%A Qing TIAN, Qing WANG, Yalong LIU %T Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input %0 Journal Article %D 2017 %J Front. Earth Sci. %J Frontiers of Earth Science %@ 2095-0195 %R 10.1007/s11707-016-0586-z %P 385-396 %V 11 %N 2 %U {https://journal.hep.com.cn/fesci/EN/10.1007/s11707-016-0586-z %8 2017-05-19 %X

This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%–80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961–1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952–2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, large-scale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.