
Microplastics pollution and reduction strategies
Frontiers of Environmental Science & Engineering ›› 2017, Vol. 11 ›› Issue (1) : 6.
Microplastics pollution and reduction strategies
Microplastic particles smaller than 5 mm in size are of increasing concern, especially in aquatic environments, such as the ocean. Primary source is microbeads (<1 mm) used in cosmetics and cleaning agents and fiber fragments from washing of clothes, and secondary source such as broken down plastic litter and debris. These particles are mostly made from polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyesters. They are ingested by diverse marine fauna, including zooplanktons, mussel, oyster, shrimp, fish etc. and can enter human food chains via several pathways. Strategy for control of microplastics pollution should primarily focus on source reduction and subsequently on the development of cost-effective clean up and remediation technologies. Recent research results on biodegradation of plastics have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants, such as PE, PS and PET under appropriate conditions.
microplastics / plastic microbeads / environmental pollution / biodegradation
[1] |
Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223): 768–771
CrossRef
ADS
Pubmed
Google scholar
|
[2] |
Cµzar A, Echevarría F, González-Gordillo J I, Irigoien X, Úbeda B, Hernández-León S, Palma Á T, Navarro S, García-de-Lomas J, Ruiz A, Fernández-de-Puelles M L, Duarte C M. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10239–10244
CrossRef
ADS
Pubmed
Google scholar
|
[3] |
Cole M, Lindeque P, Halsband C, Galloway T S. Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 2011, 62(12): 2588–2597
CrossRef
ADS
Pubmed
Google scholar
|
[4] |
Zhao S, Zhu L, Wang T, Li D. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution. Marine Pollution Bulletin, 2014, 86(1-2): 562–568
CrossRef
ADS
Pubmed
Google scholar
|
[5] |
Fendall L S, Sewell M A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Marine Pollution Bulletin, 2009, 58(8): 1225–1228
CrossRef
ADS
Pubmed
Google scholar
|
[6] |
Andrady A L. Microplastics in the marine environment. Marine Pollution Bulletin, 2011, 62(8): 1596–1605
CrossRef
ADS
Pubmed
Google scholar
|
[7] |
Tokiwa Y, Calabia B P, Ugwu C U, Aiba S. Biodegradability of plastics. International Journal of Molecular Sciences, 2009, 10(9): 3722–3742
CrossRef
ADS
Pubmed
Google scholar
|
[8] |
Yang J, Yang Y, Wu W M, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 2014, 48(23): 13776–13784
CrossRef
ADS
Pubmed
Google scholar
|
[9] |
Yang Y, Yang J, Wu W M, Zhao J, Song Y, Gao L, Yang R, Jiang L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut Microorganisms. Environmental Science & Technology, 2015, 49(20): 12087–12093
CrossRef
ADS
Pubmed
Google scholar
|
[10] |
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, 351(6278): 1196–1199
CrossRef
ADS
Pubmed
Google scholar
|
/
〈 |
|
〉 |