CrossRef
ADS
Pubmed
Google scholar
|
[13] |
Hambrick G A, Delaune R D, Patrick W H (1980). Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. Applied and Environmental Microbiology, 40(2): 365–369
Pubmed
|
[14] |
Himmelberg A M, Brüls T, Farmani Z, Weyrauch P, Barthel G, Schrader W, Meckenstock R U (2018). Anaerobic degradation of phenanthrene by a sulfate-reducing enrichment culture. Environmental Microbiology, 20(10): 3589–3600
CrossRef
ADS
Pubmed
Google scholar
|
[15] |
Kleemann R, Meckenstock R U (2011). Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiology Ecology, 78(3): 488–496
CrossRef
ADS
Pubmed
Google scholar
|
[16] |
Kümmel S, Herbst F A, Bahr A, Duarte M, Pieper D H, Jehmlich N, Seifert J, von Bergen M, Bombach P, Richnow H H, Vogt C (2015). Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology, 91(3): 1– 12: fiv006
CrossRef
ADS
Pubmed
Google scholar
|
[17] |
Langenhoff A A M, Zehnder A J B, Schraa G (1996). Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation, 7(3): 267–274
CrossRef
ADS
Google scholar
|
[18] |
Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G (2017). Biodegradation of phenanthrene in polycyclic aromatic hydrocarbon-contaminated wastewater revealed by coupling cultivation-dependent and-independent approaches. Environmental Science & Technology, 51(6): 3391–3401
CrossRef
ADS
Pubmed
Google scholar
|
[19] |
Luo F, Gitiafroz R, Devine C E, Gong Y, Hug L A, Raskin L, Edwards E A (2014). Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Applied and Environmental Microbiology, 80(14): 4095–4107
CrossRef
ADS
Pubmed
Google scholar
|
[20] |
Luo J, Zhang J, Tan X, McDougald D, Zhuang G, Fane A G, Kjelleberg S, Cohen Y, Rice S A (2015). Characterization of the archaeal community fouling a membrane bioreactor. Journal of Environmental Sciences-China, 29: 115–123
CrossRef
ADS
Pubmed
Google scholar
|
[21] |
Martirani-Von Abercron S M, Pacheco D, Benito-Santano P, Marín P, Marqués S (2016). Polycyclic aromatic hydrocarbon-induced changes in bacterial community structure under anoxic nitrate reducing conditions. Frontiers in Microbiology, 7: 1–16
CrossRef
ADS
Pubmed
Google scholar
|
[22] |
Meckenstock R U, Annweiler E, Michaelis W, Richnow H H, Schink B (2000). Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Applied and Environmental Microbiology, 66(7): 2743–2747
CrossRef
ADS
Pubmed
Google scholar
|
[23] |
Mihelcic J R, Luthy R G (1988). Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Applied and Environmental Microbiology, 54(5): 1182–1187
Pubmed
|
[24] |
Morris B E, Gissibl A, Kümmel S, Richnow H H, Boll M (2014). A PCR-based assay for the detection of anaerobic naphthalene degradation. FEMS Microbiology Letters, 354(1): 55–59
CrossRef
ADS
Pubmed
Google scholar
|
[25] |
Mouttaki H, Johannes J, Meckenstock R U (2012). Identification of naphthalene carboxylase as a prototype for the anaerobic activation of non-substituted aromatic hydrocarbons. Environmental Microbiology, 14(10): 2770–2774
CrossRef
ADS
Pubmed
Google scholar
|
[26] |
Müller J B, Ramos D T, Larose C, Fernandes M, Lazzarin H S, Vogel T M, Corseuil H X (2017). Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. Journal of Hazardous Materials, 326: 229–236
CrossRef
ADS
Pubmed
Google scholar
|
[27] |
Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009). Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environmental Microbiology, 11(1): 209–219
CrossRef
ADS
Pubmed
Google scholar
|
[28] |
Obi C C, Adebusoye S A, Amund O O, Ugoji E O, Ilori M O, Hedman C J, Hickey W J (2017). Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment. Applied Microbiology and Biotechnology, 101(10): 4299–4314
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
Rockne K J, Strand S E (2001). Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Research, 35(1): 291–299
CrossRef
ADS
Pubmed
Google scholar
|
[30] |
Safinowski M, Meckenstock R U (2006). Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Environmental Microbiology, 8(2): 347–352
CrossRef
ADS
Pubmed
Google scholar
|
[31] |
Sharak Genthner B R, Townsend G T, Lantz S E, Mueller J G (1997). Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Archives of Environmental Contamination and Toxicology, 32(1): 99–105
CrossRef
ADS
Pubmed
Google scholar
|
[32] |
Smith M R (1990). The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation, 1(2–3): 191–206
CrossRef
ADS
Pubmed
Google scholar
|
[33] |
Tor J M, Lovley D R (2001). Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environmental Microbiology, 3(4): 281–287
CrossRef
ADS
Pubmed
Google scholar
|
[34] |
Trably E, Patureau D, Delgenes J P (2003). Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Science and Technology, 48(4): 53–60
CrossRef
ADS
Pubmed
Google scholar
|
[35] |
Weyrauch P, Zaytsev A V, Stephan S, Kocks L, Schmitz O J, Golding B T, Meckenstock R U (2017). Conversion of cis-2-carboxycyclohexylacetyl-CoA in the downstream pathway of anaerobic naphthalene degradation. Environmental Microbiology, 19(7): 2819–2830
CrossRef
ADS
Pubmed
Google scholar
|
[36] |
Xu M, He Z, Zhang Q, Liu J, Guo J, Sun G, Zhou J (2015). Responses of aromatic-degrading microbial communities to elevated nitrate in sediments. Environmental Science & Technology, 49(20): 12422–12431
CrossRef
ADS
Pubmed
Google scholar
|
[37] |
Yarza P, Yilmaz P, Pruesse E, Glöckner F O, Ludwig W, Schleifer K H, Whitman W B, Euzéby J, Amann R, Rosselló-Móra R (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews. Microbiology, 12(9): 635–645
CrossRef
ADS
Pubmed
Google scholar
|
[38] |
Ye Q H, Wang C Y, Wang Y, Wang H (2018). Characterization of a phenanthrene-degrading methanogenic community. Frontiers of Environmental Science & Engineering, 12 (5): 4 doi: 10.1007/s11783-018-1083-2
|
[39] |
Yuan S Y, Chang B V (2007). Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 42(1): 63–69
CrossRef
ADS
Pubmed
Google scholar
|
[40] |
Zhang S Y, Wang Q F, Xie S G (2012). Molecular characterization of phenanthrene-degrading methanogenic communities in leachate-contaminated aquifer sediment. International Journal of Environmental Science and Technology, 9(4): 705–712
CrossRef
ADS
Google scholar
|
[41] |
Zhang X, Sullivan E R, Young L Y (2000). Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium. Biodegradation, 11(2/3): 117–124
CrossRef
ADS
Pubmed
Google scholar
|
[42] |
Zhang X, Young L Y (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Applied and Environmental Microbiology, 63(12): 4759–4764
Pubmed
|
/
〈 | 〉 |